JPH10330775A - 高性能潤滑油 - Google Patents

高性能潤滑油

Info

Publication number
JPH10330775A
JPH10330775A JP9159173A JP15917397A JPH10330775A JP H10330775 A JPH10330775 A JP H10330775A JP 9159173 A JP9159173 A JP 9159173A JP 15917397 A JP15917397 A JP 15917397A JP H10330775 A JPH10330775 A JP H10330775A
Authority
JP
Japan
Prior art keywords
powder
boron nitride
lubricating oil
fine powder
liquid component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9159173A
Other languages
English (en)
Other versions
JP2911113B2 (ja
Inventor
Koji Watari
渡利  広司
Kaichin Kou
海鎮 黄
Motohiro Toriyama
素弘 鳥山
Akira Osuga
晃 大須賀
Osamu Yamamoto
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Fuji Enterprise KK
Original Assignee
Agency of Industrial Science and Technology
Fuji Enterprise KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fuji Enterprise KK filed Critical Agency of Industrial Science and Technology
Priority to JP9159173A priority Critical patent/JP2911113B2/ja
Priority to US09/089,321 priority patent/US5985802A/en
Publication of JPH10330775A publication Critical patent/JPH10330775A/ja
Application granted granted Critical
Publication of JP2911113B2 publication Critical patent/JP2911113B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/20Compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/061Carbides; Hydrides; Nitrides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/082Inorganic acids or salts thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/082Inorganic acids or salts thereof containing nitrogen
    • C10M2201/083Inorganic acids or salts thereof containing nitrogen nitrites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/16Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/18Ammonia
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/22Metal working with essential removal of material, e.g. cutting, grinding or drilling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

