JPH10330741A - Heat storage composition - Google Patents

Heat storage composition

Info

Publication number
JPH10330741A
JPH10330741A JP13870997A JP13870997A JPH10330741A JP H10330741 A JPH10330741 A JP H10330741A JP 13870997 A JP13870997 A JP 13870997A JP 13870997 A JP13870997 A JP 13870997A JP H10330741 A JPH10330741 A JP H10330741A
Authority
JP
Japan
Prior art keywords
heat storage
sodium
weight
parts
sodium sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13870997A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kakiuchi
博行 垣内
Shoichi Chihara
彰一 千原
Seiichi Kubokawa
清一 窪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Chemical Engineering Corp
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Chemical Engineering Corp filed Critical Mitsubishi Chemical Corp
Priority to JP13870997A priority Critical patent/JPH10330741A/en
Publication of JPH10330741A publication Critical patent/JPH10330741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a heat storage material composition which can be used repeatedly for a long time without a large decrease in heat storage capacity, having a small difference between the freezing temperature and the melting temperature and suited for air conditioning. SOLUTION: This composition comprises 60-85 pts.wt. sodium sulfate decahydrate (a) and 15-40 pts.wt. at least one member (b) selected among ammonium chloride, ammonium bromide, ammonium sulfate, ammonium nitrate, sodium chloride, sodium bromide, sodium sulfate, sodium nitrate and potassium chloride (provided that when component (b) is sodium sulfate, at least one of the eight remaining components is additionally contained) and 0.1-10 pts.wt., per 100 pts.wt. heat storage component having a melting point of 5-15 deg.C, crosslinked carboxymechyl cellulose.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄熱材組成物に関
する。詳しくは、硫酸ナトリウム十水塩及び融点調整剤
等からなる芒硝系蓄熱材組成物の改良に関する。本発明
の蓄熱材組成物は、長期間繰り返し使用しても蓄熱量の
低下が少なく、且つ凝固温度と融解温度との温度差が小
さく、冷房空調用に適している。
[0001] The present invention relates to a heat storage material composition. More specifically, the present invention relates to an improvement of a sodium sulfate-based heat storage material composition comprising sodium sulfate decahydrate, a melting point modifier, and the like. The heat storage material composition of the present invention has a small decrease in heat storage amount even after repeated use for a long period of time, and has a small temperature difference between a solidification temperature and a melting temperature, and is suitable for cooling air conditioning.

【0002】[0002]

【従来の技術】硝酸ナトリウム十水塩は融点(32.5
℃)は高いが、高い蓄熱量(60cal/g)を有し、
安全且つ安価な物質であるので、従来からこれを蓄熱材
組成物として利用するための研究開発が数多く、行われ
て来た。
2. Description of the Related Art Sodium nitrate decahydrate has a melting point (32.5%).
C) is high, but has a high heat storage (60 cal / g),
Since it is a safe and inexpensive substance, many researches and developments have been made to utilize it as a heat storage material composition.

【0003】硫酸ナトリウム十水塩を蓄熱材として利用
するための技術上のポイントは大きく分けて三つある。
先ず、第一は、これを冷房空調用に利用する場合、この
高い融点を大巾に下げ且つ所望の温度に調整することで
ある。この場合、硫酸ナトリウム十水塩に融点調整剤と
呼ばれる無機塩を少なくとも一種添加することにより5
〜32℃の範囲で調整が可能である。融点調整剤として
は、塩化アンモニウム、塩化ナトリウム、塩化カリウム
等が知られ、これらを組み合わせることによりいろいろ
な融点を有する組成物が報告されている。
There are three major technical points for using sodium sulfate decahydrate as a heat storage material.
First, when this is used for cooling and air conditioning, the high melting point is greatly reduced and adjusted to a desired temperature. In this case, at least one inorganic salt called a melting point modifier is added to sodium sulfate decahydrate to form
Adjustment is possible in the range of up to 32 ° C. Ammonium chloride, sodium chloride, potassium chloride and the like are known as melting point regulators, and compositions having various melting points by combining these are reported.

【0004】本発明者等も、硫酸ナトリウム十水塩/塩
化アンモニウム/塩化ナトリウム/硫酸アンモニウムか
らなり、融解温度8〜12℃の蓄熱材組成物(特開平7
−48564号公報)及び硫酸ナトリウム十水塩/塩化
アンモニウム/臭化ナトリウム/硫酸アンモニウムから
なり、融解温度5〜10℃の蓄熱材組成物(特開平7−
188648号公報)を提案した。
The present inventors have also disclosed a heat storage material composition comprising sodium sulfate decahydrate / ammonium chloride / sodium chloride / ammonium sulfate and having a melting temperature of 8 to 12 ° C.
No. 48564) and a heat storage material composition comprising sodium sulfate decahydrate / ammonium chloride / sodium bromide / ammonium sulfate and having a melting temperature of 5 to 10 ° C.
188648).

