JPH10335687A - Method for making hole on flexible film, manufacture of solar paddle and solar paddle - Google Patents

Method for making hole on flexible film, manufacture of solar paddle and solar paddle

Info

Publication number
JPH10335687A
JPH10335687A JP9146126A JP14612697A JPH10335687A JP H10335687 A JPH10335687 A JP H10335687A JP 9146126 A JP9146126 A JP 9146126A JP 14612697 A JP14612697 A JP 14612697A JP H10335687 A JPH10335687 A JP H10335687A
Authority
JP
Japan
Prior art keywords
shielding mask
holes
substrate
paddle
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9146126A
Other languages
Japanese (ja)
Other versions
JP4067599B2 (en
Inventor
Yoshitaka Kawada
義高 川田
Shigeki Matsunaka
繁樹 松中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14612697A priority Critical patent/JP4067599B2/en
Publication of JPH10335687A publication Critical patent/JPH10335687A/en
Application granted granted Critical
Publication of JP4067599B2 publication Critical patent/JP4067599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To correct the waving of a surface, by fixing a light shielding mask having holes that have a prescribed diameter on the surface of a flexible film, irradiating a plurality of holes on the light shielding mask with laser beams, and making holes having a prescribed depth that penetrates at least the surface of the flexible film. SOLUTION: A light shielding mask 9 having many small holes is tightly clamped on the upper plane of a substrate by using a placing and fixing tool 10, so as to cover the entire plane to be processed. As the surface layer of the substrate is made of polyimide film, laser beams are applied on the surface of the polyimide film layer from a laser beam head 11 through the holes provided on the light shielding mask 9. Since the surface of the polyimide film layer is pressed by the light shielding mask 9 during processing, the flexible polyimide film layer is brought into close contact with the light shielding mask 9 and the waving of the surface is corrected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可撓性膜の表面に
レーザビームを照射して所定深さの穴を明ける穴明方法
に関し、特に、太陽電池パドル用部品の製造に好適な穴
明方法とその方法を用いた太陽電池パドルの製造方法及
び太陽電池パドルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drilling method for irradiating a surface of a flexible film with a laser beam to drill a hole having a predetermined depth, and more particularly to a drilling method suitable for manufacturing a component for a solar battery paddle. The present invention relates to a method, a method for manufacturing a solar cell paddle using the method, and a solar cell paddle.

【0002】[0002]

【従来の技術】近年の人工衛星においては、大型化や多
機能化に伴う搭載機器の増加から消費電力は増大してい
る。図6に示すような人工衛星は、衛星本体23に図示
しない折りたたみ展開機構を介して電力源である太陽電
池パドル24を収納した状態でロケットにより宇宙空間
へ輸送され、宇宙空間へ到達した時点で、この折りたた
み展開機構により太陽電池パドル24を展開し太陽電池
の受光面を宇宙空間に構築する。太陽電池パドル24に
対しては、太陽電池セルの搭載個数を増やすために大型
化(大面積化)が要求されている。同時に、人工衛星の
大型化や多機能化に伴う搭載機器の増加によって、太陽
電池パドル24そのものの搭載スペースは縮小すること
が求められている。この相反する要求を達成する為に、
フレキシブル型と呼ばれる太陽電池パドルへの要求が高
くなってきている。しかしながら、現在、最も広く使わ
れているリジット型太陽電池パドルのサブストレート
(太陽電池セルを搭載する土台の部分)は、アルミニウ
ムのハニカムにCFRP(炭素繊維強化プラスチック)
を接着した構造である。これに対して、フレキシブル型
太陽電池パドルのサブストレートは、電力伝達用の銅電
極を絶縁するために、耐熱性が強く機械的強度の大き
な、二枚のポリイミドフィルムで挟んで、双方を接着剤
で貼り合わせた構造になっている。
2. Description of the Related Art In recent artificial satellites, power consumption is increasing due to an increase in on-board equipment accompanying an increase in size and multifunctionality. An artificial satellite as shown in FIG. 6 is transported to outer space by a rocket in a state in which a solar battery paddle 24 as a power source is housed in a satellite main body 23 through a folding and unfolding mechanism (not shown), and when the satellite reaches the outer space. The solar cell paddle 24 is expanded by this folding and unfolding mechanism, and the light receiving surface of the solar cell is constructed in outer space. The solar battery paddle 24 is required to have a large size (large area) in order to increase the number of solar cells mounted. At the same time, the mounting space for the solar battery paddle 24 itself is required to be reduced due to the increase in the number of mounted devices accompanying the enlargement and multifunctionality of the artificial satellite. To achieve this conflicting demand,
The demand for a flexible type solar cell paddle is increasing. However, at present, the most widely used rigid solar cell paddle substrate (the part on which the solar cells are mounted) is made of aluminum honeycomb with CFRP (carbon fiber reinforced plastic).
Is bonded. In contrast, the flexible solar cell paddle substrate is sandwiched between two polyimide films, which have high heat resistance and high mechanical strength, to insulate the copper electrode for power transmission, and use an adhesive for both. It is a structure that is stuck together.

【0003】これらの太陽電池パドルは衛星軌道が大気
圏外にある為に通常は、高真空(10-10 Torr程
度)で、かつ、温度サイクルがおおよそ、−70℃〜+
70℃という環境下で使用される。
[0003] These solar battery paddles usually have a high vacuum (about 10 -10 Torr) and a temperature cycle of approximately -70 ° C. to +
Used in an environment of 70 ° C.