(57)【要約】 【課題】加工能率を顕著に向上させられる高性能の切削
油又は研削油を安価に提供する。 【解決手段】切削油又は研削油の液成分中に一次粒子の
平均粒径1μm以下の六方晶系及び/又は結晶性乱層構
造の窒化硼素微粉末、特に結晶性乱層構造の窒化硼素微
粉末を分散、かつ懸濁させる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】
【0002】本発明は金属、セラミックその他の無機質
材料、これらの複合材料ないし繊維強化材料等の被削材
ないし被加工材の旋盤加工、フライス加工、ドリル加工
等の湿式切削加工や研削砥石による湿式研削加工に使用
され、さらにメカノケミカルポリッシング(MCP)を
含む湿式研摩に使用される高性能潤滑油(以下潤滑液な
いし潤滑剤一般を代表して「潤滑油」と称する)に関す
る。
【0003】
【従来の技術】切削加工に用いられる潤滑油(以下、切
削油ともいう)では、硫黄系極圧添加剤や塩素系極圧添
加剤が添加されている。しかし、硫黄系極圧添加剤や塩
素系極圧添加剤を添加した切削油をインコネル等の難削
材の加工に使用しても、工具の耐用が短かく、加工する
時間よりも工具の取り替え時間の方が長くなるほどであ
る。また、インコネル等の難削材に超硬ドリルで穴あけ
加工しても、一本のドリルであけられる穴はせいぜい数
個である。
【0004】また、軟質材料の加工では耐熱性と離型性
が不足しているため、削り屑が工具の刃先から離れず、
加工精度や加工歩留り低下の問題が起きている。この場
合、加工速度を遅くして温度上昇を防ぐか、頻繁に工具
を交換する必要があり、頻繁に工具を交換すると生産性
が損なわれる。このため、たとえばアルミニウム材に穴
あけ加工する場合は、ドリルの回転数を数百rpm程度
に抑える必要があった。
【0005】耐熱性も要求される切削油では、固体潤滑
剤である黒鉛や二硫化モリブデンを添加したものが一部
に使用されている。この場合、二硫化モリブデンや黒鉛
の耐熱性は500〜600℃であり、切削部の温度がこ
の温度を超えるとしばしば焼き付きを起こして加工歩留
り低下の原因になる。二硫化モリブデンや黒鉛を加えた
従来の切削油でも、ある程度の潤滑性能の向上が見られ
るが、回転数の増加による顕著な作業能率の向上、加工
精度の顕著な改善、耐用の大幅な延長等を達成できず、
生産性の向上や切削加工コストの低減には限界があっ
た。
【0006】窒化硼素(BN)は硼素と窒素からなる化
合物であるが、窒化硼素には炭素とほぼ同じ結晶構造を
有する多形が存在する。炭素には無定形の炭素、六角形
の網目層が積層した構造を有する六方晶系等の黒鉛及び
立方晶系ダイヤモンドがある。これらの内、固体潤滑性
を示すのは六角形の網目層が積層した構造を有する層間
で顕著な劈開性を示す六方晶系等の黒鉛である。窒化硼
素の場合にも無定形窒化硼素(以下、a−BNとい
う)、六角形の網目層が二層周期で積層した構造を有す
る六方晶系の窒化硼素(以下、h−BNという)、六角
形の網目層が三層周期で積層した構造の菱面体晶窒化硼
素(以下、r−BNという)、六角形の網目層がランダ
ムに積層した乱層構造窒化硼素(以下、t−BNとい
う)及び高圧相の立方晶窒化硼素(以下、c−BNとい
う)が知られている。
【0007】h−BN結晶には六方晶系の黒鉛結晶と同
様の劈開性があって良好な固体潤滑性を示すことが知ら
れている。h−BN結晶の潤滑性の由来は、黒鉛の場合
と同じく二次元の六角網目層間の結合が弱いファンデア
ファールス結合であり、この面で顕著な劈開性を示し、
層間で鱗片状に劈開した結晶粒子が互いに滑りやすいと
いう性質があるためであると理解される。
【0008】純度の高いh−BN粉末の焼結体は無色又
は白色で電気絶縁性に優れ、黒鉛より耐酸化性が高く、
黒鉛のように炭素が鉄系材料と反応して溶け込んだりせ
ず、鉄系材料とは反応しにくいので鉄系材料には焼き付
かないという好ましい性質がある。この意味で、h−B
Nは固体潤滑材として適した材料である。
【0009】h−BNの潤滑性を利用した用途の例とし
て、特開昭63−135496号には、平均粒径がいず
れも20μm以下のh−BN粉末とポリエーテルエーテ
ルケトン粉末を流動性油脂中に分散させた耐熱性と摩擦
低減効果の優れた潤滑油が開示されている。また、特開
平01−318087号には、シリコーンオイル等に粒
径が2〜10μmのh−BN粉末を混合分散させた、潤
滑性と摺動性に優れた鋼線等の伸線加工用に使用される
潤滑油が開示されている。
【0010】他方、a−BN粉末には吸湿性があって不
安定なため、潤滑油に添加する窒化硼素粉末として適さ
ないので、専ら吸湿性のないh−BN粉末が使用されて
いる。しかし、h−BN粉末の値段が安くないため、コ
ストがかなり嵩んでも成り立つような特殊な用途の潤滑
油としてしか使用されていない。さらに、本発明者らが
調査した限りでは、窒化硼素粉末を添加した切削油や研
削油の例は見当たらない。また、r−BNやt−BNに
ついてはまだ実験室的試作の段階にやっと到達したにす
ぎず、収率よく安価に合成できる方法が知られていない
ため、具体的な用途を論ずる以前の段階である。
【0011】他方、資源・素材学会誌Vol.105,
No2.p201,1989等にはa−BNをt−BN
であると説明している。しかし、同文献中でt−BNと
呼んでいる窒化硼素粉末のCuKα線による粉末X線回
折図はh−BNの[002]回折線の位置と隣合う[1
00]及び[101]の位置に2つのブロードな回折線
のみを示し(本明細書では、説明の便宜上窒化硼素粉末
の粉末X線回折図の回折線の位置をh−BNの回折線の
指数で表す。以下同じ)、[004]回折線の位置に回
折線が全くあるいは殆ど認められない。その粉末X線回
折図は図1に示したa−BNの粉末X線回折図同様のも
のであり、上記a−BNをt−BNであるとするのは適
当でない。
【0012】
【発明が解決しようとする課題】本発明の基本的目的
は、コストパーフォーマンスに優れた切削用、研削用及
び/又は研摩用に使用する高性能潤滑油(即ち、潤滑
液)を提供することにある。また本発明は、かかる高性
能潤滑油を用いた被加工材の新規な加工方法を提供する
ことをも課題とする。
【0013】
【課題を解決するための手段】本発明の第1の視点にお
いて、本発明の高性能潤滑油は、液成分中に結晶性乱層
構造の窒化硼素微粉末を有効量含有することを特徴とす
る。第2の視点において、本発明の切削研摩及び/又は
研摩加工用の高性能潤滑油は、液成分中に一次粒子の平
均粒径1μm以下の六方晶系及び/又は結晶性乱層構造