【0005】第二は、硫酸ナトリウム十水塩の過冷却の
防止である。四ホウ酸ナトリウム十水塩が硫酸ナトリウ
ム十水塩の過冷却防止剤として効果があることは、M.
Telkesにより報告されている(Ind.and
Eng.Chem.,44,6,1308(195
2))。
[0005] The second is to prevent supercooling of sodium sulfate decahydrate. The fact that sodium tetraborate decahydrate is effective as a supercooling inhibitor for sodium sulfate decahydrate is described in M.S.
Telkes (Ind. And
Eng. Chem. , 44, 6, 1308 (195
2)).

【0006】第三は、硫酸ナトリウム十水塩が凝固融解
を繰り返すと蓄熱量が大きく減少する相分離と呼ばれる
現象の防止である。これは硫酸ナトリウム十水塩が融解
すると一部溶解しない無水硫酸ナトリウムが沈殿するこ
とにより生じるので、これを回避するために相分離防止
剤と呼ばれる増粘剤が数多く検討されてきた。そして、
増粘剤として例えばアタパルジャイト粘土(米国特許第
3,986,969号明細書)、カルボキシメチルセル
ロース(CMC)(特開昭58−52996号公報)、
イオン架橋させたヒドロゲル(特開昭54−16387
号及び同55−66984号各公報)又は水不溶性吸水
性樹脂(特開昭56−143263号及び同57−82
696号公報)等を配合した蓄熱材組成物がこれ迄に提
案されている。
A third object is to prevent a phenomenon called phase separation, in which the amount of stored heat is greatly reduced when sodium sulfate decahydrate repeatedly solidifies and melts. This is caused by the precipitation of anhydrous sodium sulfate, which is partially insoluble when sodium sulfate decahydrate is melted. To avoid this, a number of thickeners called phase separation inhibitors have been studied. And
As thickeners, for example, attapulgite clay (U.S. Pat. No. 3,986,969), carboxymethyl cellulose (CMC) (JP-A-58-52996),
Hydrogel crosslinked by ion (Japanese Patent Application Laid-Open No. 54-16387)
And the water-insoluble water-absorbing resins (JP-A-56-143263 and JP-A-57-82).
No. 696) has been proposed so far.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、アタパ
ルジャイト粘土又はCMCを用いた場合、繰り返し使用
すると、蓄熱量の低下が大きいという問題点がある。ま
た、水不溶性吸水性樹脂を用いた場合、長期間繰り返し
使用しても蓄熱量の減少が小さく、相分離防止剤として
は非常に効果的であるが、凝固温度と融解温度との温度
差が大きく、蓄熱材を凝固させる時の蓄熱温度と蓄熱材
を融解させて取り出す放熱温度に差が生じて、蓄熱シス
テムのシステム効率が悪くなるという問題点がある。本
発明の目的は、長期間繰り返し使用しても蓄熱量の低下
がなく、且つ凝固温度と融解温度との温度差が小さい、
融解温度5〜15℃の芒硝系蓄熱材を提供することにあ
る。
However, when attapulgite clay or CMC is used, there is a problem that the amount of heat storage is greatly reduced when repeatedly used. In addition, when a water-insoluble water-absorbent resin is used, the amount of heat storage is small even when used repeatedly for a long period of time, and is very effective as a phase separation preventing agent, but the temperature difference between the solidification temperature and the melting temperature is high. There is a large difference between the heat storage temperature at the time of solidifying the heat storage material and the heat radiation temperature at which the heat storage material is melted and taken out, thereby deteriorating the system efficiency of the heat storage system. The object of the present invention is that there is no decrease in heat storage even when used repeatedly for a long time, and the temperature difference between the solidification temperature and the melting temperature is small
An object of the present invention is to provide a sodium sulfate-based heat storage material having a melting temperature of 5 to 15 ° C.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上記事情
に鑑み鋭意検討した結果、芒硝系蓄熱材に特定の増粘剤
を配合させることにより、上記目的を達成し得ることを
見い出し、本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies in view of the above circumstances, and as a result, have found that the above object can be achieved by blending a specific thickener with a sodium sulfate-based heat storage material. The present invention has been completed.