【0004】このため、高真空中において太陽からの放
射熱や太陽電池からの発熱でサブストレートが加熱され
ると、接着層のエポキシ系接着剤が気化してアウトガス
が発生し、そのガスが2枚のポリイミドフィルムの間に
充満することによって、サブストレートが膨張により局
所的に湾曲し、太陽電池セルの破損が発生することが度
々ある。そのような接着剤の気化により発生するアウト
ガスによるトラブルを回避する為に、気化したガスを太
陽電池パドルの外部に逃がす、ガス抜き用の微細な穴を
ポリイミドフィルム上に多数形成する方法が幾つか試み
られてきた。それらの技術に関する例としては、ポリイ
ミドフィルムを貼合わせる前にドリルやパンチで機械的
に穴を形成する方法や、貼合わせた後に機械的に穴を形
成する方法が挙げられる。また、この微細な穴は穴径が
大き過ぎるとサブストレートの機械的強度を低下させる
ので、ガスが抜ける範囲で穴径が極力小さいことが望ま
れている。
[0004] Therefore, when the substrate is heated in a high vacuum by radiant heat from the sun or heat from a solar cell, the epoxy-based adhesive in the adhesive layer is vaporized to generate outgas, and the gas is discharged. Filling between two sheets of polyimide film often causes the substrate to be locally curved due to expansion, resulting in damage to the solar cells. In order to avoid such troubles due to outgas generated by the vaporization of the adhesive, there are several methods for forming a large number of fine holes for venting on the polyimide film, allowing the vaporized gas to escape to the outside of the solar cell paddle. Have been tried. Examples of those techniques include a method of mechanically forming a hole with a drill or a punch before laminating a polyimide film, and a method of mechanically forming a hole after laminating. If the diameter of the fine holes is too large, the mechanical strength of the substrate is reduced. Therefore, it is desired that the diameter of the holes be as small as possible within a range from which gas can escape.

【0005】[0005]

【発明が解決しようとする課題】以上のように、大気圏
外で作動中の太陽電池パドルにおける接着層から発生す
る、アウトガスによるトラブルを回避する為に、ガス抜
き用の微細な穴をポリイミドフィルム上に多数形成する
方法は、従来から行われていたが、ポリイミドフィルム
を貼合わせる前に穴を形成する方法では、穴明け後に銅
電極を挟んでエポキシ系接着剤で接着するため、接着剤
が穴を通してポリイミドフィルム表面に到達して、結果
として太陽電池パドルの表面を汚染する場合が多く、さ
らに、ガス抜き用の穴が接着剤で埋まってしまい太陽電
池パドルの変形を防ぐことができない等の不具合が生じ
ていた。また、貼りあわせた後に機械的に穴を形成する
方法では、穴深さの加工精度が低く、太陽電池パドルを
貫いた貫通穴になる場合が多く、かつ、穴の直径も0.
5mm程度が限度であった。このため太陽電池パドルは
機械的強度の低下が避けられず、ロケットでの打ち上げ
の時に折りたたまれた太陽電池パドルを宇宙空間で展開
する際での大きな衝撃にも耐えねばならないため、宇宙
空間での動作に支障をきたしていた。
As described above, in order to avoid troubles due to outgassing generated from the adhesive layer in the solar cell paddle operating outside the atmosphere, fine holes for venting gas are formed on the polyimide film. Conventionally, a method of forming a large number of holes has been performed.However, in a method of forming a hole before laminating a polyimide film, a copper electrode is sandwiched between holes after the hole is formed, and an epoxy-based adhesive is used. In many cases, the surface of the solar cell paddle is contaminated as a result by reaching the surface of the polyimide film through the film, and furthermore, the holes for degassing are filled with an adhesive so that the deformation of the solar cell paddle cannot be prevented. Had occurred. Also, in the method of mechanically forming a hole after bonding, the processing accuracy of the hole depth is low, the through hole often penetrates the solar cell paddle, and the diameter of the hole is 0.1 mm.
The limit was about 5 mm. For this reason, the solar cell paddle is inevitably reduced in mechanical strength and must withstand the great impact of deploying the folded solar cell paddle in space when launching with a rocket. Operation was hindered.

【0006】[0006]

【課題を解決するための手段】本発明は、上記したよう
な技術的課題を解決するためになされたものであり、請
求項1によると、所定の直径をもつ穴が明けられた遮光
マスクを可撓性膜の表面に載置固定する工程と、前記遮
光マスクの複数の穴にレーザビームを照射して少なくと
も前記可撓性膜の表面を貫通する所定深さの穴を明ける
工程とを有することを特徴とする可撓性膜の穴明方法を
提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned technical problem. According to the present invention, a light-shielding mask having a hole having a predetermined diameter is provided. A step of mounting and fixing on a surface of the flexible film, and a step of irradiating a plurality of holes of the light-shielding mask with a laser beam to form holes of a predetermined depth penetrating at least the surface of the flexible film. A method for perforating a flexible film is provided.

【0007】この穴明方法によると、加工時の可撓性膜
は遮光マスクにより表面が押圧されている為に、可撓性
膜が遮光マスクに密接して、表面の波打ちが修正される
ので、加工面が平坦な状態で良好に加工される。
According to this drilling method, since the surface of the flexible film at the time of processing is pressed by the light-shielding mask, the flexible film comes into close contact with the light-shielding mask and the wavy surface is corrected. In addition, the workpiece is favorably machined with the machined surface being flat.

