JPH0748564A - Heat storage material composition - Google Patents

Heat storage material composition

Info

Publication number
JPH0748564A
JPH0748564A JP9543994A JP9543994A JPH0748564A JP H0748564 A JPH0748564 A JP H0748564A JP 9543994 A JP9543994 A JP 9543994A JP 9543994 A JP9543994 A JP 9543994A JP H0748564 A JPH0748564 A JP H0748564A
Authority
JP
Japan
Prior art keywords
heat storage
weight
storage material
material composition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9543994A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kakiuchi
博行 垣内
Masahiro Oka
正博 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Petrochemicals Engineering Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Petrochemicals Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Petrochemicals Engineering Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP9543994A priority Critical patent/JPH0748564A/en
Publication of JPH0748564A publication Critical patent/JPH0748564A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

PURPOSE:To provide the composition having a proper melting temperature and excellent in long-term capability of being recycled with a large amount of latent heat released or absorbed at the melting point. CONSTITUTION:The composition consists of 70-90wt.% sodium sulfate decahydrate, 3-17wt.% ammonium chloride, 1-13wt.% sodium chloride and 1-13wt.% ammonium sulfate and it also contains a supercooling inhibitor, such as borax or a silicate, and a phase separation inhibitor, such as carboxymethylcellulose.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷房用に適した蓄熱材
組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage material composition suitable for cooling.

【0002】[0002]

【従来の技術】冷房用蓄熱材としては5〜10℃の温度
範囲内に融解点を持つものが有用とされてきた。5〜1
0℃付近に融解点を持つ組成例として、従来有機化合物
では、パラフィン系のテトラデカン(特公昭53−24
182:C1430、融解点5℃)、やペンタデカン(C
1532、融解点9.9℃)などが、非パラフィン系で
は、ポリエチレングリコール#400(特開昭62−1
99680:4〜8℃)や1−デカノール(5℃)など
の物質が知られていたが、これらの物質は熱伝導率が低
く融解熱もそれほど大きくないことからあまり使用され
ていないのが現状である。
2. Description of the Related Art As a heat storage material for cooling, one having a melting point within a temperature range of 5 to 10 ° C. has been considered useful. 5-1
As a composition example having a melting point near 0 ° C., conventional organic compounds include paraffin-based tetradecane (Japanese Patent Publication No. 53-24).
182: C 14 H 30 , melting point 5 ° C., pentadecane (C
15 H 32 , melting point 9.9 ° C., etc., polyethylene glycol # 400 (JP-A-62-1)
99680: 4-8 ° C.) and 1-decanol (5 ° C.) were known, but these substances are not used so much because their thermal conductivity is low and their heat of fusion is not so large. Is.

【0003】無機化合物系では、融解熱の大きい無機水
和塩の組成物で5〜10℃付近に融解点を持つ組成例が
数例報告されている。例えばリン酸水素2ナトリウム1
2水和塩およびリン酸水素2カリウム6水和塩との2成
分系組成物(特公昭52−11061:融解点5℃)
は、過冷却防止が完全に解決されておらず実用化するに
は大きな問題を有している。また硫酸ナトリウム10水
和塩、塩化アンモニウムおよび臭化アンモニウムの3成
分系組成物(特公昭62−56912)は、融解点が
6.3〜10.1℃の範囲にあるが長期の熱サイクル安
定性に不安がある。
Regarding the inorganic compound system, several compositions of inorganic hydrates having a large heat of fusion and having a melting point in the vicinity of 5 to 10 ° C. have been reported. For example disodium hydrogen phosphate 1
Two-component composition with a dihydrate salt and dipotassium hydrogen phosphate hexahydrate (Japanese Patent Publication No. 52-11061: melting point 5 ° C.)
Has not completely solved the problem of supercooling and has a serious problem in practical use. A ternary composition of sodium sulfate decahydrate, ammonium chloride and ammonium bromide (Japanese Patent Publication No. 62-56912) has a melting point in the range of 6.3 to 10.1 ° C, but is stable for a long period of heat cycle. I am worried about my sex.

【0004】硫酸ナトリウム10水塩、塩化アンモニウ
ムおよび塩化ナトリウムの3成分系組成物[ MARIA TEL
KES,SOLAR ENERGY STORAGE,ASHRAE JOURNAL,SEPTEMBER,
1974]に説明されており、融解温度が12.8℃である
ことが知られている。また硫酸ナトリウム、水および塩
化アンモニウムの3成分系組成物(特開平2−9298
8)は、8.6〜9.6℃の範囲に融解点を持つが、凝
固温度が3.8〜4.6℃と低く、凝固させるための冷
水の温度が1〜2℃程度と低いため汎用冷凍機では使用
出来ない問題がある。
Three-component composition of sodium sulfate decahydrate, ammonium chloride and sodium chloride [MARIA TEL
KES, SOLAR ENERGY STORAGE, ASHRAE JOURNAL, SEPTEMBER,
1974] and the melting temperature is known to be 12.8 ° C. Also, a three-component composition of sodium sulfate, water and ammonium chloride (JP-A-2-9298)
8) has a melting point in the range of 8.6 to 9.6 ° C, but the freezing temperature is as low as 3.8 to 4.6 ° C, and the temperature of cold water for solidifying is as low as 1 to 2 ° C. Therefore, there is a problem that it cannot be used in a general-purpose refrigerator.