の窒化硼素結晶の微粉末が分散していることを特徴とす
る。第3の視点において、本発明の被加工材の加工方法
は、結晶性乱層構造の窒化硼素粉末を有効量含有する潤
滑液を用いて被加工材を加工することを特徴とする。さ
らに第4の視点において、液成分中に一次粒子の平均粒
径1μm以下の六方晶系及び/又は結晶性乱層構造の窒
化硼素微粉末を有効量分散含有する潤滑液を用いて被加
工材を加工することを特徴とする。
【0014】本発明では二次元の結晶構造が発達して
[004]位置にシャープな回折線を示し、かつh−B
N特有の[102]位置の回折線が全く又は殆ど認めら
れない結晶性窒化硼素を結晶性t−BNという。
【0015】窒化硼素は黒鉛等の他の固体潤滑剤と比べ
て化学的に安定であり、空気中では1000℃近くまで
酸化されないという特徴がある。図1、図2及び図3
に、典型的なa−BN粉末、h−BN粉末及び結晶性t
−BN微粉末の粉末X線回折図をそれぞれ示す。窒化硼
素を900℃以下の低温で合成すると、粉末X線回折図
のh−BNの[002]の位置と、隣接する[100]
及び[101]の位置に対応する位置とに幅の広い(ブ
ロードな)2つの回折線を示すa−BN粉末が得られ
る。このa−BN粉末を1050℃より高い温度で熱処
理すると結晶化が始まるとされている。結晶化が進むと
h−BNの[002]回折線に対応する回折線が半価幅
が小さく、強いピークの回折線に変化する。このとき同
時に[004]回折線も半価幅が小さくシャープな回折
線として現れる。
【0016】結晶性t−BN微粉末は、たとえば、無水
硼酸及び尿素(さらに任意成分として及び硼酸ナトリウ
ム等の硼酸アルカリを含む混合原料を非酸化性雰囲気中
とした反応容器中で加熱し、約1100℃以下(好まし
くは950℃以下)で反応させてa−BNを生成させ、
次いで硼酸ナトリウムの共存する状態で1200℃以上
1500℃以下(好ましくは1200〜1400℃、よ
り好ましくは1250〜1350℃)で加熱し、t−B
N結晶化させることによって高収率で合成できる。得ら
れた反応物を(好ましくは熱水で)水洗(必要に応じ酸
洗をも含む)して精製し、アルカリや酸化硼素等の可溶
性成分を除けば、一次粒子の平均粒径1μm以下の結晶
性t−BNの微粉末を高収率で製造でき、安価に量産で
きる。この合成方法によれば、結晶化させる温度と時間
を変化させることによって一次粒子の粒径を変化させる
ことができ、h−BNと結晶性t−BNの共存する窒化
硼素粉末を合成することができる。この新規な合成方法
は先に出願された特願平9−21052号に説明済みで
あり、必要に応じその詳細は、本願に引用をもって援用
される。
【0017】上記により合成され、精製された結晶性t
−BN微粉末は通常サブミクロンの微細な一次粒子が凝
集した二次粒子となっているが、液中に分散すれば大部
分が一次粒子である結晶性t−BN微粉末の分散体を得
ることができる。必要に応じ分散は(ジルコニア質等
の)セラミックスのビーズ等を粉砕メディアとするアト
リションミル、ボールミル、その他(2本式又は3本式
を含む)ロール式の剪断性ミル等を用いての湿式粉砕、
或いはジェットミル等の乾式粉砕により、たとえば平均
粒径が1μm以下(好ましくは0.5μm以下、0.3
μm以下、0.2μm以下さらには0.1μm以下にま
で)の微細な一次粒子にまで解砕分離できる。この結晶
性t−BN微粉末にはa−BN粉末に見られるような吸
湿性がなく、しかも安定である。本発明の製造方法によ
れば、h−BNについても同様な粒度分布が可能であ
り、h−BNを部分的に含有する主として結晶性t−B
Nから成る結晶性窒化硼素微粉末を量産可能である。h
−BN化は、結晶性t−BNをさらに1500℃以上で
所定時間熱処理することにより、工業的に実現される。
【0018】h−BN粉末及び結晶性t−BN微粉末は
いずれも劈開性を有する結晶粒子からなり、h−BN粉
末及び結晶性t−BN微粉末、特に結晶性t−BN微粉
末は優れた固体潤滑性を示す。本発明の特定の視点にお
いて切削加工用又は研削加工用の高性能潤滑油に分散さ
せる窒化硼素の微粉末は一次粒子の平均粒径1μm以下
のh−BN結晶及び/又は結晶性t−BNの微粉末とす
る理由は、窒化硼素結晶の微粉末は微細であればあるほ
ど狭小な空間に入り込みやすく、潤滑油や研削油として
の機能を発揮しやすいためである。液成分中に分散させ
る窒化硼素粉末の一次粒子の平均粒径は、特には0.5
μm以下、さらには0.3μm以下のものが好ましい。
特に結晶性t−BNのサブミクロンの一次粒子は二次粒
子を形状してもその凝集力はそれほど大きくなく、研削
加工等の加工時の剪断力により容易に一次粒子或いはよ
り小さな二次粒子に解離するので、一次粒子の粒径の小
さなものを用いれば潤滑油としての機能をたいていの場
合達することができる。二次粒子の粒径の目安としては
後述のとおり一般的な研削用であれば7μm以下であれ
ばよいと考えられる。
【0019】また、窒化硼素微粉末は結晶性t−BN微
粉末を50重量%以上含む窒化硼素微粉末を液成分中に
分散させたものであるのが好ましい。本発明にいう結晶
性t−BN微粉末とは、典型的には、二次元の結晶化が
進んでいてh−BN結晶の[002]位置と[004]
位置にある回折線の半価幅がいずれも小さい(CuKα
線で得られる粉末X線回折図の2θで表示される[00
4]回折線の半価幅が0.6°以下)シャープな回折線
となっている一方、積層構造に規則性があることを示す
h−BN結晶に特有の[102]回折線が殆ど又は全く
認められず、t−BNの[100]回折線と「101」
回折線が一つの回折線(t−BNの[10]回折線)と
なっているものを特に意図する。このt−BN[10]
回折線の高角度側が漸減するパターンのX線回折ピーク
となっていることは、二次元の結晶化が進んでいるけれ
ども、六角網目層の積み重なり方(積層のパターン)に
全く規則性がない乱層構造の結晶性t−BNであること
を意味する。本発明において結晶性t−BN微粉末であ
るということは、典型的には、h−BN結晶の粉末X線
回折図の[100]、[101]及び[102]の回折
線に対応する粉末X線回折図の各回折線の占める面積
(各回折線の強度に比例する)S100、S101及びS102
の間にS102/(S100+S101)≦0.02の関係とし
て数値的にも規定することができる。
【0020】切削油の液成分中に分散させる結晶性t−
BN微粉末は、たとえば分散性のよいアルコール等の媒
体を用いて湿式で分散処理した平均粒径(二次粒子とし
て)が7μm以下(さらに、4μm以下、2μm以下、