【0008】請求項2によると、遮光マスクが複数の穴
を有する場合には、この複数の穴は一定のピッチで同一
サイズの穴として形成されていることを特徴とする請求
項1記載の可撓性膜の穴明方法を提供するものである。
この穴明方法によると、穴明部位のむらもないので、応
力集中が減少し機械的強度の低下も防ぐことができる。
According to a second aspect, when the light-shielding mask has a plurality of holes, the plurality of holes are formed as holes of the same size at a fixed pitch. A method for drilling a flexible film is provided.
According to this drilling method, since there is no unevenness in the drilled portion, stress concentration is reduced, and a decrease in mechanical strength can be prevented.

【0009】請求項3によると、可撓性膜のレーザビー
ムが照射される表面は、ポリイミドフィルムで形成され
ていることを特徴とする請求項1記載の可撓性膜の穴明
方法を提供するものである。
According to a third aspect of the present invention, there is provided the method for perforating a flexible film according to the first aspect, wherein the surface of the flexible film irradiated with the laser beam is formed of a polyimide film. Is what you do.

【0010】この穴明方法によると、ポリイミドフィル
ムを用いているので耐熱性や機械的強度に優れている可
撓性膜を得ることができる。請求項4によると、レーザ
ビームは、紫外線パルスレーザを用いることを特徴とす
る請求項1記載の可撓性膜の穴明方法を提供するもので
ある。
According to this drilling method, since a polyimide film is used, a flexible film having excellent heat resistance and mechanical strength can be obtained. According to a fourth aspect of the present invention, there is provided the method for perforating a flexible film according to the first aspect, wherein the laser beam uses an ultraviolet pulse laser.

【0011】この穴明方法によると、短い波長の光で加
工を行なうので鋭い加工面の形成ができる。請求項5に
よると、遮光マスクは、金属又はセラミックスで形成さ
れていることを特徴とする請求項1記載の可撓性膜の穴
明方法を提供するものである。
According to this drilling method, since the processing is performed with light having a short wavelength, a sharp processed surface can be formed. According to a fifth aspect of the present invention, there is provided the method for perforating a flexible film according to the first aspect, wherein the light-shielding mask is formed of metal or ceramics.

【0012】この穴明方法によると、遮光マスクが十分
な重量を持つので可撓性膜が遮光マスクに密接する際
に、十分に表面の波打ちが修正される。請求項6による
と、第1の絶縁性高分子基板の一面上に順次積層された
下部電極層、接着剤、第2の絶縁性高分子基板、及び半
導体薄膜よりなる光電変換層から構成される太陽電池パ
ドルの製造方法において、前記第1の絶縁性基板を前記
接着剤を介して前記第2の絶縁性基板と貼りあわせる工
程の後に、前記第1の絶縁性高分子基板の前記一面とは
反対の一面側からレーザ光を照射して少なくとも前記第
1の絶縁性高分子基板のみを貫通する穴を設ける工程を
有することを特徴とする太陽電池パドルの製造方法を提
供するものである。
According to this drilling method, since the light-shielding mask has a sufficient weight, when the flexible film comes into close contact with the light-shielding mask, the surface waving is sufficiently corrected. According to the sixth aspect, the photoelectric conversion layer includes a lower electrode layer, an adhesive, a second insulating polymer substrate, and a semiconductor thin film sequentially laminated on one surface of the first insulating polymer substrate. In the method for manufacturing a solar cell paddle, after the step of bonding the first insulating substrate to the second insulating substrate via the adhesive, the one surface of the first insulating polymer substrate is A method for manufacturing a solar cell paddle, comprising a step of irradiating a laser beam from an opposite surface side to provide a hole penetrating at least the first insulating polymer substrate only.

【0013】この太陽電池パドルの製造方法によると、
第1の絶縁性基板を接着剤を介して第2の絶縁性基板と
貼りあわせる工程の後に、太陽電池の形成された側とは
反対の面から穴明が行われるので穴が接着剤で塞がるこ
ともない。
According to this method for manufacturing a solar cell paddle,
After the step of bonding the first insulating substrate to the second insulating substrate via an adhesive, a hole is formed from the surface opposite to the side on which the solar cells are formed, so that the holes are closed with the adhesive. Not even.

【0014】請求項7によると、第1の絶縁性高分子基
板の一面上に順次積層された下部電極層、接着剤、第2
の絶縁性高分子基板、及び半導体薄膜よりなる光電変換
層から構成される太陽電池パドルにおいて、前記第1の
絶縁性高分子基板の前記一面とは反対の一面側に少なく
とも前記第1の絶縁性高分子基板のみを貫通する直径
0.1mm以下の穴を有することを特徴とする太陽電池
パドルを提供するものである。
According to the present invention, the lower electrode layer, the adhesive, and the second electrode are sequentially laminated on one surface of the first insulating polymer substrate.
A solar cell paddle comprising an insulating polymer substrate and a photoelectric conversion layer made of a semiconductor thin film, wherein at least the first insulating property is provided on one surface side of the first insulating polymer substrate opposite to the one surface. An object of the present invention is to provide a solar cell paddle having a hole having a diameter of 0.1 mm or less penetrating only a polymer substrate.