【0005】冷房用蓄熱材の融解温度は、これまで好ま
しくは5〜10℃、さらに好ましくは5〜8℃と考えら
れてきた。一方既設の空調設備の冷房不足に利用する場
合は既存の汎用冷凍機(合む吸収式冷凍機)を使用する
必要があり、得られる冷水の温度が約4〜5℃に制限さ
れる可能性が高い。そこで4〜5℃の冷水で凝固する蓄
熱材を考えると凝固点は7〜8℃となり、融解温度は極
力低い方が好ましいので、融解温度は10〜13℃の範
囲にあるが最適であると考えられる。
The melting temperature of the heat storage material for cooling has heretofore been considered to be preferably 5 to 10 ° C, more preferably 5 to 8 ° C. On the other hand, when it is used for insufficient cooling of the existing air conditioning equipment, it is necessary to use the existing general-purpose refrigerator (combined absorption refrigerator), and the temperature of the obtained cold water may be limited to about 4-5 ° C. Is high. Therefore, considering a heat storage material that solidifies with cold water at 4 to 5 ° C, the freezing point is 7 to 8 ° C, and it is preferable that the melting temperature be as low as possible. To be

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、
(1)4〜5℃の冷水で凝固可能であり、融解温度が1
0〜13℃の範囲にある、(2)融解点での潜熱量が大
きい、(3)長期の熱リサイクル安定性を有する、など
の条件を満たす冷房用に適した蓄熱材組成物の提供にあ
る。
SUMMARY OF THE INVENTION The object of the present invention is to
(1) Can be solidified with cold water at 4-5 ° C and has melting temperature of 1
To provide a heat storage material composition suitable for cooling, which satisfies conditions such as 0 to 13 ° C, (2) large latent heat amount at melting point, and (3) long-term heat recycling stability. is there.

【0007】[0007]

【課題を解決するための手段】本発明は、 「1. 硫酸ナトリウム10水和塩70〜90重量%、
塩化アンモニウム3〜17重量%、塩化ナトリウム1〜
13重量%および硫酸アンモニウム1〜13重量%より
なることを特徴とする蓄熱材組成物。 2. ホウ砂、ケイ酸塩および氷品石からなる群から選
ばれた少なくとも1種の過冷却防止剤0.1〜10重量
%,およびカルボキシルメチルセルロース、アタパルジ
ャイ粘土及び水不溶性樹脂からなる群から選ばれた少な
くとも1種の相分離防止剤0.1〜10重量%を配合し
た、1項に記載された蓄熱材組成物。 3. 硫酸ナトリウム10水和塩75〜85重量%、塩
化アンモニウム5〜12重量%、塩化ナトリウムム4〜
10重量%および硫酸アンモニウム4〜10重量%を含
有する、1項または2項に記載された蓄熱材組成物。 4. 前記蓄熱材組成物の融解点が10〜13℃の範囲
にある、1項ないし3項のいずれか1項に記載された蓄
熱材組成物。 5. 前記蓄熱材粗成物が30.1〜47.3cal/g の
融解潜熱量を有する、1項ないし4項のいずれか1項に
記載された蓄熱材組成物。 6. 前記過冷却防止剤がホウ砂である、1項ないし5
項のいずれか1項に記載された蓄熱材組成物。 7. 前記相分離防止剤が水不溶性吸水性樹脂である、
1項ないし6項のいずれか1項に記載された蓄熱材組成
物。」 に関する。
Means for Solving the Problems The present invention provides "1. 70 to 90% by weight of sodium sulfate decahydrate,
Ammonium chloride 3-17% by weight, sodium chloride 1-
A heat storage material composition comprising 13% by weight and 1 to 13% by weight of ammonium sulfate. 2. 0.1-10% by weight of at least one supercooling inhibitor selected from the group consisting of borax, silicates and cryolite, and selected from the group consisting of carboxymethyl cellulose, attapulghai clay and water-insoluble resin The heat storage material composition according to item 1, which contains 0.1 to 10% by weight of at least one phase separation inhibitor. 3. Sodium sulfate decahydrate 75-85% by weight, ammonium chloride 5-12% by weight, sodium chloride 4-
The heat storage material composition according to item 1 or 2, which contains 10% by weight and 4 to 10% by weight of ammonium sulfate. 4. The heat storage material composition according to any one of items 1 to 3, wherein the heat storage material composition has a melting point in the range of 10 to 13 ° C. 5. 5. The heat storage material composition according to any one of items 1 to 4, wherein the heat storage material crude product has a latent heat of fusion of 30.1 to 47.3 cal / g. 6. 1 to 5 wherein the supercooling inhibitor is borax
The heat storage material composition according to any one of items. 7. The phase separation inhibitor is a water-insoluble water-absorbent resin,
The heat storage material composition according to any one of items 1 to 6. Regarding