【0009】即ち、本発明の要旨は、(a)硫酸ナトリ
ウム十水塩:60〜85重量部、及び(b)塩化アンモ
ニウム、臭化アンモニウム、硫酸アンモニウム、硝酸ア
ンモニウム、塩化ナトリウム、臭化ナトリウム、硫酸ナ
トリウム、硝酸ナトリウム及び塩化カリウムから選ばれ
た少なくとも一種(但し、(b)成分が硫酸ナトリウム
であるときは、更に残りの八成分の中の少なくとも一種
を含む):15〜40重量部、からなり、且つ融点5〜
15℃の蓄熱成分100重量部に対して、架橋型カルボ
キシメチルセルローズが0.1〜10重量部配合されて
なることを特徴とする蓄熱材組成物、にある。以下、本
発明を詳細に説明する。
That is, the gist of the present invention is that (a) sodium sulfate decahydrate: 60 to 85 parts by weight, and (b) ammonium chloride, ammonium bromide, ammonium sulfate, ammonium nitrate, sodium chloride, sodium bromide, and sodium sulfate. At least one selected from sodium nitrate and potassium chloride (however, when component (b) is sodium sulfate, at least one of the remaining eight components is included): 15 to 40 parts by weight; And melting point 5
A heat storage material composition comprising 0.1 to 10 parts by weight of crosslinked carboxymethyl cellulose with respect to 100 parts by weight of a heat storage component at 15 ° C. Hereinafter, the present invention will be described in detail.

【0010】[0010]

【発明の実施の形態】本発明の蓄熱材組成物の主成分は
硫酸ナトリウム十水塩である。硫酸ナトリウム十水塩の
融点は32.5℃であるので、融解温度を5〜15℃に
調整するためには、融点調整剤を添加するのが必要であ
る。融点調整剤としては、塩化アンモニウム、臭化アン
モニウム、硫酸アンモニウム、硝酸アンモニウム等のア
ンモニウム塩、塩化ナトリウム、臭化ナトリウム、硫酸
ナトリウム、硝酸ナトリウム等のナトリウム塩、塩化カ
リウム等のカリウム塩等が挙げられる。融点調整剤の配
合量は、硫酸ナトリウム十水塩及び融点調整剤の合計量
100重量部に対して、通常10〜40重量%部、好ま
しくは15〜35重量部である。融点調整剤の配合量が
10重量部より少ないと融点が5〜15℃まで低下せ
ず、40重量部を越えると硫酸ナトリウム十水塩の配合
量が減少し、蓄熱量が小さくなるので好ましくない。な
お、硫酸ナトリウム十水塩の配合量は、硫酸ナトリウム
十水塩及び融点調整剤の合計量100重量部に対して6
0〜85重量部、好ましくは70〜80重量部である。
DETAILED DESCRIPTION OF THE INVENTION The main component of the heat storage material composition of the present invention is sodium sulfate decahydrate. Since the melting point of sodium sulfate decahydrate is 32.5 ° C., in order to adjust the melting temperature to 5 to 15 ° C., it is necessary to add a melting point modifier. Examples of the melting point modifier include ammonium salts such as ammonium chloride, ammonium bromide, ammonium sulfate and ammonium nitrate, sodium salts such as sodium chloride, sodium bromide, sodium sulfate and sodium nitrate, and potassium salts such as potassium chloride. The amount of the melting point modifier is usually 10 to 40% by weight, preferably 15 to 35 parts by weight, based on 100 parts by weight of the total amount of sodium sulfate decahydrate and the melting point modifier. If the compounding amount of the melting point modifier is less than 10 parts by weight, the melting point does not decrease to 5 to 15 ° C., and if it exceeds 40 parts by weight, the compounding amount of sodium sulfate decahydrate decreases, and the heat storage amount decreases. . The amount of sodium sulfate decahydrate is 6 parts by weight based on 100 parts by weight of the total amount of sodium sulfate decahydrate and the melting point modifier.
0 to 85 parts by weight, preferably 70 to 80 parts by weight.

【0011】本発明の特徴は、硫酸ナトリウム十水塩及
び融点調整剤からなる蓄熱材に架橋型カルボキシメチル
セルロース(以下、架橋CMCと略記する)を配合する
ことにある。CMCは、例えば亜硫酸パルプを水酸化ナ
トリウム水溶液に浸してアルカリセルロースとし、クロ
ル酢酸エステルと捏和溶解し、メチルアルコールで沈澱
させて得られたアニオン性の水溶性セルロースエーテル
であるが、架橋型CMCは、このCMCを部分的に架橋
させて得られたもので、水不溶性であるのが特徴であ
り、例えばAquasorb A−380(ハーキュリ
ーズジャパン(株))及びAquasorb A−50
0(ハーキュリーズジャパン(株))の商品名で市販さ
れている。
A feature of the present invention resides in that crosslinked carboxymethylcellulose (hereinafter abbreviated as crosslinked CMC) is blended with a heat storage material comprising sodium sulfate decahydrate and a melting point modifier. CMC is, for example, an anionic water-soluble cellulose ether obtained by immersing sulfite pulp in an aqueous solution of sodium hydroxide to form alkali cellulose, kneading and dissolving with chloroacetate, and precipitating with methyl alcohol. Is obtained by partially cross-linking this CMC, and is characterized by being insoluble in water. For example, Aquasorb A-380 (Hercules Japan KK) and Aquasorb A-50
0 (Hercules Japan KK).