【0015】この太陽電池パドルによると、形成するガ
ス抜き穴の直径が小さいために、ロケット打ち上げ時や
宇宙空間での動作時における太陽電池パドルの機械的強
度の低下も防ぐことができる。
According to this solar cell paddle, since the diameter of the formed gas vent hole is small, it is possible to prevent a decrease in mechanical strength of the solar cell paddle at the time of launching a rocket or operating in outer space.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態について
図面を参照して説明する。図1は、本発明の概要を示す
説明図である。加工用XYテーブル1上の所定位置に被
加工用のワークである可撓性多層膜2(可撓性膜)が載
置されている。この可撓性多層膜2は太陽電池パドルの
一部を形成するサブストレート3で、図2に示すよう
に、表面層がポリイミドフィルム層4(第1の絶縁性高
分子基板)で、次層は銅電極5が挿入されたエポキシ系
の接着層6で、最下層がポリイミドフィルム層7(第2
の絶縁性高分子基板)の三層構造を形成している。この
サブストレート3は、図3に示すようにシリコン系の接
着剤で半導体薄膜よりなる光電変換層から構成される太
陽電池セル8に接合される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram showing an outline of the present invention. A flexible multilayer film 2 (flexible film), which is a workpiece to be processed, is placed at a predetermined position on the processing XY table 1. This flexible multilayer film 2 is a substrate 3 forming a part of a solar cell paddle. As shown in FIG. 2, the surface layer is a polyimide film layer 4 (first insulating polymer substrate) and the next layer is Is an epoxy adhesive layer 6 into which copper electrodes 5 are inserted, and the lowermost layer is a polyimide film layer 7 (second
(Insulating polymer substrate). As shown in FIG. 3, the substrate 3 is bonded to a solar cell 8 composed of a photoelectric conversion layer made of a semiconductor thin film with a silicon-based adhesive.

【0017】また、このサブストレート3の上面に多数
の小さな穴hを有する遮光マスク9が、サブストレート
3の被加工面の全体を覆うように載置され、固定具10
によって密接状態にクランプされている。この遮光マス
ク9は厚さ0.3mmのステンレス製で、直径0.4m
mである多数の貫通穴が所定ピッチで設けられている。
また、この遮光マスク9上方にはレーザビームヘッド1
1が配設されており、このレーザビームヘッド11はエ
キシマレーザ発振器12からスリット13、ミラー1
4、レンズ15等の光学部品を介して光路が導かれてい
る。なお、上記光路と逆の方向にはモニタ用のカメラ1
6が設けられモニタTV17に接続されている。
A light-shielding mask 9 having a large number of small holes h on the upper surface of the substrate 3 is placed so as to cover the entire surface of the substrate 3 to be processed.
Is tightly clamped by This light-shielding mask 9 is made of stainless steel having a thickness of 0.3 mm and a diameter of 0.4 m.
A large number of through-holes of m are provided at a predetermined pitch.
The laser beam head 1 is located above the light shielding mask 9.
The laser beam head 11 is provided with a slit 13 and a mirror 1 from an excimer laser oscillator 12.
4. The optical path is guided through optical components such as the lens 15. Note that a monitor camera 1 is provided in a direction opposite to the optical path.
6 is provided and connected to the monitor TV 17.

【0018】これらの構成による装置によるガス抜き穴
の形成のための加工を説明すると、加工用XYテーブル
1上に載置されている可撓性多層膜2である太陽電池パ
ドルの一部を形成するサブストレート3を複数枚並べ
て、上面から固定具10によって遮光マスク9を介して
クランプし、加工用XYテーブル1を所定位置に移動さ
せる。この状態で、図2(a)に示すようなポリイミド
フィルム層4のみを貫いて穴明加工する。なお、太陽電
池パドルを対象とした本実施例では、図2(b)に示す
ように、接着層3の深部にまで穴が到達するのは接着剤
の溶発を招いて好ましくない。
A process for forming a gas vent hole by the apparatus having the above configuration will be described. A part of a solar cell paddle which is a flexible multilayer film 2 mounted on a processing XY table 1 is formed. A plurality of substrates 3 to be processed are arranged, clamped from above by a fixture 10 via a light-shielding mask 9, and the processing XY table 1 is moved to a predetermined position. In this state, drilling is performed through only the polyimide film layer 4 as shown in FIG. In the present embodiment for a solar battery paddle, as shown in FIG. 2B, it is not preferable that the hole reaches the deep portion of the adhesive layer 3 because the adhesive is eroded.