より好ましくは1μm以下)の微粉末を使用するのが好
ましい。潤滑油は切削あるいは研削用としての使用時に
徐々に二次粒子の粉砕が進んで微細な一次粒子の割合が
増加し、徐々に良好な潤滑性を発揮するようになるの
で、初期には二次粒子を多く含む窒化硼素粉末が分散さ
れた潤滑油であってもよい。本発明において用いる結晶
性t−BNとしては一次粒子が平均0.5μm以下、
0.3μm以下、さらに0.2μm以下で極めて均一な
粒度成分を示すものが好適である。
【0021】結晶性t−BN微粉末は、乾いた微粉末の
ままでも潤滑性を示すが、微粉末は嵩張っていて取扱い
にくく、微粉末を切削や研削が行なわれる局所に送り込
むことが難しいので、液成分と混合して分散させてお
く。但し、粉体のままBNを貯蔵し、使用に際し、その
都度バッチ式又は連続的に液体に分散混合して用いるこ
とも、当然可能である。切削油又は研削油の液成分とし
ては、極性又は非極性の液或いは水性ないし非水性の
液、或いはこれらの混合物ないしエマルジョンを用いる
ことができ、例えば、石油、合成油、植物油、水、油と
水の懸濁液又は有機溶媒のいずれであってもよく、使用
の目的と条件によって最適な液成分または液成分の組み
合わせを選定すればよい。
【0022】潤滑油は液成分の量が多く流動性のある懸
濁液、又は液成分の量の少ないグリース状の懸濁液のい
ずれであってもよい。液成分中に窒化硼素微粉末、たと
えば結晶性t−BN微粉末を均一に分散させるには、微
粉末を液成分と混合の際分散剤や界面活性剤を添加して
ホモジナイザーで高速撹拌したり、ロールで練ったり、
液成分とともにボールミルやアトリションミル中で特に
剪断力の作用下に混合粉砕するのが好ましい。潤滑油は
濃い懸濁液の状態で調製して保存しておき、使用に際し
て薄めて使用すると運搬や保存に際して嵩張らないので
便利である。使用に際して本発明の潤滑油はかくて、ほ
ぼ基本的に一次粒子に分散した状態ないしは使用時に容
易に一次粒子に分散可能な状態として結晶性t−BN微
粉末ないしh−BN微粉末を含有することが好ましい。
【0023】二次元の結晶構造が発達した結晶性t−B
N微粉末を懸濁させた切削油や研削油がh−BN結晶の
微粉末を懸濁させた潤滑油と比べて良好な潤滑特性を示
す理由は明白ではないが、少なくとも層間の規則性の差
(h−BNはh、結晶性t−BNは基本的に不規則ない
しランダム)が主因であると考えられる。即ち、結晶性
t−BNの六角網目層間の結合強度がh−BN結晶の六
角網目層間の結合強度より小さくて層間のすべりが生じ
易く或いは劈開しやすく、結晶の六角網目層に平行な方
向に方向性がないことから劈開性の鱗片状の結晶は層と
層に平行な方向に滑りやすいためと考えられる。さらに
は、合成された結晶性t−BN微粉末の一次粒子が微細
であり(たとえば平均粒径1μm以下ないし0.3μm
以下、0.2μm以下などの微細な一次粒子からなる平
均粒径10μm以下の二次粒子の微粉末として得られ
る)、粉末が固体潤滑剤として機能しやすいからである
と考えられる。
【0024】
【発明の実施形態】窒化硼素微粉末は、1200℃未
満、さらに1100℃以下、好ましくは950℃以下の
低温で合成されたa−BNを結晶化させるときの温度に
よって種々の結晶化の程度を示す窒化硼素微粉末が得ら
れる。t−BN結晶化は1200℃以上〜1500℃未
満、好ましくは1200〜1400、より好ましくは1
300±50℃で得られる。温度をさらに上げて結晶化
を進行させれば、窒化硼素はいずれも最後には高温で安
定なh−BNに転化する。結晶性t−BN微粉末は14
50℃以上で熱処理するとh−BNへの転化が始まり、
t−BNとh−BNが混在した粉末になる。切削用又は
研削用潤滑油中に分散させる窒化硼素微粉末は結晶性t
−BN微粉末の割合が多ければ加工に際して優れた潤滑
性を発揮する。優れた潤滑性を発揮させるため、好まし
くは潤滑油に含まれる窒化硼素微粉末の50重量%以
上、(70重量%以上、さらには80重量%以上、より
好ましくは90重量%以上)を結晶性t−BN微粉末と
するのが好ましい。窒化硼素微粉末中の結晶性t−BN
微粉末の含有割合は、粉末X線回折により得られる回折
線の強度(回折線の有する面積)を混合割合が既知の標
準の窒化硼素混合粉末図の粉末X線回折の強度を比較す
ることによって測定できる。
【0025】h−BNや結晶性t−BNの窒化硼素微粉
末は、細かいほうが少ない添加量でも良好な潤滑効果を
示す。このため、潤滑油中の窒化硼素微粉末の平均粒径
(二次粒子径)は7μm以下、4μm以下、さらには2
μm以下(最も好ましくは1μm以下)とするのが好ま
しい。窒化硼素微粉末をミルで粉砕すれば、二次粒子を
細かい一次粒子からなる微粉末にまで比較的容易に分散
できる。窒化硼素微粉末の粒度分布は例えば沈降法によ
って測定でき、平均粒径は重量積算粒度分布の積算重量
が50重量%の位置の粒径をいう。一次粒子の平均粒径
を求めるには、微粉末のSEM写真を撮影して測定すれ
ばよい。
【0026】窒化硼素微粉末の平均粒径が4μm以下、
さらに2μm以下と細かければ、窒化硼素微粉末の多く
が一次粒子にまで微細化されており、これによって潤滑
油の切削時における潤滑性がさらに向上する。細かい窒
化硼素微粉末は加工局部の狭い空間に入り込むことがで
きるので、平均粒径が4μm以下、さらには2μm以下
と細かい微粉末を懸濁させることによってさらに良好な
潤滑性を発揮させられる。
【0027】切削油又は研削油中の窒化硼素微粉末の混
合量は、その使用条件によって適切で経済的な含有量が
存在するが、良好な潤滑効果を付与できるとともに広範
な加工条件をカバーできることから、潤滑油中の窒化硼
素微粉末の混合量は0.1〜70重量%とするのが好ま
しい。その理由は、混合量が0.1重量%以下では得ら
れる潤滑効果が小さく、70重量%を超えて混合すると
均一な懸濁液にするのが難しく、流動性が損なわれるの
で良好な潤滑特性の発揮が難しくなるからである。潤滑
性をコストパーフォーマンスよく発揮させるには、窒化
硼素微粉末の混合量を0.2〜50重量%とするのが特
に好ましい。
【0028】優れた潤滑性を付与できるように、窒化硼
素微粉末は、その一次粒子の平均粒径が1μm以下さら
には0.5μm以下、0.3μm以下、0.2μm以下
等であるのが好ましい。一次粒子の平均粒径が1μm以
下と細かければ、窒化硼素微粉末の二次粒子の平均粒径
が大きくても使用中に微粉末の二次粒子が次第に一次粒
子にまで粉砕され、加工に際して潤滑油の初期の潤滑性
が充分に良好でなくても、次第に良好な潤滑性を示すよ
うになる。
【0029】二次元の結晶構造が発達した結晶性t−B
