JPH10332568A - Particle counting apparatus - Google Patents

Particle counting apparatus

Info

Publication number
JPH10332568A
JPH10332568A JP9137137A JP13713797A JPH10332568A JP H10332568 A JPH10332568 A JP H10332568A JP 9137137 A JP9137137 A JP 9137137A JP 13713797 A JP13713797 A JP 13713797A JP H10332568 A JPH10332568 A JP H10332568A
Authority
JP
Japan
Prior art keywords
reagent
particles
filter part
bacteria
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9137137A
Other languages
Japanese (ja)
Inventor
Junzo Yamamoto
純三 山本
Masakazu Fukuda
正和 福田
Yasusuke Tanaka
庸介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP9137137A priority Critical patent/JPH10332568A/en
Priority to US09/084,418 priority patent/US6183697B1/en
Publication of JPH10332568A publication Critical patent/JPH10332568A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a particle counting apparatus which delays a drop in the filtration effect of a semipermeable membrane and which extends the life of a filter part by a method wherein, inversely to a case in which a reagent is filtered in the filter part, the reagent is pressurized from a reagent outflow port at the filter part and particles such as bacteria or air bubbles which are stuck to the reagent inflow side face of the semipermeable membrane are removed. SOLUTION: A filter part 4 is provided with a group 13 of many hollow fiber membranes as semipermeable membranes. A flow cytometer 7 measures particles, e.g. bacteria, in a sample liquid, e.g. urine which is fluorescence-stained. At a stage at which thier measurement is finished, a solenoid valve 19 is opened, a three-way selector valve 22 is changed over, a pressurized air source 25 is operated, a reagent on the side of a low pressure which is partitioned by the group 13 of the hollow filber membranes at the filter part 4 is pressurized reversely, clogged particles at the group 13 of the hollow fiber membranes are exfoliated to the side of a high pressure, and the exfoliated particles and a gas which floats near them are discharged to a liquid discharge chamber 7 via a discharge passage 18. When the clogged particles at the group 13 of the hollow fiber membranes are exfoliated and removed, the life of the filter part 4 can be extended.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は粒子計数装置に関
し、更に詳しくは液体試料を計測部で流して試料中の粒
子の大きさ等を計測する装置に関し、特に血液や尿など
を試料として計測する粒子計数装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle counting apparatus, and more particularly to an apparatus for measuring the size of particles in a liquid sample by flowing the liquid sample in a measuring section, and particularly for measuring blood, urine, etc. as a sample. The present invention relates to a particle counting device.

【0002】[0002]

【従来の技術】この種の粒子計数装置は、試料中の計測
対象を希釈液等の試薬にて適当な濃度に希釈して、アパ
ーチャやフローセル内を流し、電気信号や光学信号を用
いて計数している。場合によっては、試薬は染色反応さ
せたり、免疫反応させたりしてするものが用いられ、計
測部にも試薬で試料を包むようにして細い流れに収束さ
せながら計測する方法が用いられている。臨床検査の分
野でも血液や尿などの試料を用いて、その試料中の細胞
等の粒子の数や大きさなどの計測にひろく使用されてい
る。
2. Description of the Related Art A particle counting apparatus of this type dilutes an object to be measured in a sample to an appropriate concentration with a reagent such as a diluent, flows the sample through an aperture or a flow cell, and performs counting using an electric signal or an optical signal. doing. In some cases, a reagent that causes a staining reaction or an immunoreaction is used, and a method of wrapping the sample with the reagent and converging it into a thin flow is used for the measurement unit. In the field of clinical examinations, it is widely used for measuring the number and size of particles such as cells in a sample using the sample such as blood or urine.