【0019】エキシマレーザ発振器12から発振された
レーザ光は、光学部品を介してレーザビームヘッド11
から遮光マスク9を介してサブストレート3に向けて照
射される。サブストレート3の表面層は、ポリイミドフ
ィルム層4であるので、エキシマレーザには加工性の良
好な波長248nmのKrFエキシマレーザを用いてい
る。エキシマレーザ発振器12から発振されたレーザ光
は、スリット13で整形された後にミラー14を経由し
てレンズ15で結像し、レーザビームヘッド11から遮
光マスク9に設けられた直径0.4mmの穴を通過して
ポリイミドフィルム層4の表面に照射される。この際の
照射条件はフルエンスが1J/cm、繰り返し周波数が
10Hz、照射ショット数が100ショットである。そ
して、遮光マスク9に設けられた多数の穴h間のピッチ
に同期して、加工用XYテーブル1が移動して、その都
度レーザ光が穴hを介してポリイミドフィルム層4の表
面に照射される。加工時のポリイミドフィルム層4は遮
光マスク9により表面が押圧されている為に、可撓性の
あるポリイミドフィルム層4は、遮光マスク9に密接し
て表面の波打ちが修正されるので、加工面が平坦な状態
で加工される。
The laser beam oscillated from the excimer laser oscillator 12 is transmitted to the laser beam head 11 via optical components.
The light is irradiated toward the substrate 3 through the light shielding mask 9. Since the surface layer of the substrate 3 is the polyimide film layer 4, a KrF excimer laser having a wavelength of 248 nm and having good workability is used as the excimer laser. The laser beam oscillated from the excimer laser oscillator 12 is shaped by the slit 13 and then imaged by the lens 15 via the mirror 14. The laser beam head 11 provides a hole of 0.4 mm in diameter provided on the light shielding mask 9. And the surface of the polyimide film layer 4 is irradiated. Irradiation conditions at this time are a fluence of 1 J / cm, a repetition frequency of 10 Hz, and an irradiation shot number of 100 shots. Then, the processing XY table 1 moves in synchronization with the pitch between the large number of holes h provided in the light-shielding mask 9, and a laser beam is applied to the surface of the polyimide film layer 4 through the holes h each time. You. Since the surface of the polyimide film layer 4 at the time of processing is pressed by the light-shielding mask 9, the flexible polyimide film layer 4 comes into close contact with the light-shielding mask 9 and the wavy of the surface is corrected. Are processed in a flat state.

【0020】その結果、レーザビームはポリイミドフィ
ルム層4の表面に対して真上の同一方向から照射され、
かつ、ポリイミドフィルム層4は遮光マスク9の重みで
撓むことことなく、均一の厚さで加工されるので、図3
に示すように、全域に亘って遮光マスク9の穴位置と同
じ位置に直径0.1mm深さ50μmの良好なガス抜き
穴Hが形成される。波長の短い紫外光を出射するKrF
エキシマレーザを用いた加工では、レーザの高い光エネ
ルギを用いてポリイミドフィルム層4を構成する結合分
子を直接に開裂させる、アブレーション加工が可能な為
に、図4に示すようなシャープなエッジを持つ接着層5
の底部にまで達する加工穴が形成できる。さらに、アブ
レーション加工ではレーザ1パルス当たりの加工深さが
一定である為に、加工深さの制御が容易である。
As a result, the laser beam is applied to the surface of the polyimide film layer 4 from the same direction right above,
Further, since the polyimide film layer 4 is processed with a uniform thickness without being bent by the weight of the light shielding mask 9, FIG.
As shown in the figure, a good vent hole H having a diameter of 0.1 mm and a depth of 50 μm is formed at the same position as the hole position of the light shielding mask 9 over the entire area. KrF that emits ultraviolet light with a short wavelength
In the processing using the excimer laser, the bonding molecules constituting the polyimide film layer 4 are directly cleaved using the high light energy of the laser, so that the ablation processing is possible, so that the processing has a sharp edge as shown in FIG. Adhesive layer 5
A processing hole reaching the bottom of the hole can be formed. Further, in the ablation processing, since the processing depth per laser pulse is constant, it is easy to control the processing depth.

【0021】実際には、図5で詳細に示すように、太陽
電池パドルの断面は構成されている。ここで、銅電極3
は、ポリイミドフィルム層4,7により挟み込まれる形
で、接着層(エポキシ系接着剤)6によって接着されて
いる。各銅電極3…は、ポリイミドフィルム層4,7に
挟まれた状態で、サブストレート3の端部へと折り曲げ
られて、そこで太陽電池セル8からのバスライン18に
半田付け部19で接続される。各太陽電池セル8…はイ
ンコネクタ20により電気的に連結され、バスライン1
8を通じて人工衛星に電力を供給している。また、各太
陽電池セル8…は接着層21(シリコン系接着剤)によ
ってサブストレート3に固定されるとともに、同様に接
着層21(シリコン系接着剤)によって固定されたカバ
ーガラス22に覆われている。
In practice, as shown in detail in FIG. 5, the cross section of the solar cell paddle is structured. Here, the copper electrode 3
Are bonded by an adhesive layer (epoxy adhesive) 6 so as to be sandwiched between the polyimide film layers 4 and 7. Each of the copper electrodes 3 is bent to the end of the substrate 3 while being sandwiched between the polyimide film layers 4 and 7, and connected to the bus line 18 from the solar cell 8 by a soldering portion 19. You. Each of the solar cells 8 is electrically connected by an in-connector 20, and the bus line 1
8 to the satellites. Each of the solar cells 8 is fixed to the substrate 3 by an adhesive layer 21 (silicon-based adhesive), and also covered by a cover glass 22 similarly fixed by the adhesive layer 21 (silicon-based adhesive). I have.

【0022】なお、本発明のような穴明加工は、サブス
トレート3の形成後に太陽電池セル8…の形成された側
とは反対の面、即ちポリイミドフィルム層4側から行わ
れ、従って本発明の太陽電池パドルはポリイミドフィル
ム層4側に多数の微小な穴を有することとなる。サブス
トレート3の形成が終わってから穴を加工するので穴が
接着剤で塞がることもない。
The perforation processing as in the present invention is performed from the surface opposite to the side on which the solar cells 8 are formed after the formation of the substrate 3, that is, from the polyimide film layer 4 side. The solar cell paddle has many fine holes on the polyimide film layer 4 side. Since the holes are machined after the formation of the substrate 3, the holes are not closed by the adhesive.