【0012】架橋CMCの配合量は、硫酸ナトリウム十
水塩及び融点調整剤の合計量100重量部に対して、通
常0.1〜10重量部、好ましくは0.5〜5重量部で
ある。配合量が0.1重量部より少ないと相分離防止効
果が得られず、10重量部以上であると主成分の配合量
が少なくなり、且つ架橋CMCに吸水される水分量が多
くなり、蓄熱量が減少するので好ましくない。
The compounding amount of the crosslinked CMC is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the total amount of sodium sulfate decahydrate and the melting point modifier. If the amount is less than 0.1 part by weight, the effect of preventing phase separation cannot be obtained. If the amount is more than 10 parts by weight, the amount of the main component decreases, and the amount of water absorbed by the cross-linked CMC increases. It is not preferable because the amount is reduced.

【0013】本発明の蓄熱材組成物には、過冷却を防止
するために過冷却防止剤を添加してもよい。過冷却防止
剤としては、四ホウ酸ナトリウム十水塩、氷晶石等が挙
げられ、好ましくは四ホウ酸ナトリウム十水塩が用いら
れる。過冷却防止剤の配合量は硫酸ナトリウム十水塩及
び融点調整剤の合計量100重量部に対して、通常0.
1〜10重量部、好ましくは1〜5重量部である。
[0013] A supercooling inhibitor may be added to the heat storage material composition of the present invention in order to prevent supercooling. Examples of the supercooling inhibitor include sodium tetraborate decahydrate, cryolite and the like, and preferably sodium tetraborate decahydrate is used. The amount of the supercooling inhibitor is usually 0.1 part by weight based on 100 parts by weight of the total amount of sodium sulfate decahydrate and the melting point modifier.
It is 1 to 10 parts by weight, preferably 1 to 5 parts by weight.

【0014】本発明の蓄熱材組成物には、天然の高分子
である架橋CMCが菌等によって腐敗することを防止す
るために防腐剤を添加してもよい。防腐剤としては、蓄
熱材組成物の融点、蓄熱量に影響を及ぼさないものなら
何れも使用できるが、好ましくは安息香酸ナトリウム、
ブチルヒドロキシトルエンが用いられる。防腐剤の配合
量は硫酸ナトリウム十水塩及び融点調整剤の合計量10
0重量部に対して、通常0.001〜3重量部、好まし
くは0.01〜1重量部である。
A preservative may be added to the heat storage material composition of the present invention in order to prevent the crosslinked CMC which is a natural polymer from being spoiled by bacteria or the like. As the preservative, any one that does not affect the melting point of the heat storage material composition and the amount of heat storage can be used, but preferably sodium benzoate,
Butylhydroxytoluene is used. The amount of the preservative is 10 in total of sodium sulfate decahydrate and melting point modifier.
The amount is usually 0.001 to 3 parts by weight, preferably 0.01 to 1 part by weight with respect to 0 parts by weight.

【0015】本発明の蓄熱材組成物は、ΔTが0〜4℃
であることが好ましい。ΔTが4℃を超えると、融解温
度と凝固温度の差が大きくなりすぎ、実用的ではなくな
る。また、長期安定性能の指標である、凝固融解を50
0回繰り返した後の蓄熱量が30cal/ml以上であ
ることが好ましい。
The heat storage material composition of the present invention has a ΔT of 0 to 4 ° C.
It is preferred that If ΔT exceeds 4 ° C., the difference between the melting temperature and the solidification temperature becomes too large, which is not practical. In addition, solidification melting, which is an index of long-term stability performance, is reduced by 50%.
It is preferable that the heat storage amount after repeating 0 times is 30 cal / ml or more.

【0016】本発明の蓄熱材組成物において、架橋CM
Cを相分離防止剤として使用した場合、未架橋のCMC
を使用した場合に比べて長期安定性能を向上するのは、
定かではないが二つの理由が考えられる。第一は、CM
Cが架橋されていることにより硫酸ナトリウム十水塩の
結晶が成長できる領域が限定されていて、結晶がある大
きさ以上に成長しにくく、結晶の沈降がおこりにくい。
In the heat storage material composition of the present invention, the crosslinked CM
When C is used as a phase separation inhibitor, uncrosslinked CMC
The reason for improving long-term stability performance compared to when
I'm not sure, but there are two reasons. The first is CM
Since C is crosslinked, the region where crystals of sodium sulfate decahydrate can grow is limited, and the crystals hardly grow to a certain size or more, and the crystals do not easily settle.

【0017】もう一つの理由は、成長した硫酸ナトリウ
ム十水塩の結晶やその他の析出した不溶成分が、架橋さ
れていることにより形成される三次元編み目構造のため
物理的に沈降しにくくなっている。架橋した吸水性樹脂
が良好な長期安定性能を示すことは比較例2の架橋ポリ
アクリル酸ナトリウムの例からも明らかである。また、
一般的に吸水性樹脂として使用されている架橋ポリアク
リル酸ナトリウムを使用した場合に比べてΔTが小さく
なる理由は、架橋CMCの吸水倍率が小さいことや吸水
した水を保持する力が違うためではないかと考えられる
が定かではない。
Another reason is that grown sodium sulfate decahydrate crystals and other precipitated insoluble components are difficult to physically settle due to the three-dimensional knitted structure formed by crosslinking. I have. It is clear from the example of the crosslinked sodium polyacrylate of Comparative Example 2 that the crosslinked water-absorbent resin shows good long-term stability performance. Also,
The reason why ΔT is smaller than when cross-linked sodium polyacrylate generally used as a water-absorbing resin is used is that the cross-linked CMC has a small water absorption capacity and a different power for retaining the absorbed water. It is possible, but not certain.

【0018】[0018]

【実施例】以下、実施例及び比較例を挙げて本発明を更
に詳細に説明するが、本発明はその要旨を超えない限
り、これらの実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples as long as the gist of the present invention is not exceeded.

【0019】実施例1 表−1に示す割合で各成分を配合して、ミキサーで架橋
CMCが均一に分散するまで攪拌混合し、得られた試料
約180gを直径67mmのポリエチレン樹脂製球状カ
プセルに充填し、カプセルの中心温度の変化を測定する
ために熱電対を挿入した。次に、13℃の冷媒が満たさ
れている水槽内にカプセルを入れ、カプセル内が13℃
になったら、水槽内の冷媒を13〜4℃/hrの速度で
5℃まで冷却し、5℃で8時間保持した。カプセル内の
蓄熱材組成物の過冷却が破れ結晶化を開始したときの温
度(結晶化温度)と凝固温度とを測定した。次いで、冷
媒を5〜4℃/hrの速度で13℃まで加温し、13℃
で8時間保持した。融解開始温度と融解終了温度とを測
定した。このときの温度変化(凝固融解温度曲線)を図
1に示す。ΔTを次式に従って算出した。結果を表−2
に示す。
Example 1 The components were blended at the ratios shown in Table 1, and mixed by stirring with a mixer until the crosslinked CMC was uniformly dispersed. About 180 g of the obtained sample was placed in a polyethylene resin spherical capsule having a diameter of 67 mm. The thermocouple was inserted to fill and measure the change in the center temperature of the capsule. Next, the capsule was placed in a water tank filled with a refrigerant at 13 ° C.
Then, the refrigerant in the water tank was cooled to 5 ° C. at a rate of 13 to 4 ° C./hr and kept at 5 ° C. for 8 hours. The temperature (crystallization temperature) and the solidification temperature when the supercooling of the heat storage material composition in the capsule was broken and crystallization was started were measured. Next, the refrigerant is heated to 13 ° C at a rate of 5 to 4 ° C / hr,
For 8 hours. The melting start temperature and the melting end temperature were measured. FIG. 1 shows the temperature change (solidification and melting temperature curve) at this time. ΔT was calculated according to the following equation. Table 2 shows the results.
Shown in

【0020】[0020]

【数1】ΔT=(融解温度の最高値(℃))−(結晶化
温度(℃))
ΔT = (maximum melting temperature (° C.)) − (Crystallization temperature (° C.))

【0021】ΔTは実用性を示す指標として用いられ、
ΔTが小さいことは、凝固融解し易く、実用的であるこ
とを示す。次に、蓄熱材組成物の長期安定性能について
評価を行った。表−1に示す割合で各成分を配合して、
ミキサーで架橋CMCが均一に分散するまで攪拌混合し
て得られた試料を、示差走査熱量計(セイコー電子工業
社製DSC210)を用いて融解潜熱量を測定した。こ
の時の融解潜熱量を初期蓄熱量として表−2に示す。
ΔT is used as an index indicating practicality,
A small ΔT indicates that solidification and melting are easy and practical. Next, the long-term stability performance of the heat storage material composition was evaluated. Each component is blended at the ratio shown in Table 1,
The latent heat of fusion of the sample obtained by stirring and mixing with a mixer until the crosslinked CMC was uniformly dispersed was measured using a differential scanning calorimeter (DSC210 manufactured by Seiko Instruments Inc.). Table 2 shows the latent heat of fusion at this time as the initial heat storage.