N微粉末は、図5のSEM写真に見られるように一次粒
子の形状が略円板状又は略球形状を呈し、かつ優れた潤
滑性能を有する。結晶性t−BN微粉末の添加が切削用
又は研削用潤滑油に優れた潤滑特性を付与し得ることか
ら、本発明の潤滑油では好ましくは潤滑油中に含まれる
窒化硼素微粉末の一次粒子の50重量%以上、さらに好
ましくは70重量%以上(さらに80重量%以上、90
重量%以上、最も好ましくは、実質的に全て)が略円板
状又は略球形状である。結晶性t−BN微粉末の一次粒
子の粒径は、通常1μm以下と小さいが、一次粒子の形
状は走査型電子顕微鏡(SEM)の写真によって観察で
き、結晶性t−BN微粉末の一次粒子がh−BNの結晶
粒子のように六角板状にならないのは、結晶性t−BN
が二次元網目層の層と層の間の積層関係に規則性を持た
ないためであると理解される。
【0030】切削油又は研削油の液成分は使用条件に合
わせて適切なものを選択するのが好ましい。その一例と
して、市販品が安価に入手できることから液成分に石油
系の油を使用するのが好ましい。また、液成分の特性を
きめ細かく制御し得ることから、液成分に非水溶性の合
成油を使用するのが好ましい。また、窒化硼素微粉末に
対する分散性が良好であることから、天然の油脂を含む
エステル類の油脂を好ましく使用できる。
【0031】さらに、液成分は必ずしも油である必要は
なく、使用条件によっては水性にでき、例えば水(水性
切削液)や水と油のエマルジョンを使用することが好ま
しい。エマルジョンは油中に水が分散した油中水系(W
/O)エマルジョン又は水中に油が分散した水中油系
(O/W)エマルジョンのいずれであってもよい。ま
た、加工条件によっては、潤滑油の液成分に水とグリコ
ールの混合物を使用することもできる。
【0032】窒化硼素微粉末は液成分に対する分散性が
必ずしも良好であるとは言えない。また、窒化硼素微粉
末が細かくても、大きく凝集している微粉末では安定し
て良好な潤滑性能を発揮できない。このため、窒化硼素
微粉末を分散させるための分散剤を添加するのが好まし
い。種々の分散剤を比較検討した結果、非イオン界面活
性剤、陰イオン界面活性剤、両性界面活性剤、油溶性界
面活性剤が特に有用であることを確認した。すなわち、
本発明の潤滑油の分散剤としては、非イオン界面活性
剤、陰イオン界面活性剤、両性界面活性剤、油溶性界面
活性剤から選ばれるいずれかを使用するのが好ましい。
潤滑油に分散剤を添加しておけば、比重差によって窒化
硼素結晶の微粉末が液成分中で沈降分離しても再分散が
容易である。これらの分散剤の内、特に好ましい分散剤
は両性界面活性剤と油溶性界面活性剤である。
【0033】本発明の潤滑油には、使用条件と液成分の
種類に応じて分散剤以外の各種の添加剤を混合するのが
好ましい。添加剤の具体例としては、酸化防止剤、粘度
指数向上剤、流動点降下剤、腐敗防止剤、防錆剤、極圧
添加剤、乳化剤及び消泡剤がある。これらの添加剤に
は、市販されている公知の添加剤を好ましく使用でき
る。
【0034】窒化硼素微粉末と液成分を含む潤滑油をエ
アゾールとして供給すれば、切削油又は研削油を加工の
局所に吹き付けて供給できるので非常に簡便であり、使
いやすいので必要な場合用いることができる。その一例
としては使用に際してエアゾール化することも、エアゾ
ール缶に充填して噴射によりエアゾール化して供給(吹
付け)することができる。
【0035】
【実施例】以下、本発明の切削油又は研削油及び切削な
いし研削方法を実施例によって具体的に説明するが、実
施例は本発明の一例であって本発明は切削油(加工)又
は研削油(加工)は以下に説明する実施例に限定されな
い。即ち、本発明は、研摩その他同様な潤滑を必要とす
る条件に、その各種視点に応じて適用可能である。
【0036】[実施例1](結晶性t−BN微粉末の製
造) 結晶性t−BN微粉末を次のようにして製造した。無水
硼酸3.5kg、尿素5.3kg、硼砂(Na223
・10H2O)0.63kgからなる混合物を密封でき
る容量が約12リットルのステンレス鋼製の耐圧容器に
入れて900℃まで約1時間で昇温し、900℃に約1
0分間保って反応を完結させ、a−BNを合成した。こ
の反応時には反応系から水と炭酸ガスが放出されて反応
容器の内部の圧力が上昇するので、反応容器内は1気圧
より高い水と炭酸ガスの混合ガスで充たされていた。次
いで反応容器から取り出したカルメ焼き状の反応物を1
mm以下の粒子に粉砕し、粉砕物を蓋付きのアルミナ製
容器に収容してN2雰囲気とした電気炉中に入れ、10
時間かけて1300℃まで昇温し、さらに1300℃に
2時間保持してt−BN結晶化し、結晶性t−BN微粉
末を得た。この結晶化の際にa−BNと共存する硼酸ナ
トリウムはa−BNの結晶性t−BNへの転化を促進す
る働きをするので結晶性t−BN微粉末を高収率で合成
できる。合成された結晶性t−BN微粉末には硼酸ナト
リウムその他の不純物が付着しているので、約80℃の
イオン交換水で洗って精製し、約0.63kg(硼素換
算収率約70%)の結晶性t−BN微粉末を得た。
【0037】図3は上記合成プロセスにより得られた結
晶性t−BN微粉末のCuKα線による粉末X線回折図
である。図3の粉末X線回折図を見ると、h−BNの
[004]回折線に対応するt−BNの回折線の半価幅
が約0.5°で、t−BNの[10]回折線の高角度側
には肩状のふくらみがあるが、六方晶窒化硼素の[10
2]回折線に対応する回折線は認められない。また、得
られた結晶性t−BN粉末を容量7リットルのアルミナ
製ポットミルに直径10mmのアルミナボールを7.6
kg入れてアルコールを媒体として24時間粉砕した微
粉末について沈降分析による粒度分布の測定例を図4に
示す。この、結晶性t−BN微粉末の粒度分布測定結果
によれば微粉末の平均粒径(これはなお二次粒子をかな
り含むデータと考えられる)は約0.4μmである。ま
た、図5は上記合成プロセスで合成した結晶性t−BN
微粉末のSEMによる拡大写真の例であり、このSEM
拡大写真に基いて見積もった一次粒子の平均粒径は約
0.33μmである。
【0038】[実施例2](切削性の調製及び切削テス
ト) 切削油を以下のようにして調製した。すなわち、潤滑油
基油(石油系、引火点(coc)約218℃、40℃に
おける動粘度約27.8mm2/s(cSt))64重
量部、ポリオキシエチレンココナットアルキルアミン誘
導体(花王アミート102)6重量部からなる混合液を
容量7リットルのアルミナ製ポットミルに入れて60r
pmで1時間混合した。次に、結晶性t−BNの微粉末