【0023】この穴明加工は、2.6m×0.6mの基
板を40枚ならべたサブストレート3に対して、10m
m×24mmピッチで約16000個のガス抜き穴を直
径0.1mm形成するように行なった。そして、最終的
に製造したフレキシブル型太陽電池パドルは−116℃
〜81℃にかけて、10-5Torr以下にて熱真空試験
を行なっても、サブストレート3の膨張による太陽電池
セル8の破壊は起こらなかった。また、形成するガス抜
き穴の直径が小さく、むらなく一定のピッチで同一サイ
ズの穴として形成されているためにロケット打ち上げ時
や宇宙空間での動作時における太陽電池パドル全体の機
械的強度の低下も防がれている。
This drilling process is performed on a substrate 3 on which 40 substrates of 2.6 mx 0.6 m are arranged by 10 m.
About 16,000 gas vent holes were formed at a pitch of 0.1 mm in diameter at a pitch of mx 24 mm. Finally, the flexible solar cell paddle manufactured at -116 ° C
Even when a thermal vacuum test was performed at 10 -5 Torr or lower over -81 ° C., no destruction of the solar cell 8 due to expansion of the substrate 3 occurred. In addition, since the diameter of the vent holes to be formed is small and formed as holes of the same size at a uniform pitch, the mechanical strength of the entire solar cell paddle decreases during launching of rockets and operation in outer space Is also prevented.

【0024】なお、上記実施例では、レーザ光は遮光マ
スク9の穴ピッチ毎に間欠的に照射していたが、加工用
のエネルギが十分であれば連続的に照射しても同様な効
果が得られることは言うまでもない。また、上記実施例
では被加工物として太陽電池パドルの一部を取り上げた
が、可撓性膜に対する穴明加工であるならば、その他の
被加工物を対象としても良いことも言うまでもない。
In the above embodiment, the laser beam is intermittently irradiated at every hole pitch of the light-shielding mask 9, but if the processing energy is sufficient, the same effect can be obtained even if the laser beam is continuously irradiated. It goes without saying that you can get it. Further, in the above embodiment, a part of the solar cell paddle is taken up as a workpiece, but it goes without saying that other workpieces may be used as long as the drilling is performed on the flexible film.

【0025】[0025]

【発明の効果】以上に説明したように、本発明の穴明方
法、太陽電池パドルの製造方法及び太陽電池パドルは、
請求項1の発明によると、加工時の可撓性膜は遮光マス
クにより表面が押圧されている為に、可撓性膜が遮光マ
スクに密接して、表面の波打ちが修正されるので、加工
面が平坦な状態で良好に加工される。
As described above, the drilling method, solar cell paddle manufacturing method and solar cell paddle according to the present invention are as follows.
According to the first aspect of the present invention, since the surface of the flexible film during processing is pressed by the light-shielding mask, the flexible film comes into close contact with the light-shielding mask, and the wavy of the surface is corrected. Good processing with flat surface.

【0026】請求項2の発明によると、穴明部位のむら
もないので、応力集中が減少し機械的強度の低下も防ぐ
ことができる。請求項3の発明によると、ポリイミドフ
ィルムを用いているので耐熱性や機械的強度に優れてい
る可撓性膜を得ることができる。
According to the second aspect of the present invention, since there is no unevenness in the perforated portion, stress concentration is reduced and a decrease in mechanical strength can be prevented. According to the third aspect of the present invention, since a polyimide film is used, a flexible film having excellent heat resistance and mechanical strength can be obtained.

【0027】請求項4の発明によると、短い波長の光で
加工を行なうので鋭い加工面の形成ができる。請求項5
の発明によると、遮光マスクが十分な重量を持つので可
撓性膜が遮光マスクに密接する際に、十分に表面の波打
ちが修正される。
According to the fourth aspect of the invention, since the processing is performed with light having a short wavelength, a sharp processed surface can be formed. Claim 5
According to the invention, since the light-shielding mask has a sufficient weight, when the flexible film comes into close contact with the light-shielding mask, the surface waving is sufficiently corrected.

【0028】請求項6の発明によると、第1の絶縁性基
板を接着剤を介して第2の絶縁性基板と貼りあわせる工
程の後に、太陽電池の形成された側とは反対の面から穴
明が行われるので穴が接着剤で塞がることもない。
According to the sixth aspect of the present invention, after the step of bonding the first insulating substrate to the second insulating substrate via an adhesive, a hole is formed from the surface opposite to the side on which the solar cells are formed. Since the brightening is performed, the holes are not closed with the adhesive.

【0029】請求項7の発明によると、形成するガス抜
き穴の直径が小さいために、ロケット打ち上げ時や宇宙
空間での動作時における太陽電池パドルの機械的強度の
低下も防ぐことができる。
According to the seventh aspect of the present invention, since the diameter of the formed gas vent hole is small, it is possible to prevent a decrease in the mechanical strength of the solar battery paddle at the time of launching a rocket or operating in outer space.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る可撓性膜の穴明方法と穴明装置の
概略説明図。
FIG. 1 is a schematic explanatory view of a method and an apparatus for perforating a flexible film according to the present invention.

【図2】本発明に係る穴明方法の過程におけるサブスト
レートの拡大断面図。
FIG. 2 is an enlarged sectional view of a substrate in the course of the drilling method according to the present invention.