【0022】次いで、実施例1の蓄熱材組成物約80g
を50mlの硬質ガラスねじ口瓶に充填し、このサンプ
ルを5本作製した。このサンプルを冷媒で満たされた水
槽に入れ、−5℃と25℃の間で冷媒の温度を急速に昇
降させ、凝固、融解を繰り返した。なお、一サイクルは
約3時間で行った。凝固、融解を100回、200回、
300回、400回及び500回繰り返したサンプルを
水槽から取り出し、示差走査熱量計で融解潜熱量を測定
した。結果を図4に示す。図4より、凝固融解を200
回繰り返した時点での融解潜熱量は約35cal/ml
であり、以後500回まで変化なく安定していることが
分かる。この結果より、長期間繰り返し使用しても30
cal/ml以上の融解潜熱量が利用できることが分か
る。
Next, about 80 g of the heat storage material composition of Example 1
Was filled into a 50-ml hard glass screw bottle, and five samples were prepared. This sample was placed in a water tank filled with a refrigerant, and the temperature of the refrigerant was rapidly raised and lowered between −5 ° C. and 25 ° C., and solidification and melting were repeated. One cycle was performed for about 3 hours. Coagulation, melting 100 times, 200 times,
Samples repeated 300 times, 400 times and 500 times were taken out of the water tank, and the latent heat of fusion was measured with a differential scanning calorimeter. FIG. 4 shows the results. As shown in FIG.
Latent heat of fusion at the time of repetition is about 35 cal / ml
It can be seen that it is stable without change up to 500 times thereafter. From this result, even if used repeatedly for a long time, 30
It can be seen that a latent heat of fusion of cal / ml or more can be used.

【0023】比較例1 表−1に示す割合で各成分を配合して、蓄熱材組成物を
得た。実施例1と同様に各種の測定を行った。測定結果
を表−2に示す。また、凝固融解温度曲線を図2に、長
期安定性能の結果を図4に示す。図4より、蓄熱量は1
00回凝固融解を繰り返した時点で25cal/mlま
で低下し、以後500回まで約20cal/mlで安定
していることが分かる。この結果から、相分離防止剤に
未架橋のカルボキシメチルセルロースを使用した場合、
長期間繰り返し使用した場合に利用できる融解潜熱量は
20cal/ml程度と非常に小さくなることが分か
る。500回経過時に実施例1は31.5cal/m
l、比較例1は20cal/mlであり、架橋CMCを
使用することによって蓄熱量が約1.5倍高められてい
ることが分かる。
Comparative Example 1 A heat storage material composition was obtained by blending the components at the ratios shown in Table 1. Various measurements were performed in the same manner as in Example 1. Table 2 shows the measurement results. FIG. 2 shows the solidification melting temperature curve, and FIG. 4 shows the results of long-term stability performance. According to FIG. 4, the heat storage amount is 1
It can be seen that when the coagulation and melting were repeated 00 times, the concentration decreased to 25 cal / ml, and was stable at about 20 cal / ml up to 500 times thereafter. From this result, when uncrosslinked carboxymethyl cellulose is used as the phase separation inhibitor,
It can be seen that the amount of latent heat of fusion that can be used when repeatedly used for a long period of time is as extremely small as about 20 cal / ml. Example 1 has 31.5 cal / m after 500 times.
l, Comparative Example 1 is 20 cal / ml, and it can be seen that the heat storage amount is increased about 1.5 times by using the cross-linked CMC.

【0024】比較例2 表−1に示す割合で各成分を配合して、蓄熱材組成物を
得た。実施例1と同様に各種の測定を行った。測定結果
を表−2に、凝固融解温度曲線を図3に、長期安定性能
の結果を図4に示す。図3より、比較例2は冷却開始か
ら試料の温度が冷媒の温度と等しくなるまで、9時間要
しており、実施例1の6時間と比較して3時間も凝固し
にくいことが分かる。また、融解温度も9.8〜11.
0℃と高く、実施例1に比べ約1℃ほど全体に高温側に
シフトしていることが分かる。また、比較例2のΔTは
4.8℃であり、実施例1よりも2.4℃も大きく、相
分離防止剤に架橋ポリアクリル酸ナトリウムを使用した
場合は凝固融解しにくく、これを蓄熱材組成物を蓄熱シ
ステムに用いた場合、凝固しにくいので蓄熱時間が非常
に長くなり、深夜電力の10時間以内での蓄熱が不可能
となり実用化が困難である。
Comparative Example 2 Each component was blended in the ratio shown in Table 1 to obtain a heat storage material composition. Various measurements were performed in the same manner as in Example 1. Table 2 shows the measurement results, FIG. 3 shows the solidification melting temperature curve, and FIG. 4 shows the results of long-term stability performance. From FIG. 3, it can be seen that Comparative Example 2 requires 9 hours from the start of cooling until the temperature of the sample becomes equal to the temperature of the refrigerant, and it is difficult to solidify for 3 hours as compared with 6 hours in Example 1. Also, the melting temperature is 9.8-11.
It can be seen that the temperature is as high as 0 ° C., and the temperature is shifted to the high temperature side by about 1 ° C. as compared with the first embodiment. Further, ΔT of Comparative Example 2 was 4.8 ° C., which was 2.4 ° C. larger than that of Example 1, and when cross-linked sodium polyacrylate was used as the phase separation preventing agent, it hardly solidified and melted. When the material composition is used in a heat storage system, it hardly solidifies, so that the heat storage time becomes very long, and it is impossible to store heat within 10 hours of midnight power, which makes practical use difficult.

【0025】実施例2〜5 表−1に示す割合で各成分を配合した外は実施例1と同
様にして蓄熱材組成物を得て、実施例1と同様に測定を
行った。測定結果を表−2に示す。
Examples 2 to 5 A heat storage material composition was obtained in the same manner as in Example 1 except that the components were blended in the proportions shown in Table 1, and the measurement was performed in the same manner as in Example 1. Table 2 shows the measurement results.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】実施例6、7 表−3に示す割合で各成分を配合した外は実施例1と同
様にして蓄熱材組成物を得て、実施例1と同様に測定を
行った。測定結果を表−4に示す。
Examples 6 and 7 A heat storage material composition was obtained in the same manner as in Example 1 except that the components were blended at the ratios shown in Table 3, and the measurement was performed in the same manner as in Example 1. Table 4 shows the measurement results.

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【発明の効果】本発明の蓄熱材組成物は、凝固温度と融
解温度の温度差が小さいため、相変化温度近傍で蓄熱シ
ステムの運転が可能となり、蓄熱システムのシステム効
率が向上する。また、冷房空調用蓄熱システムに9℃付
近に相変化温度を有する本発明の蓄熱材組成物を使用し
た場合、凝固し易いため、汎用の冷水冷凍機でシステム
設計が可能となり、コスト上大きなメリットがある。
According to the heat storage material composition of the present invention, since the temperature difference between the solidification temperature and the melting temperature is small, the heat storage system can be operated near the phase change temperature, and the system efficiency of the heat storage system is improved. In addition, when the heat storage material composition of the present invention having a phase change temperature around 9 ° C. is used for a heat storage system for cooling air conditioning, it is easy to solidify, so that the system can be designed with a general-purpose chilled water refrigerator, which is a great cost advantage. There is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の凝固融解温度曲線。FIG. 1 is a solidification melting temperature curve of Example 1.

【図2】比較例1の凝固融解温度曲線。FIG. 2 is a solidification melting temperature curve of Comparative Example 1.

【図3】比較例2の凝固融解温度曲線。FIG. 3 is a solidification melting temperature curve of Comparative Example 2.

【図4】実施例1、比較例1及び2の長期安定性能の評
価結果。
FIG. 4 shows evaluation results of long-term stability performance of Example 1, Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1 結晶化温度 2 凝固温度 3 融解開始温度 4 融解終了温度 ◆ 実施例1 ■ 比較例1 ● 比較例2 1 crystallization temperature 2 solidification temperature 3 melting start temperature 4 melting end temperature ◆ Example 1 ■ Comparative Example 1 ● Comparative Example 2

───────────────────────────────────────────────────── フロントページの続き (72)発明者 窪川 清一 東京都港区芝5丁目34番6号 三菱化学エ ンジニアリング株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Seiichi Kubokawa 5-34-6 Shiba, Minato-ku, Tokyo Mitsubishi Chemical Engineering Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (a)硫酸ナトリウム十水塩:60〜8
5重量部、及び(b)塩化アンモニウム、臭化アンモニ
ウム、硫酸アンモニウム、硝酸アンモニウム、塩化ナト
リウム、臭化ナトリウム、硫酸ナトリウム、硝酸ナトリ
ウム及び塩化カリウムから選ばれた少なくとも一種(但
し、(b)成分が硫酸ナトリウムであるときは、更に残
りの八成分の中の少なくとも一種を含む):15〜40
重量部、からなり、且つ融点5〜15℃の蓄熱成分10
0重量部に対して、架橋型カルボキシメチルセルロース
が0.1〜10重量部配合されてなることを特徴とする
蓄熱材組成物。
(A) sodium sulfate decahydrate: 60 to 8
5 parts by weight, and (b) at least one selected from the group consisting of ammonium chloride, ammonium bromide, ammonium sulfate, ammonium nitrate, sodium chloride, sodium bromide, sodium sulfate, sodium nitrate and potassium chloride (provided that the component (b) is sodium sulfate And further includes at least one of the remaining eight components): 15 to 40
Parts by weight and having a melting point of 5 to 15 ° C.
A heat storage material composition comprising 0.1 to 10 parts by weight of crosslinked carboxymethyl cellulose based on 0 part by weight.
【請求項2】 過冷却防止剤として、前記蓄熱成分10
0重量部に対して、四ホウ酸ナトリウム十水塩を0.1
〜10重量部含有することを特徴とする請求項1に記載
の蓄熱材組成物。
2. The heat storage component 10 as a supercooling inhibitor.
0.1 parts by weight of sodium tetraborate decahydrate
The heat storage material composition according to claim 1, which is contained in an amount of 10 to 10 parts by weight.
【請求項3】 防腐剤として、前記蓄熱成分100重量
部に対して、安息香酸ナトリウム及び/又はブチルヒド
ロキシトルエンを0.001〜3重量部含有することを
特徴とする請求項1に記載の蓄熱材組成物。
3. The heat storage according to claim 1, wherein the preservative contains 0.001 to 3 parts by weight of sodium benzoate and / or butylhydroxytoluene based on 100 parts by weight of the heat storage component. Material composition.
JP13870997A 1997-05-28 1997-05-28 Heat storage composition Pending JPH10330741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13870997A JPH10330741A (en) 1997-05-28 1997-05-28 Heat storage composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13870997A JPH10330741A (en) 1997-05-28 1997-05-28 Heat storage composition

Publications (1)

Publication Number Publication Date
JPH10330741A true JPH10330741A (en) 1998-12-15

Family

ID=15228301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13870997A Pending JPH10330741A (en) 1997-05-28 1997-05-28 Heat storage composition

Country Status (1)

Country Link
JP (1) JPH10330741A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097543A (en) * 2003-09-05 2005-04-14 Sk Kaken Co Ltd Heat-storage unit
WO2014092093A1 (en) 2012-12-11 2014-06-19 株式会社カネカ Heat storage material composition, heat storage material and transport container
JP2015140363A (en) * 2014-01-27 2015-08-03 大阪瓦斯株式会社 Heat storage material composition, heat storage body and heat storage device
JP2015151455A (en) * 2014-02-13 2015-08-24 東邦瓦斯株式会社 Latent-heat heat-storage material and latent-heat heat-storage tank
WO2017164304A1 (en) * 2016-03-23 2017-09-28 株式会社カネカ Heat storage material composition and use thereof
KR102114185B1 (en) * 2020-01-22 2020-05-25 주식회사 중부아이스팩 composition for preparing ice pack filler using natural polymer, and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097543A (en) * 2003-09-05 2005-04-14 Sk Kaken Co Ltd Heat-storage unit
JP4617106B2 (en) * 2003-09-05 2011-01-19 エスケー化研株式会社 Thermal storage
WO2014092093A1 (en) 2012-12-11 2014-06-19 株式会社カネカ Heat storage material composition, heat storage material and transport container
JP2015140363A (en) * 2014-01-27 2015-08-03 大阪瓦斯株式会社 Heat storage material composition, heat storage body and heat storage device
JP2015151455A (en) * 2014-02-13 2015-08-24 東邦瓦斯株式会社 Latent-heat heat-storage material and latent-heat heat-storage tank
WO2017164304A1 (en) * 2016-03-23 2017-09-28 株式会社カネカ Heat storage material composition and use thereof
US20190023958A1 (en) * 2016-03-23 2019-01-24 Kaneka Corporation Heat storage material composition and use thereof
US10442969B2 (en) 2016-03-23 2019-10-15 Kaneka Corporation Heat storage material composition and use thereof
CN108884380B (en) * 2016-03-23 2020-12-11 株式会社钟化 Heat storage material composition and application thereof
KR102114185B1 (en) * 2020-01-22 2020-05-25 주식회사 중부아이스팩 composition for preparing ice pack filler using natural polymer, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2004307772A (en) Eutectic crystal composition for latent cold heat storage
US20200239756A1 (en) Latent-heat storage material composition and latent-heat storage tank
JPH10330741A (en) Heat storage composition
EP0030599A1 (en) Hydrated magnesium nitrate/magnesium chloride reversible phase change compositions and their preparation
KR830001736B1 (en) Hydrated Calcium Chloride Reversible Phase Change Composition with Nucleation Additives
JP3442155B2 (en) Heat storage material composition
EP0659863B1 (en) Latent heat storage material composition
JP2006131856A (en) Latent heat cold storage material composition
JPH0885785A (en) Prevention of latent heat storage material composition from being overcooled and latent heat storage apparatus
US4338208A (en) Hydrated MgCl2 reversible phase change compositions
JPH1036823A (en) Heat storage material composition
JPH11349936A (en) Heat regenerating material
JP2001139939A (en) Heat-storing material composition
RU2790484C1 (en) Method for producing heat storage material based on calcium-potassium nitrate double salt trihydrate (versions)
TW200417361A (en) Cold reserving bag
JPH10279931A (en) Heat storage material composition
JPH0680958A (en) Heat storage composition
JP2001003039A (en) Latent heat-storing material composition
RU2763288C1 (en) Heat-accumulating composition based on eutectic mixture of crystal hydrates of calcium and cadmium nitrates
JPH1192756A (en) Cold storage material
JPH0680957A (en) Heat storage composition
JPS5852996A (en) Heat accumulating material
JP2001192650A (en) Cold storage material
JPH1180720A (en) Cold storage material
JPH0748564A (en) Heat storage material composition