30重量部を同じくアルミナ製ポットミルに追加し、6
0rpmで24時間粉砕混合して均一に分散した約2k
gの結晶性t−BN微粉末の懸濁液を得た。この懸濁液
を市販の非水溶性(合成油)の切削油A(ユシロ化学工
業(株)製のユシロンカットNo.4C)で15倍に希
釈してt−BN微粉末を2重量%含む切削油を得た。な
お、切削油Aには極圧剤として塩素系のものが添加され
ていた。
【0039】コーティング付きの超硬工具(住友電工
(株)製EH20Z)を用いるSUS440Cの施削に
この切削油を使用して切削速度125m/min、送り
速度0.15mm/rev切り込み量0.5mmにて得
られた結果を市販の非水溶性の切削油Aを使用したとき
の結果と比較した。その結果、前記市販の非水溶性の切
削油Aを用い、コーティング付きの超硬工具でステンレ
ス鋼の施削を行なった時と比べ、本発明による切削油を
使用するときは工具の耐用が約2倍に延長された。ま
た、加工された加工面の性状は非水溶性の切削油Aを用
いて加工された加工面と比べて仕上がり面が良好であっ
た。
【0040】[実施例3](切削油の調製及び切削テス
ト) 切削油の液成分として日本石油(株)製の非水溶性合成
油の切削油Bを79.6重量部使用し、これにポリオキ
シエチレンココナットアルキルアミン誘導体(花王アミ
ート102)0.4重量部を加えた混合液を容量7リッ
トルのアルミナ製ポットミルに入れて60rpmで1時
間混合した。次に、実施例1で製造したのと同じ条件で
合成し、精製された結晶性t−BN微粉末20重量部を
容量の同じアルミナ製ポットミルに入れ、60rpmで
24時間混合して均一な懸濁液とした。この懸濁液を市
販の非水溶性合成油の切削油Aで15倍に希釈して結晶
性t−BN微粉末を1.3重量%含む切削油を得た。
【0041】この切削油と超硬ドリル(三菱マテリアル
(株)製ニューポイントBRA)を使用して精密横中ぐ
り盤にてインコネルに直径10.9mm、深さ30mm
の穴開け加工をドリル回転数800rpm、送り込み
0.2mm/rev切削速度30m/分で行なった結果
を、市販の非水溶性の合成油の切削油Aを使用して加工
した時の結果と比較した。その結果、市販の非水溶性合
成油の切削油Aを用い、超硬ドリルでインコネルに穴開
け加工を行なう時と比べて一本の超硬ドリルで開けられ
る穴の数が2倍以上に増えた。また、得られた穴の加工
面は市販の非水溶性切削油Aを用いて加工した穴の加工
面と比べて仕上げ面が良好であった。
【0042】[実施例4]工業用ガソリン67.8重量
部、実施例1と同様の条件で製造した結晶性t−BN微
粉末10重量部、三井石油化学(株)製石油樹脂粉末2
重量部及びポリオキシエチレンココナットアルキルアミ
ン誘導体(花王アミート102)0.2重量部からなる
混合物を容量7リットルのアルミナ製ポットミルに入れ
て60rpmで8時間混合した。この懸濁液60重量部
に対してLPGを190重量部の割合で加えて420ミ
リリットルのエアゾール缶に充填した。
【0043】エアゾール缶に充填したこの切削油を、汎
用ボール盤に装着した超硬ドリルに吹き付けつつアルミ
ニウム材に直径8mm、深さ19mmの穴開け加工を行
なった。その結果、切削油を吹き付けない場合のドリル
加工と比較し、超硬ドリルの回転数を600rpmから
1000rpmに上げることができ、顕著に加工能率を
向上させることができた。本発明の切削油を使用して得
られた穴の加工面の性状は、切削油を吹き付けないで加
工した穴の加工面の性状と比べて良好な切削面であっ
た。
【0044】[実施例5]実施例4で使用したエアゾー
ル缶の切削油を研削油とし、ダイヤモンド研削砥石(砥
粒の粒度#1500、直径125mm)の加工面に吹き
付け、砥石の周速を1600m/秒としてSUS440
Cの研削加工を行なった。その結果、研削油を吹き付け
ないで行なった研削加工の加工条件と比較して、研削油
を用いる場合には切り込み深さを1μmから5μmに増
やすことができ、研削加工の加工能率が約3倍に向上し
た。切削油を用いて研削加工したときの研削砥石の消耗
速度は切削油を用いないで研削加工するときと比べて同
等であった。また、切削油を吹き付けて加工した研削加
工面の性状は切削油を使用しないで加工した加工面の性
状と比べて仕上げ面が良好であった。
【0045】
【発明の効果】従来の窒化硼素の合成技術では、結晶性
t−BN微粉末は勿論、h−BN粉末についても歩留り
のよい量産方法が存在しなかった。このためh−BN粉
末の値段は高く、潤滑油としての応用も極く限られた用
途のみに限定されていた。しかし、前述の合成技術が確
立されたことによってh−BN粉末は勿論、特に固体潤
滑性に優れた結晶性t−BN微粉末を安価に量産して提
供できるようになった。本発明は前記合成技術の確立を
契機として従来知られていない窒化硼素粉末の新用途へ
の展開、すなわち切削油又は研削油の添加剤としての応
用を試み、窒化硼素微粉末の添加によって顕著な使用効
果が得られることを確認した。すなわち、本発明による
切削油を切削加工に使用すれば、切削工具の耐用を延長
することができると同時に加工能率を顕著に高めること
ができ、したがって製品歩留りの向上と加工コストの顕
著な低減を達成することができる。また、研削加工に切
削加工に使用したのと同じ潤滑油を使用して顕著な加工
能率の向上を達成できることを確認できた。したがっ
て、本発明による切削油及び研削油の産業上の利用価値
は多大である。
【図面の簡単な説明】
【図1】従来のa−BN微粉末の一例の粉末X線回折図
である。
【図2】従来のh−BN粉末の一例の粉末X線回折図で
ある。
【図3】本発明の切削油及び研削油に添加される結晶性
t−BN微粉末の一例の粉末X線回折図である。
【図4】本発明の切削油及び研削油に添加される結晶性
t−BN微粉末の一例の粒度分布グラフである。
【図5】本発明の切削油及び研削油に添加される結晶性
t−BN微粉末の一例の走査型電子顕微鏡(SEM)拡
大写真である。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI //(C10M 173/00 101:02 105:34 103:00) C10N 20:06 30:04 40:22 50:04 (72)発明者 黄 海鎮 愛知県名古屋市北区名城三丁目1番地1− 202号 (72)発明者 鳥山 素弘 愛知県春日井市中央台6丁目3番地の1 (72)発明者 大須賀 晃 愛知県犬山市大字羽黒字古市場38番地 株 式会社冨士エンタープライズ内 (72)発明者 山本 修 愛知県犬山市字大門4番地の1

Claims (16)

    【特許請求の範囲】
  1. 【請求項1】液成分中に結晶性乱層構造の窒化硼素微粉
    末を有効量分散含有することを特徴とする切削、研削及
    び/又は研摩加工用の高性能潤滑油。
  2. 【請求項2】液成分中に一次粒子の平均粒径1μm以下
    の六方晶系及び/又は結晶性乱層構造の窒化硼素微粉末
    を分散して含有することを特徴とする切削、研削及び/
    又は研摩加工用の高性能潤滑油。
  3. 【請求項3】液成分中に分散せしめた窒化硼素の微粉末
    の50重量%以上が結晶性乱層構造の窒化硼素微粉末で
    ある請求項2に記載の高性能潤滑油。
  4. 【請求項4】液成分中に分散している窒化硼素微粉末の
    一次粒子の平均粒径が0.5μm以下である請求項1〜
    3のいずれかに記載の高性能潤滑油。
  5. 【請求項5】液成分中に分散している窒化硼素微粉末の
    混合量が0.1〜50重量%である請求項1〜4のいず
    れかに記載の高性能潤滑油。
  6. 【請求項6】液成分中に分散している窒化硼素微粉末の
    50重量%以上が粒径0.3μm以下の一次粒子である
    請求項1〜5のいずれかに記載の高性能潤滑油。
  7. 【請求項7】電子顕微鏡で観察される前記窒化硼素微粉
    末の一次粒子の50重量%以上が略球形状又は略円板形
    状有するものである請求項1〜5のいずれかに記載の高
    性能潤滑油。
  8. 【請求項8】液成分が石油系の油又は合成油を含む請求
    項1〜6のいずれかに記載の高性能潤滑油。
  9. 【請求項9】液成分がエステル類の油脂を含むである請
    求項1〜6のいずれかに記載の高性能潤滑油。
  10. 【請求項10】液成分が水と油のエマルジョンである請
    求項1〜7のいずれかに記載の高性能潤滑油。
  11. 【請求項11】液成分が水性液体である請求項1〜7の
    いずれかに記載の高性能潤滑油。
  12. 【請求項12】液成分中に窒化硼素微粉末の分散剤とし
    て非イオン界面活性剤、陰イオン界面活性剤、陽イオン
    界面活性剤、両性界面活性剤、油溶性界面活性剤から選
    ばれる1種以上が添加されている請求項1〜11のいず
    れかに記載の高性能潤滑油。
  13. 【請求項13】液成分中に酸化防止剤、粘度指数向上
    剤、流動点降下剤、腐敗防止剤、防錆剤、極圧添加剤、
    乳化剤及び泡消し剤から選ばれる1種以上が添加されて
    いる請求項1〜12のいずれかに記載の高性能潤滑油。
  14. 【請求項14】窒化硼素微粉末と液成分からなる潤滑油
    がエアゾール缶として供給される請求項1〜13のいず
    れかに記載の高性能潤滑油。
  15. 【請求項15】結晶性乱層構造の窒化硼素粉末を有効量
    含有する潤滑液を用いて被加工材を加工することを特徴
    とする被加工材の加工方法。
  16. 【請求項16】液成分中に一次粒子の平均粒径1μm以
    下の六方晶系及び/又は結晶性乱層構造の窒化硼素粉末
    を有効量含有する潤滑性液を用いて被加工材を加工する
    ことを特徴とする被加工材の加工方法。
JP9159173A 1997-06-02 1997-06-02 高性能潤滑油 Expired - Lifetime JP2911113B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9159173A JP2911113B2 (ja) 1997-06-02 1997-06-02 高性能潤滑油
US09/089,321 US5985802A (en) 1997-06-02 1998-06-02 High-performance lubricant oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9159173A JP2911113B2 (ja) 1997-06-02 1997-06-02 高性能潤滑油

Publications (2)

Publication Number Publication Date
JPH10330775A true JPH10330775A (ja) 1998-12-15
JP2911113B2 JP2911113B2 (ja) 1999-06-23

Family

ID=15687895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9159173A Expired - Lifetime JP2911113B2 (ja) 1997-06-02 1997-06-02 高性能潤滑油

Country Status (2)

Country Link
US (1) US5985802A (ja)
JP (1) JP2911113B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182879A (ja) * 2002-12-04 2004-07-02 Osamu Yamamoto 高性能水溶性金属加工油剤
JP2005126730A (ja) * 2005-01-06 2005-05-19 Osamu Yamamoto 高性能水溶性金属加工油剤を用いた金属製品の製造方法
JP2009300861A (ja) * 2008-06-16 2009-12-24 Ricoh Co Ltd 像担持体保護剤、保護層形成装置、画像形成方法、画像形成装置及びプロセスカートリッジ
US7700526B2 (en) 2005-02-02 2010-04-20 Osamu Yamamoto Process for machining metal and high performance aqueous lubricant therefor
KR20210152713A (ko) * 2020-06-09 2021-12-16 (주)투디엠 절삭유용 필러 및 이를 포함한 절삭유

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020085888A1 (en) * 2000-02-22 2002-07-04 Vedagiri Velpari Electronic supports and methods and apparatus for forming apertures in electronic supports
CA2451672A1 (en) * 2001-06-29 2003-10-30 The Lubrizol Corporation Stable dispersions of oil-insoluble compounds in hydrocarbons for use in lubricants
US7282731B2 (en) * 2001-06-29 2007-10-16 Alexandr Mikhailovich Ilyanok Quantum supermemory
EP1535987B1 (en) * 2003-11-28 2013-01-09 Chevron Oronite SAS Additive composition for transmission oil containing hexagonal boron nitride and a viscosity index improver
WO2005108530A1 (en) * 2004-04-30 2005-11-17 The Lubrizol Corporation Metal forming lubricant composition containing boron nitride
US20070161518A1 (en) * 2006-01-11 2007-07-12 National Starch And Chemical Investment Holding Corporation Boron Nitride Based Lubricant Additive
US20090036338A1 (en) * 2007-07-31 2009-02-05 Chevron U.S.A. Inc. Metalworking Fluid Compositions and Preparation Thereof
US20090036333A1 (en) * 2007-07-31 2009-02-05 Chevron U.S.A. Inc. Metalworking Fluid Compositions and Preparation Thereof
US7741254B2 (en) * 2007-08-21 2010-06-22 Billiet Romain L High density materials with intrinsic unabradable slipperiness and method of fabrication thereof
DE102008051264A1 (de) * 2008-10-10 2010-04-15 Magna Steyr Fahrzeugtechnik Ag & Co. Kg Korrosionsschutzmittel
JP5131258B2 (ja) * 2009-09-18 2013-01-30 協同油脂株式会社 金属加工用油剤、金属加工方法及び金属加工品
KR102049340B1 (ko) * 2018-05-11 2019-11-28 한국자재산업 주식회사 에어로졸 타입의 고착 방지용 조성물

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202523A (en) * 1977-07-11 1980-05-13 International Lead Zinc Research Organization, Inc. Boron nitride/elastomeric polymer composition for coating steel casting dies
DE3585120D1 (de) * 1984-10-03 1992-02-20 Hitachi Ltd Schmiermittel fuer die plastische verformung von metallen.
JPH0813980B2 (ja) * 1988-06-14 1996-02-14 協同油脂株式会社 鋼の熱間圧延潤滑剤組成物
US5141659A (en) * 1990-01-11 1992-08-25 Sumico Lubricant Co., Ltd. Lubricating agent for use in warm and hot forging
DE4204009C2 (de) * 1992-02-12 1994-09-15 Goelz Siegfried Fa Verfahren zur Herstellung von amorphem ultrahartem Bornitrid und nach dem Verfahren hergestelltes Bornitrid
JP2586871B2 (ja) * 1993-03-02 1997-03-05 協同油脂株式会社 油中分散型非黒鉛系潤滑油
US5819572A (en) * 1997-07-22 1998-10-13 General Motors Corporation Lubrication system for hot forming

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182879A (ja) * 2002-12-04 2004-07-02 Osamu Yamamoto 高性能水溶性金属加工油剤
JP2005126730A (ja) * 2005-01-06 2005-05-19 Osamu Yamamoto 高性能水溶性金属加工油剤を用いた金属製品の製造方法
US7700526B2 (en) 2005-02-02 2010-04-20 Osamu Yamamoto Process for machining metal and high performance aqueous lubricant therefor
JP2009300861A (ja) * 2008-06-16 2009-12-24 Ricoh Co Ltd 像担持体保護剤、保護層形成装置、画像形成方法、画像形成装置及びプロセスカートリッジ
KR20210152713A (ko) * 2020-06-09 2021-12-16 (주)투디엠 절삭유용 필러 및 이를 포함한 절삭유

Also Published As

Publication number Publication date
JP2911113B2 (ja) 1999-06-23
US5985802A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
JP2911113B2 (ja) 高性能潤滑油
EP2061853B1 (en) Concentrated abrasive slurry compositions, methods of production, and methods of use thereof
Rahmati et al. Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2) nanolubrication in end milling machining
Shen et al. Performance of novel MoS2 nanoparticles based grinding fluids in minimum quantity lubrication grinding
US5964692A (en) Functional fluids and liquid cleaning compositions and suspending media
US5807810A (en) Functional fluids and liquid cleaning compositions and suspending media
CN100572512C (zh) 用石墨纳米颗粒和碳纳米管提高液体热导率
Sharma et al. Improved machining performance with nanoparticle enriched cutting fluids under minimum quantity lubrication (MQL) technique: a review
JP4964636B2 (ja) 超砥粒メタルボンド砥石
CN101528885B (zh) 用于磨料浆料的含水液体组合物,及其制备方法和使用方法
US20100204072A1 (en) Nanoparticle graphite-based minimum quantity lubrication method and composition
Nadolny State of the art in production, properties and applications of the microcrystalline sintered corundum abrasive grains
CN104031560A (zh) 用于晶体加工的水基金刚石抛光液
CN102027101A (zh) 稳定的水性浆料悬浮体
CN105647612A (zh) 一种含有纳米碳材料的润滑脂及其制备方法
JPH03217499A (ja) 機能性液体
JP2004182879A (ja) 高性能水溶性金属加工油剤
Ben Said et al. Application of nanofluids as cutting fluids in machining operations: A brief review
Madanchi et al. Investigation on the effects of nanoparticles on cutting fluid properties and tribological characteristics
Kulkarni et al. A review on nanofluids for machining
JP3719821B2 (ja) エンジン潤滑油及び潤滑方法
Song et al. Nanobiolubricant grinding: a comprehensive review
US2944879A (en) Lapping compound
JP3753728B2 (ja) 高性能水溶性金属加工油剤を用いた金属製品の製造方法及び水溶性金属加工油剤
Sultana et al. Effects of Nano-fluids Assisted MQL in Machining Processes: A Review

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990302

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180409

Year of fee payment: 19

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term