【図3】本発明に係る太陽電池パドルの拡大断面図。FIG. 3 is an enlarged sectional view of a solar battery paddle according to the present invention.

【図4】本発明の穴明加工による微細穴の模式図。FIG. 4 is a schematic view of a fine hole formed by drilling according to the present invention.

【図5】本発明に係る太陽電池パドルの詳細断面図。FIG. 5 is a detailed sectional view of a solar cell paddle according to the present invention.

【図6】太陽電池パドルを搭載した人工衛星の概略構成
図。
FIG. 6 is a schematic configuration diagram of an artificial satellite equipped with a solar battery paddle.

【符号の説明】[Explanation of symbols]

1…加工用XYテーブル 2…可撓性多層膜 3…サブストレート 4…ポリイミドフィルム層 5…銅電極 6…接着層(エポシキ系樹脂) 7…ポリイミドフィルム層 8…太陽電池セル 9…遮光マスク 10…固定具 11…レーザビームヘッド 12…エキシマレーザ発振器 13…スリット 14…ミラー 15…レンズ 16…カメラ 17…モニタTV 18…バスライン 19…半田付け部 20…インコネクタ 21…接着層(シリコン系樹脂) 22…カバーガラス 23…衛星本体 24…太陽電池パドル h…穴 H…ガス抜き穴 DESCRIPTION OF SYMBOLS 1 ... Processing XY table 2 ... Flexible multilayer film 3 ... Substrate 4 ... Polyimide film layer 5 ... Copper electrode 6 ... Adhesion layer (epoxy resin) 7 ... Polyimide film layer 8 ... Solar cell 9 ... Light shielding mask 10 ... Fixing tool 11 ... Laser beam head 12 ... Excimer laser oscillator 13 ... Slit 14 ... Mirror 15 ... Lens 16 ... Camera 17 ... Monitor TV 18 ... Bus line 19 ... Soldering part 20 ... In-connector 21 ... Adhesive layer (silicone resin) 22 ... Cover glass 23 ... Satellite body 24 ... Solar paddle h ... Hole H ... Gas vent hole

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 所定の直径をもつ穴が明けられた遮光マ
スクを可撓性膜の表面に載置固定する工程と、前記遮光
マスクの複数の穴にレーザビームを照射して少なくとも
前記可撓性膜の表面を貫通する所定深さの穴を明ける工
程とを有することを特徴とする可撓性膜の穴明方法。
1. A step of mounting and fixing a light-shielding mask having a hole having a predetermined diameter on a surface of a flexible film, and irradiating a plurality of holes of the light-shielding mask with a laser beam to at least provide the flexible mask. Drilling a hole of a predetermined depth through the surface of the flexible film.
【請求項2】 遮光マスクが複数の穴を有する場合に
は、この複数の穴は一定のピッチで同一サイズの穴とし
て形成されていることを特徴とする請求項1記載の可撓
性膜の穴明方法。
2. The flexible film according to claim 1, wherein when the light shielding mask has a plurality of holes, the plurality of holes are formed as holes of the same size at a constant pitch. Drilling method.
【請求項3】 可撓性膜のレーザビームが照射される表
面は、ポリイミドフィルムで形成されていることを特徴
とする請求項1記載の可撓性膜の穴明方法。
3. The method according to claim 1, wherein the surface of the flexible film irradiated with the laser beam is formed of a polyimide film.
【請求項4】 レーザビームは、紫外線パルスレーザを
用いることを特徴とする請求項1記載の可撓性膜の穴明
方法。
4. The method according to claim 1, wherein an ultraviolet pulse laser is used as the laser beam.
【請求項5】 遮光マスクは、金属又はセラミックスで
形成されていることを特徴とする請求項1記載の可撓性
膜の穴明方法。
5. The method according to claim 1, wherein the light-shielding mask is made of metal or ceramic.
【請求項6】 第1の絶縁性高分子基板の一面上に順次
積層された下部電極層、接着剤、第2の絶縁性高分子基
板、及び半導体薄膜よりなる光電変換層から構成される
太陽電池パドルの製造方法において、前記第1の絶縁性
基板を前記接着剤を介して前記第2の絶縁性基板と貼り
あわせる工程の後に、前記第1の絶縁性高分子基板の前
記一面とは反対の一面側からレーザ光を照射して少なく
とも前記第1の絶縁性高分子基板のみを貫通する穴を設
ける工程を有することを特徴とする太陽電池パドルの製
造方法。
6. A solar cell comprising a lower electrode layer, an adhesive, a second insulating polymer substrate, and a photoelectric conversion layer comprising a semiconductor thin film sequentially laminated on one surface of a first insulating polymer substrate. In the method for manufacturing a battery paddle, after the step of bonding the first insulating substrate to the second insulating substrate via the adhesive, the first insulating substrate is opposite to the one surface of the first insulating polymer substrate. Forming a hole through at least the first insulating polymer substrate by irradiating a laser beam from one side of the solar cell paddle.
【請求項7】 第1の絶縁性高分子基板の一面上に順次
積層された下部電極層、接着剤、第2の絶縁性高分子基
板、及び半導体薄膜よりなる光電変換層から構成される
太陽電池パドルにおいて、前記第1の絶縁性高分子基板
の前記一面とは反対の一面側に少なくとも前記第1の絶
縁性高分子基板のみを貫通する直径0.1mm以下の穴
を有することを特徴とする太陽電池パドル。
7. A solar cell comprising a lower electrode layer, an adhesive, a second insulating polymer substrate, and a photoelectric conversion layer comprising a semiconductor thin film sequentially laminated on one surface of a first insulating polymer substrate. In the battery paddle, a hole having a diameter of 0.1 mm or less penetrating at least only the first insulating polymer substrate is provided on one surface side of the first insulating polymer substrate opposite to the one surface. Solar paddle.
JP14612697A 1997-06-04 1997-06-04 Method for manufacturing solar cell paddle and solar cell paddle Expired - Fee Related JP4067599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14612697A JP4067599B2 (en) 1997-06-04 1997-06-04 Method for manufacturing solar cell paddle and solar cell paddle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14612697A JP4067599B2 (en) 1997-06-04 1997-06-04 Method for manufacturing solar cell paddle and solar cell paddle