【0003】この計測の際、試料とともに計測部を流す
試薬(希釈液や試薬)に不純物、特に計測対象物と同じ
位の大きさの不純物が混入していると正確な計測が難し
くなる。そこで、試薬容器と計測部の間にフィルター部
を介接させて、不純物を除去することが知られている
(例えば特公平5−87779号)。
At the time of this measurement, accurate measurement becomes difficult if impurities (particularly impurities of the same size as the object to be measured) are mixed in the reagent (diluent or reagent) flowing through the measuring section together with the sample. Therefore, it is known that a filter section is interposed between the reagent container and the measurement section to remove impurities (for example, Japanese Patent Publication No. 5-87779).

【0004】しかしながら、このフィルター部に不純物
がたまってくるとフィルターがつまってしまい試薬が供
給できなくなるので、その際は交換しなくてはならな
い。特に、計測対象物が微小なもの(例えば血小板や細
菌など)であれば、フィルターの目の大きさをそれより
も小さくする必要があり、そうなるとフィルターの交換
時期はかなり短くなり、常にフィルターの管理をしなけ
ればならない。
However, if impurities accumulate in the filter section, the filter becomes clogged and the reagent cannot be supplied. In this case, the filter must be replaced. In particular, if the object to be measured is very small (such as platelets or bacteria), it is necessary to make the size of the filter eye smaller than that. Have to do.

【0005】そこでこの発明の主要な目的の1つは、フ
ィルター部の寿命を長くすることができる粒子計数装置
の提供にある。
Therefore, one of the main objects of the present invention is to provide a particle counting device capable of extending the life of a filter section.

【0006】[0006]

【課題を解決するための手段】この発明によれば、半透
過膜で仕切られた試薬流入側の試薬流出口付近に放出口
を備えたフィルター部を、試薬容器と計測部との間に備
えた粒子計数装置において、試薬流出口より試薬を加圧
し、加圧された試薬を放出口より放出することによっ
て、半透過膜に付着した細菌等の粒子および気泡を除く
よう構成されたことを特徴とする粒子計数装置が提供さ
れる。
According to the present invention, a filter section having a discharge port near the reagent outlet on the reagent inflow side partitioned by a semi-permeable membrane is provided between the reagent container and the measuring section. In the particle counting device, the reagent is pressurized from the reagent outlet, and the pressurized reagent is discharged from the discharge port to remove particles such as bacteria and air bubbles attached to the semipermeable membrane. Is provided.

【0007】すなわちこの発明は、試薬をフィルター部
で濾過するときとは逆に、フィルター部の試薬流出口よ
り試薬を加圧し、それによって半透過膜の試薬流入側面
に付着した細菌等の粒子や気泡を放出口より除き、半透
過膜の濾過効果の低下を遅らせてフィルター部の寿命を
延ばそうとするものである。ここでフィルター部の試薬
流出口より試薬を具体的に加圧する手段としては、計測
部とフィルター部の半透過膜で仕切られた試薬流出口
(低圧側部分)との間に3方切換弁を設け、切換えポー
トに試薬を切換え加圧する加圧空気源(通常0.3〜
0.6kg/cm2)を接続するのが、構成が簡単にな
るので好ましい。
That is, according to the present invention, in contrast to the case where the reagent is filtered through the filter section, the reagent is pressurized from the reagent outlet of the filter section, whereby particles such as bacteria and the like adhered to the reagent inflow side of the semipermeable membrane. The purpose is to remove bubbles from the outlet and delay the reduction of the filtration effect of the semipermeable membrane to extend the life of the filter. Here, as means for specifically pressurizing the reagent from the reagent outlet of the filter part, a three-way switching valve is provided between the measuring part and the reagent outlet (low-pressure side part) partitioned by the semi-permeable membrane of the filter part. A pressurized air source (normally 0.3 to
0.6 kg / cm 2 ) is preferable because the configuration is simplified.

【0008】またフィルター部の半透過膜としては、通
常精密濾過膜、限外濾過膜、逆浸透膜などと称される分
離膜が使用でき、材質として芳香族ポリアミド、アリル
−アルキルポリアミド/ポリ尿素、ポリピペラジンアミ
ド、酢酸セルロース、架橋セルロース、架橋ポリエーテ
ル、スルホン化ポリスルホンなどが採用できる。そして
半透過膜の形状としては中空糸膜が大きな濾過面積をコ
ンパクトな構成に収めて得られるので好ましい。
[0008] As the semi-permeable membrane of the filter portion, a separation membrane usually called a microfiltration membrane, an ultrafiltration membrane, a reverse osmosis membrane or the like can be used, and the material is aromatic polyamide, allyl-alkyl polyamide / polyurea. , Polypiperazine amide, cellulose acetate, crosslinked cellulose, crosslinked polyether, sulfonated polysulfone, and the like. As the shape of the semipermeable membrane, a hollow fiber membrane is preferable because a large filtration area can be obtained in a compact configuration.

【0009】以上のように試薬流出口側より加圧された
試薬は放出口より放出されるが、具体的には、例えば放
出口から放出路を介して排液部へ排出され、その放出路
には電磁開閉弁が介接される。なお、排液部は、計測部
から排出される排液(例えば試薬と試料液)を受け入れ
る排液部を兼ねるのが好ましい。以上のごとく、半透過
膜に付着した細菌等の粒子及び気泡を除くためには、実
際には、特定の制御部が用いられる。すなわち、その制
御部は、所定の設定時に、試薬流出口より試薬を加圧
し、加圧された試薬を放出口より放出すべく、加圧空気
源、3方切換弁、放出路の電磁開閉弁等に作動を指令
し、それによって自動的に半透過膜の付着物や気泡を除
かせる。この操作は、測定回数ごと、もしくは日数ごと
やシャットダウン時に自動的に行えるように設定できる
ことが好ましい。
As described above, the reagent pressurized from the reagent outlet side is released from the discharge port. Specifically, for example, the reagent is discharged from the discharge port to the drain through a discharge path, and the discharge path is provided. , An electromagnetic on-off valve is interposed. It is preferable that the drain section also serves as a drain section that receives a drain liquid (for example, a reagent and a sample liquid) discharged from the measuring section. As described above, a specific control unit is actually used to remove particles such as bacteria and air bubbles attached to the semipermeable membrane. That is, the control unit pressurizes the reagent from the reagent outlet at a predetermined setting and discharges the pressurized reagent from the discharge port. , Etc., so as to automatically remove deposits and air bubbles on the semi-permeable membrane. It is preferable that this operation can be set so that it can be performed automatically every measurement count, every day, or at the time of shutdown.

【0010】このシャットダウンとは、機器の使用が終
了し電源を切る際に機器が自動的に行なう洗浄等の動作
を意味する。
[0010] The shutdown means an operation such as cleaning automatically performed by the device when the use of the device is finished and the power is turned off.

【0011】[0011]

【発明の実施の形態】以下、図面に示す実施の形態に基
づいてこの発明を詳述する。なお、これによってこの発
明が限定されるものではない。図1は、この発明の1つ
の実施の形態を示す全体構成説明図である。図1におい
て、粒子計数装置としてのフローサイトメータ1は、試
料液(蛍光染色された尿)中の粒子(例えば細菌)を計
測しようとするもので、試薬容器2と、試薬加圧部とし
ての試薬加圧チャンバ3と、フィルター部(除菌フィル
ター)4と、試薬ヒータ5と、計測部としてのフローセ
ル6と、排液部としての排液チャンバ7と、制御部とし
ての制御回路40とから主としてなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings. Note that the present invention is not limited to this. FIG. 1 is an explanatory diagram of the overall configuration showing one embodiment of the present invention. In FIG. 1, a flow cytometer 1 as a particle counting device is to measure particles (for example, bacteria) in a sample solution (fluorescent stained urine), and includes a reagent container 2 and a reagent pressurizing unit. A reagent pressurizing chamber 3, a filter unit (sterilization filter) 4, a reagent heater 5, a flow cell 6 as a measuring unit, a drain chamber 7 as a drain unit, and a control circuit 40 as a control unit. Be the main.

【0012】フィルター部4は中心軸Xを垂直とする胴
部8と、上キャップ9及びそのカップリング10と、下
キャップ11及びそのカップリング12と、半透過膜と
しての多数の中空系膜(ポリエチレン樹脂製)の群13
と、この中空系膜の群を胴部8の上部にシールし固着す
るシール部材14と、胴部8から外方へ延びる放出部1
6とからなる。
The filter portion 4 includes a body portion 8 having a central axis X perpendicular to the upper portion, an upper cap 9 and a coupling 10 thereof, a lower cap 11 and a coupling 12 thereof, and a plurality of hollow membranes as semi-permeable membranes. Group 13 of polyethylene resin)
A sealing member 14 for sealing and fixing the group of hollow membranes to the upper portion of the body 8, and a discharge portion 1 extending outward from the body 8.
6

【0013】ここで中空系膜の群13は、各中空系膜
(例えば13a)が胴部8内でU字状に屈曲されてその
両端部をシール部材14によってシールされ、中空糸膜
の外側が高圧側、内側が低圧側となるよう区画形成され
ている。そして胴部8の高圧側には電磁開閉弁17を介
して試薬加圧チャンバ3が、低圧側には試薬ヒータ5が
それぞれ連結されている。
Here, the group 13 of hollow membranes is such that each hollow membrane (for example, 13a) is bent in a U-shape in the body 8 and both ends thereof are sealed by seal members 14, and the outside of the hollow fiber membrane is formed. Are formed on the high pressure side and the inside is on the low pressure side. The reagent pressurizing chamber 3 is connected to the high-pressure side of the body 8 via an electromagnetic on-off valve 17, and the reagent heater 5 is connected to the low-pressure side.

【0014】放出部16は、胴部8の高圧側の上方部分
の放出口16aから排液チャンバ7へ延びる放出路18
と、この放出路に介接された電磁開閉弁19とからな
る。試薬ヒータ5は、試薬の加温室20とこの加温室に
一体に胴巻きにされた面ヒータ(図示省略)とからな
り、加温室20の入口はフィルター部4の低圧側に連結
され、加温室20の出口は3方切換弁22を介して後述
するフローセル6の試薬入口24に流路15で連結され
ている。3方切換弁22のもう1方のポートは電磁切換
弁23を介して試薬逆加圧部としての加圧空気源25に
連結されている。
The discharge section 16 is provided with a discharge path 18 extending from the discharge port 16a in the upper portion of the body section 8 on the high pressure side to the drain chamber 7.
And an electromagnetic on-off valve 19 interposed in the discharge path. The reagent heater 5 includes a reagent heating chamber 20 and a surface heater (not shown) integrally wound around the heating chamber. An inlet of the heating chamber 20 is connected to the low-pressure side of the filter unit 4. Is connected via a three-way switching valve 22 to a reagent inlet 24 of the flow cell 6 described later via a flow path 15. The other port of the three-way switching valve 22 is connected via an electromagnetic switching valve 23 to a pressurized air source 25 as a reagent reverse pressurizing unit.

【0015】フローセル6は、試薬導入口24と試料液
導入口26を有し、試料液導入口26から導入された試
料液を試薬導入口24から導入された試薬で包むように
細い流れに収束させるフローセル本体27と、試料液導
入口26に連結されたサンプルシリンジ28と、上述の
収束された細い流れにレーザ光を照射しその散乱光の蛍
光とを検出する検知器29とからなり、このフローセル
本体27から流れ出た試薬及び試料液は電磁開閉弁30
を介して排液チャンバ7に至る。なお、31は排液チャ
ンバ7の排出口に設けられた電磁開閉弁、32は試薬ボ
トル2と試薬加圧チャンバ3との間に介接された逆流防
止弁、33は同じく電磁開閉弁、34は3方切換弁22
と試薬導入口24との間に介接された逆流防止弁であ
る。
The flow cell 6 has a reagent inlet 24 and a sample liquid inlet 26, and converges the sample liquid introduced from the sample liquid inlet 26 into a thin flow so as to be wrapped by the reagent introduced from the reagent inlet 24. The flow cell comprises a flow cell main body 27, a sample syringe 28 connected to the sample liquid inlet 26, and a detector 29 for irradiating the converged narrow flow with laser light and detecting the fluorescence of the scattered light. The reagent and the sample solution flowing out of the main body 27 are
Through the drainage chamber 7. Numeral 31 denotes an electromagnetic on-off valve provided at the outlet of the drain chamber 7, 32 denotes a check valve interposed between the reagent bottle 2 and the reagent pressurizing chamber 3, 33 denotes an electromagnetic on-off valve, 34 Is a three-way switching valve 22
And a check valve interposed between the reagent inlet 24 and the reagent introduction port 24.

【0016】次に、以上の構成からなるフローサイトメ
ータ1の作動を説明する。まず試薬ボトル2から逆流防
止弁32及び電磁開閉弁33を介して試薬加圧チャンバ
3に導入された試薬は、加圧された空気(約0.2kg/
cm2)の供給によって加圧され、電磁開閉弁17を介し
てフィルター部4の中空糸膜の群13の高圧側へ供給さ
れる。そして中空系膜の群13を介して不純物(細菌、
ガスなど)が除去され、次いで試薬は試薬ヒータ5を介
して約35℃に加温され(温度調節され)、さらに3方
切換弁22を介してフローセル6の試薬導入口24へ供
給される。
Next, the operation of the flow cytometer 1 having the above configuration will be described. First, the reagent introduced from the reagent bottle 2 into the reagent pressurizing chamber 3 via the check valve 32 and the solenoid on-off valve 33 is compressed air (about 0.2 kg /
cm 2 ), and is supplied to the high pressure side of the hollow fiber membrane group 13 of the filter unit 4 via the electromagnetic on-off valve 17. And impurities (bacteria,
Gas and the like are removed, and then the reagent is heated to about 35 ° C. (temperature controlled) via the reagent heater 5 and further supplied to the reagent inlet 24 of the flow cell 6 via the three-way switching valve 22.

【0017】一方、試料液がサンプルシリンジ28から
供給され、試料液が試薬で包まれるようにして細い流れ
に収束させながら試料液中を流れる粒子(細菌)が検知
器29で計測される。すなわち、上述の細い流れにレー
ザ光(例えばアルゴンレーザ光)が照射され、尿中有形
成分に当たった際に生じる前方散乱光と蛍光とがフォト
ダイオードとフォトマルチプライヤ(いずれも図示概
略)で検出され、適宜画像処理されて細菌が分画計測さ
れる。そして計測を終えフローセル6を流れ出た試薬と
試料液は電磁開閉弁30を介して排液チャンバ7へ排出
される。
On the other hand, the sample liquid is supplied from the sample syringe 28, and particles (bacteria) flowing in the sample liquid are measured by the detector 29 while converging the sample liquid in a narrow flow so as to be covered with the reagent. That is, laser light (for example, argon laser light) is applied to the above-mentioned narrow flow, and forward scattered light and fluorescent light generated when the fine flow is applied to the formed components in urine are converted by a photodiode and a photomultiplier (both shown schematically). The detected bacteria are subjected to appropriate image processing, and the bacteria are fractionated and measured. After the measurement, the reagent and the sample liquid flowing out of the flow cell 6 are discharged to the drain chamber 7 via the electromagnetic on-off valve 30.

【0018】そしてフローサイトメータ1による計測が
終了した段階で、電磁開閉弁19を開に、そして3方切
換弁22を切換えて、加圧空気源25を作動させ(約
0.5kg/cm2)、フィルター部4の中空糸膜の群13
で仕切られた低圧側の試薬を逆加圧し中空糸膜の群13
の目詰まり粒子を高圧側へ剥離させると共に剥離された
粒子及びその付近に浮遊するガスを放出路18を介して
排液チャンバ7へ排出する。このように中空糸膜の群1
3の目詰まり粒子を剥離・除去することによって、フィ
ルター部4の寿命を延ばすことができる。また浮遊ガス
が除去できることで、試薬加圧チャンバ3からの圧力が
浮遊ガスで吸収されることなく試薬に伝達され、フロー
セル6内での試薬の流速を安定させ(低下を防止し)高
精度の計測を可能にする。なお、このような目詰まり粒
子の剥離及び放出は計測終了時ごとだけではなく、途中
で定期的に、又は計測前に行うことができる。また加圧
空気源25を作動させることなく、単に放出路18の電
磁開閉弁19を一定時間開にして中空糸膜の群13の高
圧側の面付近に浮遊する細菌やガスを放出除去してもよ
い。
When the measurement by the flow cytometer 1 is completed, the solenoid on-off valve 19 is opened and the three-way switching valve 22 is switched to operate the pressurized air source 25 (about 0.5 kg / cm 2). ), Group 13 of hollow fiber membranes in filter section 4
Group 13 of the hollow fiber membrane
The clogged particles are peeled to the high pressure side, and the peeled particles and the gas floating near the particles are discharged to the drainage chamber 7 through the discharge path 18. Thus, the hollow fiber membrane group 1
The life of the filter unit 4 can be extended by peeling and removing the clogged particles 3. In addition, since the floating gas can be removed, the pressure from the reagent pressurizing chamber 3 is transmitted to the reagent without being absorbed by the floating gas, and the flow rate of the reagent in the flow cell 6 is stabilized (prevented from dropping) and highly accurate. Enable measurement. In addition, such peeling and release of the clogged particles can be performed not only at the end of the measurement but also periodically or before the measurement. Further, without operating the pressurized air source 25, the electromagnetic on / off valve 19 of the discharge path 18 is simply opened for a certain period of time to release and remove bacteria and gas floating near the surface on the high pressure side of the group 13 of hollow fiber membranes. Is also good.

【0019】なお、中空糸膜(又は中空糸)としては、
材質はオレフィン系の樹脂、たとえば上述のごとくポリ
エチレン樹脂が挙げられるが、一般的に孔径は細菌を除
去するためには、0.3μm以下が必要で、望ましくは
0.1μm、フィルターの有効表面積としては3000
〜5000cm程度が適当である。フィルターの寸法とし
ては、直径に比べ長さが2倍以上で長いほうが好まし
く、例えば直径40mmで、長さ120mmのものが挙げら
れる。
The hollow fiber membrane (or hollow fiber) includes
The material is an olefin-based resin, for example, a polyethylene resin as described above. Generally, the pore size is required to be 0.3 μm or less, and preferably 0.1 μm, as the effective surface area of the filter, in order to remove bacteria. Is 3000
About 5000 cm is appropriate. As the dimensions of the filter, it is preferable that the length is at least twice as long as the diameter, and the filter is longer, for example, a filter having a diameter of 40 mm and a length of 120 mm.

【0020】これはフィルターの有効面積が同じであれ
ば、長寸法の中空糸膜を使用し且つ中空糸膜の本数が少
なくなるほど、フィルターの目詰まりを防げて、寿命が
長くなる。(流量の初期変化率が低減できる。)
If the effective area of the filter is the same, the longer the hollow fiber membrane is used and the number of the hollow fiber membranes is reduced, the more the filter can be prevented from being clogged, and the longer the life is. (The initial change rate of the flow rate can be reduced.)

【0021】[0021]

【発明の効果】この発明によれば、試薬をフィルター部
で濾過するときとは逆に、フィルター部の試薬流出口よ
り試薬を加圧し、それによって半透過膜の試薬流入側面
に付着した細菌等の粒子や気泡を放出口より除き、半透
過膜の濾過効果の低下を遅らせてフィルター部の寿命を
延ばすことができる。
According to the present invention, in contrast to the case where the reagent is filtered through the filter, the reagent is pressurized from the reagent outlet of the filter, thereby causing bacteria and the like adhering to the reagent inflow side of the semipermeable membrane. By removing particles and air bubbles from the outlet, the reduction of the filtration effect of the semi-permeable membrane can be delayed to extend the life of the filter section.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の1つの実施の形態を示す全体構成説
明図である。
FIG. 1 is an explanatory diagram of an overall configuration showing one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 フローサイトメータ 2 試薬ボトル 3 試薬加圧チャンバ 4 フィルター部 5 試薬ヒータ 6 フローセル 7 排液チャンバ 8 胴部 9 上キャップ 10 カップリング 11 下キャップ 12 カップリング 13 中空系膜の群 14 シール部材 15 流路 16 放出部 17 電磁開閉弁 18 放出路 19 電磁開閉弁 20 加温室 22 3方切換弁 23 電磁切換弁 24 試薬導入口 25 加圧空気源 26 試料液導入口 27 フローセル本体 28 サンプルシリンジ 29 検知器 30、31 電磁開閉弁 32 逆流防止弁 33 電磁開閉弁 34 逆流防止弁 DESCRIPTION OF SYMBOLS 1 Flow cytometer 2 Reagent bottle 3 Reagent pressurization chamber 4 Filter part 5 Reagent heater 6 Flow cell 7 Drainage chamber 8 Body 9 Upper cap 10 Coupling 11 Lower cap 12 Coupling 13 Group of hollow membranes 14 Seal member 15 Flow Path 16 discharge section 17 electromagnetic on-off valve 18 discharge path 19 electromagnetic on-off valve 20 heating chamber 22 three-way switching valve 23 electromagnetic switching valve 24 reagent inlet 25 pressurized air source 26 sample liquid inlet 27 flow cell body 28 sample syringe 29 detector 30, 31 solenoid on-off valve 32 check valve 33 solenoid on-off valve 34 check valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半透過膜で仕切られた試薬流入側の試薬
流出口付近に放出口を備えたフィルター部を、試薬容器
と計測部との間に備えた粒子計数装置において、 試薬流出口より試薬を加圧し、加圧された試薬を放出口
より放出することによって、半透過膜に付着した細菌等
の粒子および気泡を除くよう構成されたことを特徴とす
る粒子計数装置。
1. A particle counting apparatus comprising a filter section provided with a discharge port near a reagent outlet on the reagent inflow side partitioned by a semi-permeable membrane between a reagent container and a measuring section. A particle counting device configured to pressurize a reagent and discharge the pressurized reagent from a discharge port to remove particles such as bacteria and air bubbles attached to the semipermeable membrane.
【請求項2】 フィルター部と計測部との間およびフィ
ルター部と試薬容器との間に逆流防止弁を備えた請求項
1記載の粒子計数装置。
2. The particle counter according to claim 1, further comprising a check valve between the filter unit and the measuring unit and between the filter unit and the reagent container.
【請求項3】 測定回数ごともしくは日数ごとに自動的
に半透過膜に付着した細菌等の粒子および気泡を除く作
動をすることを特徴とする請求項3記載の粒子計数装
置。
3. The particle counting device according to claim 3, wherein the device automatically removes particles such as bacteria and air bubbles attached to the semi-permeable membrane every number of times of measurement or every number of days.
【請求項4】 シャットダウン時に自動的に半透過膜に
付着した細菌等の粒子および気泡を除く作動をすること
を特徴とする請求項3記載の粒子計数装置。
4. The particle counting apparatus according to claim 3, wherein the operation of automatically removing particles such as bacteria and air bubbles attached to the semi-permeable membrane at the time of shutdown is performed.
【請求項5】 半透過膜が、中空糸膜である請求項1〜
4のいずれかに記載の粒子計数装置。
5. The semi-permeable membrane is a hollow fiber membrane.
5. The particle counting device according to any one of 4.
JP9137137A 1997-05-27 1997-05-27 Particle counting apparatus Pending JPH10332568A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9137137A JPH10332568A (en) 1997-05-27 1997-05-27 Particle counting apparatus
US09/084,418 US6183697B1 (en) 1997-05-27 1998-05-27 Particle measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9137137A JPH10332568A (en) 1997-05-27 1997-05-27 Particle counting apparatus

Publications (1)

Publication Number Publication Date
JPH10332568A true JPH10332568A (en) 1998-12-18

Family

ID=15191694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9137137A Pending JPH10332568A (en) 1997-05-27 1997-05-27 Particle counting apparatus

Country Status (1)

Country Link
JP (1) JPH10332568A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029028A (en) * 2003-07-11 2004-01-29 Kunimune:Kk Collection/preservation method for urine specimen
JP2009533675A (en) * 2006-04-14 2009-09-17 ホ シン,ユン Ultrafiltration system for online analyzer
CN110595823A (en) * 2019-10-25 2019-12-20 扬州大学 Underwater sampling device for detecting ethylene in rice body and using method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029028A (en) * 2003-07-11 2004-01-29 Kunimune:Kk Collection/preservation method for urine specimen
JP2009533675A (en) * 2006-04-14 2009-09-17 ホ シン,ユン Ultrafiltration system for online analyzer
CN110595823A (en) * 2019-10-25 2019-12-20 扬州大学 Underwater sampling device for detecting ethylene in rice body and using method thereof

Similar Documents

Publication Publication Date Title
US7805983B2 (en) Method for measuring the number of fine particles in ultrapure water and method for manufacturing a filtration device for measuring the number of fine particles in ultrapure water
US6183697B1 (en) Particle measuring apparatus
JP2001190938A (en) Method of detecting breakage of water treating membrane
JP2014036958A (en) Flat membrane inspecting method of non-destructive type
JPS62502452A (en) Variable volume filter or concentrator
KR19990076450A (en) Separation device for liquid medium containing foreign substances
KR20120127475A (en) Assembly and method for the filtration of a liquid and use in microscopy
CN115060571A (en) Liquid-to-liquid bio-particle concentrator with disposable fluid path
CN111315861B (en) System for cell enrichment using cross-flow filtration
US10935474B1 (en) Membrane filter device
JP4548742B2 (en) Dielectric fine particle concentrator
EP4257229A1 (en) Porous hollow-fiber membrane and method for testing integrity
US3888112A (en) Apparatus for quantitative analysis
JP2022531546A (en) Water purification equipment, water purification module and water purification method
CA3126717A1 (en) Methods and apparatus to selectively extract constituents from biological samples
JPH10332568A (en) Particle counting apparatus
WO2007094188A1 (en) Blood purification apparatus and method of examining leakage therein
JP2007007539A (en) Leak detection method of membrane separator
JP2023107767A (en) Tangential flow filtration (tff) system and disposable tff unit that includes integrated pump apparatus
JP3560708B2 (en) Membrane separation device, its leak detection method and its operation method
JP2003210949A (en) Method and apparatus for detecting breakage of membrane of membrane filtration apparatus
JP2007111638A (en) Membrane water purification system and membrane water purification method
CN109385369B (en) Filtering system capable of preventing cell rupture
JP2021065225A (en) Microorganism recovery method and microorganism recovery apparatus
JPH09220445A (en) Reverse washing sterilizing method for hollow yarn membrane module