【0008】[0008]

【作用】本発明組成物の主成分は、硫酸ナトリウム10
水和塩であり、該塩は32.5℃の融点および約60ca
l/g の融解潜熱量を有する。本発明の組成物において
は、10〜13℃の融解温度を有する蓄熱材組成物を得
るために、融点調整剤として、塩化アンモニウム、塩化
ナトリウムおよび硫酸アンモニウムが配合される。本発
明の組成物中の硫酸ナトリウム水和塩の含有量は70〜
90重量%、好ましくは75〜85重量%である。該塩
の量が90重量%超過であると、前記融点調整剤の配合
量が少なくなるので、組成物の融解温度が10〜13℃
の範囲まで低下せず、該塩の量が70重量%未満である
と、組成物の融解潜熱量が小さくなるので好ましくな
い。
The main component of the composition of the present invention is sodium sulfate 10
A hydrated salt having a melting point of 32.5 ° C. and a ca.
It has a latent heat of fusion of l / g. In the composition of the present invention, in order to obtain a heat storage material composition having a melting temperature of 10 to 13 ° C, ammonium chloride, sodium chloride and ammonium sulfate are blended as a melting point adjusting agent. The content of sodium sulfate hydrate in the composition of the present invention is 70-
90% by weight, preferably 75-85% by weight. When the amount of the salt is more than 90% by weight, the amount of the melting point adjusting agent blended is small, so that the melting temperature of the composition is 10 to 13 ° C.
If the amount of the salt is less than 70% by weight, the latent heat of fusion of the composition becomes small, which is not preferable.

【0009】融点調整剤合計の含有量は10〜30重量
%、好ましくは15〜25重量%である。その効果が最
も大きい塩化アンモニウムは組成物全重量当たり、3〜
17重量%、好ましくは5〜12重量%である。塩化ア
ンモニウムの配合量がこの範囲外であると、融解温度が
10〜13℃とならない。塩化ナトリウムは、塩化アン
モニウムとの組み合わせにより、硫酸ナトリウム10水
和塩を主成分とする蓄熱材組成物の融解温度を13℃前
後まで低下することが出来る。該塩化ナトリウムの配合
量は1〜13重量%、好ましくは4〜10重量%であ
り、塩化アンモニウムの配合量と同じかそれ以下であ
る。
The total content of the melting point adjusting agents is 10 to 30% by weight, preferably 15 to 25% by weight. Ammonium chloride, which has the greatest effect, is 3 to 3 per total weight of the composition.
It is 17% by weight, preferably 5 to 12% by weight. If the compounding amount of ammonium chloride is outside this range, the melting temperature will not be 10 to 13 ° C. Sodium chloride, when combined with ammonium chloride, can lower the melting temperature of the heat storage material composition containing sodium sulfate decahydrate as a main component to around 13 ° C. The content of sodium chloride is 1 to 13% by weight, preferably 4 to 10% by weight, which is the same as or less than the content of ammonium chloride.

【0010】硫酸アンモニウムは融点調節剤としての効
果は塩化アンモニウムや塩化ナトリウムに比べて大きく
ない。しかしながら、硫酸アンモニウムを添加すると組
成物中にアンモニウムイオンと硫酸イオンが増加するた
めか、潜熱量が大きくなり、融解時の挙動変化も安定す
ることが判った。硫酸アンモニウムの配合量は、1〜1
3重量%、好ましくは4〜10重量%、更に好ましくは
塩化アンモニウムの配合量と同じかそれ以下が望まし
い。塩化ナトリウムおよび硫酸アンモニウムの添加量が
1重量%未満もしくは13重量%超過であると、融解温
度が10〜13℃とならない。
Ammonium sulfate is not so effective as a melting point regulator as compared with ammonium chloride and sodium chloride. However, it was found that the addition of ammonium sulfate increases the amount of latent heat, possibly because ammonium ions and sulfate ions increase in the composition, and the behavior change during melting is also stable. The compounding amount of ammonium sulfate is 1 to 1.
3% by weight, preferably 4 to 10% by weight, more preferably the same as or less than the amount of ammonium chloride compounded. If the addition amount of sodium chloride and ammonium sulfate is less than 1% by weight or more than 13% by weight, the melting temperature does not reach 10 to 13 ° C.

【0011】本発明の蓄熱材組成物は、硫酸ナトリウム
10水和塩、塩化アンモニウム、塩化ナトリウムおよび
硫酸ナトリウムから実質的になるものであるが、さらに
過冷却防止剤および相分離防止剤を含有することが出来
る。本発明において使用することの出来る過冷却防止剤
としては、ホウ砂、ケイ酸塩、氷晶石等をあげることが
出来、中でもホウ砂が好ましい。相分離防止剤の配合量
は、組成物重量当たり0.1〜10重量%、好ましくは
0.5〜5重量%である。
The heat storage material composition of the present invention consists essentially of sodium sulfate decahydrate, ammonium chloride, sodium chloride and sodium sulfate, and further contains a supercooling inhibitor and a phase separation inhibitor. You can Examples of the supercooling preventive agent that can be used in the present invention include borax, silicate, and cryolite, with borax being preferred. The compounding amount of the phase separation inhibitor is 0.1 to 10% by weight, preferably 0.5 to 5% by weight, based on the weight of the composition.

【0012】本発明において使用することの出来る相分
離防止剤としては、カルボキシメチルセルロース、アタ
パルジャイ粘土、水不溶性吸水性樹脂、アルギン酸ナト
リウム、ゼラチン、寒天、木質パルプ、シリカゲル、ケ
イ藻土等をあげることができ、中でもカルボキシメチル
セルロース、アタパルジャイ粘土、水不溶性吸水性樹
脂、例えば架橋ポリアクリル酸塩、酢酸ビニルーアクリ
ル酸共重合体の部分ケン化物、澱粉―アクリル酸のグラ
フト共重合体が好ましい。過冷却防止剤の配合量は、組
成物重量当たり0.1〜10重量%,好ましくは0.5
〜5重量%である。これらの相分離防止剤の使用によ
り、安定した長期リサイクル性能を有する蓄熱材組成物
を得ることが出来る。
Examples of the phase separation inhibitor which can be used in the present invention include carboxymethyl cellulose, attapulghai clay, water-insoluble water absorbent resin, sodium alginate, gelatin, agar, wood pulp, silica gel, diatomaceous earth and the like. Of these, carboxymethyl cellulose, attapulgai clay, water-insoluble water-absorbent resin such as cross-linked polyacrylic acid salt, partially saponified vinyl acetate-acrylic acid copolymer, and starch-acrylic acid graft copolymer are preferable. The compounding amount of the supercooling inhibitor is 0.1 to 10% by weight, preferably 0.5, based on the weight of the composition.
~ 5% by weight. By using these phase separation inhibitors, a heat storage material composition having stable long-term recycling performance can be obtained.

【0013】本発明は、硫酸ナトリウム水和塩と塩化ア
ンモニウム、塩化ナトリウム、硫酸アンモニウムを特定
の割合で包含するところに特徴があり、この構成の1種
を欠いてもまた特定の使用割合から外れても本発明の効
果は奏されない。
The present invention is characterized in that it includes sodium sulfate hydrate and ammonium chloride, sodium chloride, or ammonium sulfate in a specific ratio, and even if one of the constitutions is lacking, it is out of the specific use ratio. However, the effect of the present invention is not exhibited.

【0014】[0014]

【実施例】【Example】

実施例1〜13 蓄熱材組成物の調製法およびその熱評価 硫酸ナトリウム10水和塩、塩化アンモニウム、塩化ナ
トリウムおよび硫酸アンモニウムを表1に示す割合で混
合し、次いでこれに過冷却防止剤としてホウ砂を硫酸ナ
トリウム系水和物100重量部に対して1.5重量部お
よび相分離防止剤に水不溶性吸水性樹脂(サンウエット
IM-1000 三洋化成株式会社製)を硫酸ナトリウム系水
和物100重量部に対して1.5重量部添加してミキサ
ーで撹拌し、組成物を調製した。この時、組成物を十分
に均質になるまで撹拌することが非常に重要であり、撹
拌が不十分であると設計通りの熱量が得られないので注
意が必要である。得られた組成物を、DSCにて―10
℃〜40℃の温度範囲で潜熱量を測定した。また、該組
成物の試料40ccを85ccの遠心沈殿管に入れ、中央部
に熱電対を挿入してゴム栓で密封し、水槽に入れ、5℃
と15℃の間で凝固・融解リサイクルを行い温度変化の
パターンを測定した。また凝固時の過冷却温度、凝固温
度及び平均融解温度を測定した。過冷却温度は過冷却状
態が破れた時の温度を表す。また、過冷却が破れて蓄熟
材が凝固するにしたがい潜熱を放出するため温度が上昇
する。この時、最高到達温度を凝固温度とする。平均融
解温度は融解開始から終了までの平均温度を表す。測定
結果は表1に示す。
Examples 1 to 13 Preparation method of heat storage material composition and its thermal evaluation Sodium sulfate decahydrate, ammonium chloride, sodium chloride and ammonium sulfate were mixed in the proportions shown in Table 1, and then borax was used as a supercooling inhibitor. 1.5 parts by weight with respect to 100 parts by weight of sodium sulfate-based hydrate, and a water-insoluble water-absorbent resin as a phase separation inhibitor (Sunwet
IM-1000 (manufactured by Sanyo Kasei Co., Ltd.) was added to 1.5 parts by weight of 100 parts by weight of sodium sulfate-based hydrate and stirred with a mixer to prepare a composition. At this time, it is very important to stir the composition until it is sufficiently homogeneous, and if the stirring is not sufficient, the amount of heat as designed cannot be obtained, and therefore care must be taken. The obtained composition was analyzed by DSC-10.
The amount of latent heat was measured in the temperature range of 40 ° C to 40 ° C. A 40 cc sample of the composition was placed in a 85 cc centrifuge settling tube, a thermocouple was inserted in the central part, sealed with a rubber stopper, and placed in a water tank at 5 ° C.
The temperature change pattern was measured by performing coagulation / melting recycling between and 15 ° C. In addition, the supercooling temperature during solidification, the solidification temperature and the average melting temperature were measured. The supercooling temperature represents the temperature when the supercooled state is broken. Further, as the supercooling breaks and the aged material solidifies, latent heat is released, so that the temperature rises. At this time, the highest temperature reached is the solidification temperature. The average melting temperature represents the average temperature from the start of melting to the end. The measurement results are shown in Table 1.

【0015】比較例1〜3を上記実施例と同様にして組
成物を調製し、それらの熱評価を行った。その結果を表
1に示す。
Compositions were prepared in the same manner as in the above-mentioned Examples in Comparative Examples 1 to 3, and their thermal evaluations were performed. The results are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】以上の結果から、硫酸ナトリウム10水塩
―塩化アンモニウム―塩化ナトリウムー硫酸アンモニウ
ムの組成割合が特許請求の範囲第1項に記載された範囲
にある実施例1〜13の組成物はいずれも平均融解温度
が目的温度である10〜13℃の範囲にある。実施例4
の組成物の12.4℃以外はいずれも11.8℃以下と
目的温度範囲のなかでもより低温よりの組成物であり、
システムにおいて熱の取り出し温度が低い冷房用に適し
た蓄熱材組成物であることが判る。実施例4の組成物は
融点が12.4℃と若干高めであるが、蓄熱量は35.
9cal/g と非常に大きい優れた蓄熱材組成物であること
が判る。実施例の中で、蓄熱量が最も低いもので30.
1cal/g であり、容積当たり45.2cal/cm2 (これら
の組成物の比重1.50)と氷の蓄熱量に対して約半分
の熱量を蓄熱可能な優れた蓄熱材であることが判る。
From the above results, all the compositions of Examples 1 to 13 in which the composition ratio of sodium sulfate decahydrate-ammonium chloride-sodium chloride-ammonium sulfate is within the range described in claim 1 are average. The melting temperature is within the target temperature range of 10 to 13 ° C. Example 4
All of the compositions other than 12.4 ° C. are 11.8 ° C. or less and are compositions at lower temperatures within the target temperature range,
It can be seen that the heat storage material composition is suitable for cooling, which has a low heat extraction temperature in the system. The composition of Example 4 has a slightly higher melting point of 12.4 ° C., but has a heat storage amount of 35.
It can be seen that it is an excellent heat storage material composition having a very large value of 9 cal / g. Among the examples, the one having the lowest heat storage amount is 30.
It is 1 cal / g, which is 45.2 cal / cm 2 per volume (specific gravity of these compositions is 1.50) and it is an excellent heat storage material that can store about half the amount of heat of ice. .

【0018】比較例1及び2は前出公知技術に基く組成
物で、硫酸ナトリウム10水塩―塩化アンモニウム―塩
化ナトリウムの3成分系である。比較例1の組成物は平
均融解温度が12.6℃と目的温度範囲であるが、実施
例の組成物のいずれの平均融解温度より高い。また、蓄
熱量も21.5cal/g と小さく、実施例の組成物のいず
れよりも小さい。実施例3の組成物と比較例1の組成物
は蓄熱量の差が比較的小さいが、その平均融解温度を比
較すると実施例3の組成物は11.3℃、比較例1の組
成物は12.6℃と比較例1の組成物が約1.3℃高い
ことが判る。これから、実施例3の組成物は比較例1の
組成物に比べて低温で利用できる有効な熱量を大きく有
していることが判る。比較例2の組成物は平均融解温度
が13.1℃と高く、目的温度範囲から外れている。冷
房に使用する場合、平均融解温度は極力10℃付近に近
いことが望ましく、13.1℃ではたとえ23.9cal/
g の蓄熱量を有していても、冷房に使用できる有効な熱
量は非常に小さいと考えられる。また、蓄熱材組成物を
蓄熱システムで運用する場合、平均融解温度と凝固温度
の差が小さいことが望ましい。つまり、同じ温度で融解
する場合、凝固温度が高い方が凝固しやすく、効率的に
蓄熱することが出来る。平均融解温度と凝固温度の差
は、実施例1〜12の組成物はおよそ5℃以下、実施例
13の組成物で5.7℃である。これに比べて比較例
1、2の組成物はそれぞれ7.0℃、6.9℃と約7℃
であり、実施例との差が約2℃あり、実施例の組成物は
効率的に蓄熱できることが判る。比較例3の組成物は硫
酸アンモニウムの配合量が1〜13重量%の範囲を外れ
た組成物である。DSCで測定した結果、15℃と20
℃に融解ピークを有する2成分の混合物となっているた
め、明確な融解温度を持たない組成物であり、かつ融解
温度が目的温度より高く外れているため冷房用途には使
用することが出来ない。
Comparative Examples 1 and 2 are compositions based on the above-mentioned publicly known technology, and are a three-component system of sodium sulfate decahydrate-ammonium chloride-sodium chloride. The composition of Comparative Example 1 has an average melting temperature of 12.6 ° C., which is within the target temperature range, but higher than any of the average melting temperatures of the compositions of Examples. In addition, the heat storage amount is as small as 21.5 cal / g, which is smaller than any of the compositions of Examples. Although the difference in heat storage amount between the composition of Example 3 and the composition of Comparative Example 1 is relatively small, the compositions of Example 3 are 11.3 ° C., and the compositions of Comparative Example 1 are It can be seen that the composition of Comparative Example 1 is higher than that of 12.6 ° C by about 1.3 ° C. From this, it can be seen that the composition of Example 3 has a larger effective amount of heat that can be utilized at a lower temperature than the composition of Comparative Example 1. The composition of Comparative Example 2 has a high average melting temperature of 13.1 ° C., which is outside the target temperature range. When used for cooling, it is desirable that the average melting temperature be as close to 10 ° C as possible. At 13.1 ° C, even if the average melting temperature is 23.9cal /
Even if it has a heat storage amount of g, it is considered that the effective heat amount that can be used for cooling is very small. Further, when the heat storage material composition is operated in the heat storage system, it is desirable that the difference between the average melting temperature and the solidification temperature is small. That is, when melting at the same temperature, the higher the solidification temperature is, the easier the solidification is, and the heat can be efficiently stored. The difference between the average melting temperature and the solidification temperature is about 5 ° C. or lower for the compositions of Examples 1 to 12 and 5.7 ° C. for the composition of Example 13. In comparison, the compositions of Comparative Examples 1 and 2 were 7.0 ° C, 6.9 ° C and about 7 ° C, respectively.
The difference from the example is about 2 ° C., indicating that the composition of the example can efficiently store heat. The composition of Comparative Example 3 is a composition in which the compounding amount of ammonium sulfate is out of the range of 1 to 13% by weight. As a result of measuring with DSC, 15 ° C and 20
Since it is a mixture of two components that have a melting peak at ℃, it is a composition that does not have a clear melting temperature, and the melting temperature is higher than the target temperature, so it cannot be used for cooling applications. .

【0019】実施例3と比較例1の試料を実際の使用状
況を再現するため、樹脂製のボール(直径77mm)にそ
れぞれ260g充填し、ボールの中心温度の変化を熱電
対で測定し記録した。このとき水槽の温度を4℃と15
℃の間でコントロールして凝固融解させ、100回繰り
返した後の凝固融解パターンを図1に示す。
In order to reproduce the actual use condition, 260 g of each of the samples of Example 3 and Comparative Example 1 was filled, and the change in the center temperature of the ball was measured by a thermocouple and recorded. . At this time, set the temperature of the water tank to 4 ° C and 15
The coagulation-melting pattern after the coagulation-melting is controlled by controlling the temperature between 0 ° C. and 100 times is repeated, is shown in FIG.

【0020】図1において、0時間から6時間の間が蓄
熱材の凝固過程である。水温が1時間で4℃迄下がり、
この後4℃を5時間保持した。実施例3及び比較例1と
もに開始から1時間までは状態変化せず温度が低下して
いる。1時間経過した時点で準安定な過冷却状態が破
れ、結晶化しはじめた。この時、凝固潜熱を放出するた
めに、実施例3および比較例1ともに物温が上昇し結品
化が進行している。凝固潜熱を放出して結晶化が終了し
た後、実施例3で約5時間、比較例1で約4時間半経過
して、水槽の温度と等しくなった。図1において、6時
間から11時間が蓄熱材の融解過程である。6時間目か
ら7時間目にかけて、1時間で15℃まで水温が上昇
し、その後15℃を4時間保持した。実施例3は、開始
から1時間は状態変化なしに温度が上昇し、7時間目か
ら融解が始まり、9時間半の時点まで融解が継続した。
融解が終了し、水槽の温度と等しくなった。この時、実
施例3は10.4℃〜12.2℃で融解し、融解曲線も
融点付近で時間軸に対して平行に長く延びていて(7時
間目から9時間半目まで)、蓄熱された熱量を融解潜熱
として、大きく、安定して放出していることが判る。1
00回凝固融解後の試料の蓄熱量をDSCを用いて測定
したところ、30.1cal/g から26.5cal/g まで低
下していたが、依然大きな蓄熱量を有している。実施例
3の蓄熱量低下は、初期値に対して12%減であった。
比較例1は、実施例3と同様に開始から1時間目までは
状態変化なしに温度が上昇し、7時間目付近から曲線が
時間軸と平行になるように傾き始めた。しかしながら、
実施例3のように時間軸に平行になるようなことはな
く、9時間目まで直線的に温度が上昇し、その後に水槽
の温度と等しくなった。比較例1は実施例3に比べて、
融解曲線が時間軸に対して平行になることなく、つまり
明確な融解点を持たない組成物であることが判る。明確
な融解点を持たない蓄熱材は、たとえ熱量を保有してい
ても、システムにおいて安定して熱を取り出しにくく、
システム制御が煩雑な使用しにくいものである。比較例
1は、100回凝固融解後、21.5cal/gから17.
6cal/gまで低下し、減少率は18%であった。実施例
3は組成物中に硫酸アンモニウムを含有しているため
か、100回の凝固融解後も融解温度が安定していて、
長期の使用にも安定した組成物であることが判る。ま
た、蓄熱量の減少率も比較例1の18%に比べて12%
と小さく、熱量的にも安定な組成であることが判る。
In FIG. 1, 0 to 6 hours is the solidification process of the heat storage material. The water temperature drops to 4 ℃ in 1 hour,
Thereafter, the temperature was kept at 4 ° C. for 5 hours. In both Example 3 and Comparative Example 1, the state did not change and the temperature dropped for 1 hour from the start. After 1 hour, the metastable supercooled state was broken and crystallization started. At this time, in order to release the latent heat of solidification, in both Example 3 and Comparative Example 1, the material temperature was raised and the product was made into a product. After the latent heat of solidification was released and the crystallization was completed, about 5 hours in Example 3 and about 4 and a half hours in Comparative Example 1, the temperature of the water tank became equal. In FIG. 1, 6 to 11 hours are the melting process of the heat storage material. From the 6th hour to the 7th hour, the water temperature increased to 15 ° C in 1 hour, and then 15 ° C was maintained for 4 hours. In Example 3, the temperature increased without changing the state for 1 hour from the start, the melting started from the 7th hour, and the melting continued until the point of 9 hours and a half.
The melting was complete and the temperature of the water bath was equalized. At this time, Example 3 melts at 10.4 ° C to 12.2 ° C, the melting curve also extends long parallel to the time axis near the melting point (from the 7th hour to the 9th and a half hours), and the heat is accumulated. It can be seen that a large amount of heat is released as the latent heat of fusion and is stably released. 1
When the heat storage amount of the sample after 00 times solidification and melting was measured using DSC, it was reduced from 30.1 cal / g to 26.5 cal / g, but it still has a large heat storage amount. The reduction of the heat storage amount in Example 3 was 12% less than the initial value.
In Comparative Example 1, as in Example 3, the temperature increased without changing the state from the start to the first hour, and the curve started to be inclined in the vicinity of the seventh hour so that the curve became parallel to the time axis. However,
The temperature did not become parallel to the time axis as in Example 3, but the temperature increased linearly until the 9th hour, and thereafter became equal to the temperature of the water tank. Comparative Example 1 is different from Example 3 in that
It can be seen that the composition does not have a melting curve parallel to the time axis, that is, it has no clear melting point. A heat storage material that does not have a clear melting point makes it difficult to extract heat stably in the system, even if it has a certain amount of heat.
System control is complicated and difficult to use. In Comparative Example 1, after coagulation and melting 100 times, 21.5 cal / g to 17.
It decreased to 6 cal / g, and the reduction rate was 18%. Probably because Example 3 contained ammonium sulfate in the composition, the melting temperature was stable even after 100 times of solidification and melting,
It can be seen that the composition is stable even for long-term use. In addition, the reduction rate of the heat storage amount is 12% compared to 18% of Comparative Example 1.
It can be seen that the composition is small and calorifically stable.

【0021】[0021]

【発明の効果】本発明は硫酸ナトリウム10水和塩と融
点調整剤を特別の組成に配合したことにより、4〜5℃
の冷水で凝固させることが出来、融解温度は10〜13
℃であり、融解温度での融解潜熱が大きく、長期の熱リ
サイクル安定性を有する優れた効果を奏する。
According to the present invention, by mixing sodium sulfate decahydrate and a melting point adjusting agent in a special composition, 4-5 ° C.
It can be solidified with cold water and has a melting temperature of 10-13
It has a large latent heat of fusion at the melting temperature and has an excellent effect of long-term heat recycling stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の凝固融解のパターンを示すグラフであ
る。
FIG. 1 is a graph showing a solidification / melting pattern of the present invention.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 硫酸ナトリウム10水和塩70〜90重
量%、塩化アンモニウム3〜17重量%、塩化ナトリウ
ム1〜13重量%および硫酸アンモニウム1〜13重量
%よりなることを特徴とする蓄熱材粗成物。
1. A heat storage material roughening composition comprising 70 to 90% by weight of sodium sulfate decahydrate, 3 to 17% by weight of ammonium chloride, 1 to 13% by weight of sodium chloride and 1 to 13% by weight of ammonium sulfate. object.
【請求項2】 ホウ砂、ケイ酸塩および氷晶石からなる
群から選ばれた少なくとも1種の過冷却防止剤0.1〜
10重量%,およびカルボキシルメチルセルロース、ア
タパルジャイ粘土及び水不溶性樹脂からなる群から選ば
れた少なくとも1種の相分離防止剤0.1〜10重量%
を配合した、請求項1に記載された蓄熱材組成物。
2. At least one supercooling inhibitor selected from the group consisting of borax, silicate and cryolite.
10% by weight and 0.1-10% by weight of at least one phase separation inhibitor selected from the group consisting of carboxymethyl cellulose, attapulghai clay and water-insoluble resin
The heat storage material composition according to claim 1, which comprises:
【請求項3】 硫酸ナトリウム10水和塩75〜85重
量%、塩化アンモニウム5〜12重量%、塩化ナトリウ
ムム4〜10董量%および硫酸アンモニウム4〜10重
量%を含有する、請求項1または2に記載された蓄熱材
組成物。
3. A sodium sulphate decahydrate of 75 to 85% by weight, ammonium chloride of 5 to 12% by weight, sodium chloride of 4 to 10% by weight and ammonium sulfate of 4 to 10% by weight. The heat storage material composition described in 1.
【請求項4】 前記蓄熱材組成物の融解点が10〜13
℃の範囲にある、請求項1ないし3のいずれか1項に記
載された蓄熱材組成物。
4. The melting point of the heat storage material composition is 10 to 13.
The heat storage material composition according to any one of claims 1 to 3, which is in the range of ° C.
【請求項5】 前記蓄熱材組成物が30.1〜47.3
cal/g の融解潜熱量を有する、請求項1ないし4のいず
れか1項に記載された蓄熱材組成物。
5. The heat storage material composition is 30.1-47.3.
The heat storage material composition according to any one of claims 1 to 4, which has a latent heat of fusion of cal / g.
【請求項6】 前記過冷却防止剤がホウ砂である、請求
項1ないし5のいずれか1項に記載された蓄熱材組成
物。
6. The heat storage material composition according to claim 1, wherein the supercooling inhibitor is borax.
【請求項7】 前記相分離防止剤が水不溶性吸水性樹脂
である、請求項1ないし6のいずれか1項に記載された
蓄熱材組成物。
7. The heat storage material composition according to claim 1, wherein the phase separation inhibitor is a water-insoluble water absorbent resin.
JP9543994A 1993-04-12 1994-04-11 Heat storage material composition Pending JPH0748564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9543994A JPH0748564A (en) 1993-04-12 1994-04-11 Heat storage material composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-118908 1993-04-12
JP11890893 1993-04-12
JP9543994A JPH0748564A (en) 1993-04-12 1994-04-11 Heat storage material composition

Publications (1)

Publication Number Publication Date
JPH0748564A true JPH0748564A (en) 1995-02-21

Family

ID=26436666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9543994A Pending JPH0748564A (en) 1993-04-12 1994-04-11 Heat storage material composition

Country Status (1)

Country Link
JP (1) JPH0748564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10442969B2 (en) 2016-03-23 2019-10-15 Kaneka Corporation Heat storage material composition and use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10442969B2 (en) 2016-03-23 2019-10-15 Kaneka Corporation Heat storage material composition and use thereof

Similar Documents

Publication Publication Date Title
US5282994A (en) Dry powder mixes comprising phase change materials
US4292189A (en) Thermal energy storage composition comprising sodium sulfate decahydrate; sodium carbonate decahydrate; and sodium tetraborate decahydrate
JP2004307772A (en) Eutectic crystal composition for latent cold heat storage
EP0030599B1 (en) Hydrated magnesium nitrate/magnesium chloride reversible phase change compositions and their preparation
JPH07188648A (en) Heat storage composition
US4272391A (en) Hydrated Mg(NO3)2 reversible phase change compositions
JP3442155B2 (en) Heat storage material composition
JPS6317313B2 (en)
EP0620261B1 (en) Latent heat storage material composition
JPH0748564A (en) Heat storage material composition
EP0146304B1 (en) Heat storage material
US4406805A (en) Hydrated MgCl2 reversible phase change compositions
US4271029A (en) Hydrated Mg(NO3)2 reversible phase change compositions
JPH10330741A (en) Heat storage composition
JPH0680958A (en) Heat storage composition
EP0054758A1 (en) Hydrated MgCl2 or Mg(NO3)2/MgCl2 reversible phase change compositions
JPS60203689A (en) Thermal energy storage material
JPS58185680A (en) Heat storage material
JPH1192756A (en) Cold storage material
Kakiuchi et al. Latent heat storage material containing Na 2 SO 4. 10H 2 O, NH 4 Cl, NaCl and (NH 4) 2 SO 4
JP2001152141A (en) Heat accumulator composition
JPH11209748A (en) Cryogenic energy-storing material
JPS6022031B2 (en) Heat storage agent composition
CA2306247A1 (en) Freezable coolant composition
JPH1135930A (en) Cold storage material utilizing latent heat