Publications (2)

Publication Number Publication Date
JPH10335687A true JPH10335687A (en) 1998-12-18
JP4067599B2 JP4067599B2 (en) 2008-03-26

Family

ID=15400744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14612697A Expired - Fee Related JP4067599B2 (en) 1997-06-04 1997-06-04 Method for manufacturing solar cell paddle and solar cell paddle

Country Status (1)

Country Link
JP (1) JP4067599B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321549C (en) * 2002-12-26 2007-06-13 住友电工印刷电路株式会社 Flexible printed circuit base material
JP2008227070A (en) * 2007-03-12 2008-09-25 Mitsubishi Electric Corp Method of manufacturing photovoltaic device
WO2009016776A1 (en) * 2007-07-31 2009-02-05 Mitsubishi Electric Corporation Method for manufacturing photovoltaic device
WO2011000814A3 (en) * 2009-06-29 2012-03-08 Reis Group Holding Gmbh & Co. Kg Method for exposing an electrical contact
CN116365327A (en) * 2023-06-01 2023-06-30 天津航天机电设备研究所 Grounding process of large flexible film light shield

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108649100B (en) * 2018-05-03 2019-10-22 繁昌县凯艺电子商务有限公司 A kind of solar film battery punching machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321549C (en) * 2002-12-26 2007-06-13 住友电工印刷电路株式会社 Flexible printed circuit base material
JP2008227070A (en) * 2007-03-12 2008-09-25 Mitsubishi Electric Corp Method of manufacturing photovoltaic device
WO2009016776A1 (en) * 2007-07-31 2009-02-05 Mitsubishi Electric Corporation Method for manufacturing photovoltaic device
JPWO2009016776A1 (en) * 2007-07-31 2010-10-14 三菱電機株式会社 Photovoltaic device manufacturing method
US8039396B2 (en) 2007-07-31 2011-10-18 Mitsubishi Electric Corporation Method for manufacturing photovoltaic device
JP4808271B2 (en) * 2007-07-31 2011-11-02 三菱電機株式会社 Method for manufacturing photovoltaic device
WO2011000814A3 (en) * 2009-06-29 2012-03-08 Reis Group Holding Gmbh & Co. Kg Method for exposing an electrical contact
EP2449602A2 (en) * 2009-06-29 2012-05-09 Reis Group Holding GmbH & Co. KG Method for exposing an electrical contact
CN116365327A (en) * 2023-06-01 2023-06-30 天津航天机电设备研究所 Grounding process of large flexible film light shield

Also Published As

Publication number Publication date
JP4067599B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
US8168514B2 (en) Laser separation of thin laminated glass substrates for flexible display applications
JP6410247B1 (en) Vapor deposition mask manufacturing method, vapor deposition mask, and organic semiconductor element manufacturing method
US4970196A (en) Method and apparatus for the thin film deposition of materials with a high power pulsed laser
JP5414125B2 (en) Method for connecting contact areas of thin film solar cells
JP2014007375A (en) Circuit singulation system and method
TW200300610A (en) Vehicle, display device and manufacturing method for a semiconductor device
CA2030763A1 (en) Method for forming through holes in a polyimide substrate
US5349155A (en) Insulating material for wiring substrate and method of producing multi-layered wiring substrate
EP1214171B1 (en) Excimer laser ablation process control of multilaminate materials
JP6113299B2 (en) Laser processing method and laser processing apparatus
JP6588125B2 (en) Vapor deposition mask manufacturing method, vapor deposition mask, and organic semiconductor element manufacturing method
JP4067599B2 (en) Method for manufacturing solar cell paddle and solar cell paddle
JP2007157659A (en) Forming method of wiring pattern of organic el element and forming device of organic el element
CN113873754A (en) Copper foil method soft and hard combined circuit board laminated structure and processing technology thereof
US10305147B2 (en) Method for reversible bonding between two elements
JP2010141294A (en) Method for manufacturing semiconductor device
JPH06326337A (en) Laser beem machine
Priyabadini et al. 3-D stacking of ultrathin chip packages: An innovative packaging and interconnection technology
JP2000208799A (en) Method of processing thin-film body
JPH10190235A (en) Manufacture of multilayer interconnection board
JP2004114094A (en) Boring method with laser beam to prepreg sheet
JP2007242795A (en) Printed wiring board, and its manufacturing method
US20090050602A1 (en) Method for forming holes in making printed circuit board
Illyefalvi-Vitéz et al. Recent advancements in MCM-L imaging and via generation by laser direct writing
KR20220143017A (en) Cutting method and resin coating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees