JPH10329225A - Long fiber-reinforced thermoplastic resin composite material and its manufacture - Google Patents

Long fiber-reinforced thermoplastic resin composite material and its manufacture

Info

Publication number
JPH10329225A
JPH10329225A JP10078469A JP7846998A JPH10329225A JP H10329225 A JPH10329225 A JP H10329225A JP 10078469 A JP10078469 A JP 10078469A JP 7846998 A JP7846998 A JP 7846998A JP H10329225 A JPH10329225 A JP H10329225A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
diameter
fiber
impregnated
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10078469A
Other languages
Japanese (ja)
Other versions
JP4096396B2 (en
Inventor
Masanori Ishikawa
真範 石川
Koichi Saito
晃一 斉藤
Takashi Niifuku
隆志 新福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP07846998A priority Critical patent/JP4096396B2/en
Publication of JPH10329225A publication Critical patent/JPH10329225A/en
Application granted granted Critical
Publication of JP4096396B2 publication Critical patent/JP4096396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite material having highly strengthened mechanical strength and excellent shape accuracy. SOLUTION: In the thermoplastic resin composite material having reinforcing fiber 1 reinforces in a lengthwise direction, content of the fiber is set to 10 to 80 wt.%, mean diameter of a section at the time of cutting perpendicularly to the lengthwise direction is 3 mm or more, and mean deviation of the diameter is regulated to 0.10 or less. And, the fiber 1 is introduced into an opening and impregnating tank 2, impregnated with melted thermoplastic resin, then reinforcing fiber impregnated with the thermoplastic resin obtained by drawing it from a die 4 of an outlet of the tank 2 is passed through at least two or more shaping cooling slits 6 to 9 in its temperature range while cooling so that its surface temperature falls within a crystallizing temperature range of the thermoplastic resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強化用繊維で長手
方向が強化され、しかも形状精度が著しく改善された長
繊維強化熱可塑性樹脂複合体およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a long fiber reinforced thermoplastic resin composite which is reinforced in the longitudinal direction with reinforcing fibers and has a significantly improved shape accuracy, and a method for producing the same.

【0002】[0002]

【背景技術】一般に、樹脂の持つ剛性、強度および耐曲
げ破壊性を向上させるため、熱硬化性樹脂に強化用繊維
等の補強材を配合する方法が用いられている。最近で
は、熱硬化性樹脂に代えて熱可塑性樹脂を用いる方法も
採用されて、多様性に富んだ繊維強化樹脂複合体が得ら
れるようになった。中でも、連続した強化用繊維で長手
方向を強化された長繊維強化熱可塑性樹脂複合体(以
下、複合体と言う)は、優れた剛性と耐破壊強度を有す
る。しかし、複合体は成形が難しいため、形状精度の良
い高品質の複合体を安定生産することが困難であった。
従って、実用的な製品とするためには、得られた複合体
を切断してペレット状にした後、射出成形等を行って製
品とする方法を用いなければならず、連続した強化用繊
維本来の持ち味を生かしきれていないのが現状であっ
た。このようなことから、連続した長い形状で、しかも
実用的な範囲で使用できる程の形状精度を有する複合体
が望まれていた。
2. Description of the Related Art In general, a method of blending a thermosetting resin with a reinforcing material such as a reinforcing fiber has been used in order to improve the rigidity, strength and bending resistance of the resin. Recently, a method of using a thermoplastic resin instead of a thermosetting resin has been adopted, and a fiber-reinforced resin composite with a great variety has been obtained. Above all, a long fiber reinforced thermoplastic resin composite (hereinafter, referred to as a composite) reinforced in the longitudinal direction with continuous reinforcing fibers has excellent rigidity and fracture resistance. However, since the composite is difficult to mold, it has been difficult to stably produce a high-quality composite having good shape accuracy.
Therefore, in order to obtain a practical product, the obtained composite must be cut into pellets and then subjected to injection molding or the like to obtain a product. At present, it has not been able to take full advantage of the specialty of the company. For these reasons, there has been a demand for a composite having a continuous long shape and a shape accuracy that can be used within a practical range.

【0003】この様な複合体およびその製造方法を開示
するものとしては、例えば特公昭63−37694号公
報があるが、実用的な範囲で使用できる程の形状精度を
有する複合体は得られていなかった。
[0003] Such a composite and a method for producing the same are disclosed, for example, in JP-B-63-37694. However, a composite having a shape accuracy that can be used within a practical range has been obtained. Did not.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、高度
に機械的強度が強化され、形状精度に優れる複合体およ
びその製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a composite having a high mechanical strength and excellent shape accuracy, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明の複合体は、強化
用繊維で長手方向が強化された熱可塑性樹脂複合体にお
いて、強化用繊維の含有率を10〜80重量%、長手方
向に直角に切断した時の断面の平均直径を3mm以上、そ
の直径の平均偏差を0.10以下に調節することによっ
て得ることができる。また、本発明の製造方法は、強化
用繊維を開繊含浸槽内に導入し、溶融した熱可塑性樹脂
を含浸させたのち、開繊含浸槽の出口部であるダイスか
ら引く抜いて得た熱可塑性樹脂が含浸された強化用繊維
(以下、含浸繊維という)を、その表面温度が該熱可塑
性樹脂の結晶化温度範囲内になるように冷却しながら、
その温度範囲内で少なくとも2つ以上の賦形冷却スリッ
トを通過させることにより実施することができる。
The composite of the present invention is a thermoplastic resin composite reinforced in the longitudinal direction with reinforcing fibers, wherein the content of the reinforcing fibers is from 10 to 80% by weight, It can be obtained by adjusting the average diameter of the cross section when cut to 3 mm or more and adjusting the average deviation of the diameter to 0.10 or less. Further, in the production method of the present invention, the reinforcing fiber is introduced into the opening and impregnating tank, the molten thermoplastic resin is impregnated therein, and then the heat is obtained by pulling out from the die at the outlet of the opening and impregnating tank. While cooling the reinforcing fibers impregnated with the thermoplastic resin (hereinafter, referred to as impregnated fibers) so that the surface temperature is within the crystallization temperature range of the thermoplastic resin,
It can be performed by passing at least two or more shaped cooling slits within the temperature range.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の複合体は、強化用繊維が10〜80重量%の範
囲で含有される。強化用繊維の含有率が10重量%未満
では、熱可塑性樹脂部が多くなり過ぎ、形状のコントロ
ールが困難となり、表面が平滑で商品価値の高い製品が
得られなくなる。一方、強化用繊維の含有率が80重量
%を越えると、含浸繊維がダイス出口で毛羽を発生しや
すくなり、形状不安定となるため、外観が悪化するばか
りでなく連続的に安定生産できなくなる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The composite of the present invention contains reinforcing fibers in a range of 10 to 80% by weight. If the content of the reinforcing fiber is less than 10% by weight, the thermoplastic resin portion becomes too large, the control of the shape becomes difficult, and a product having a smooth surface and high commercial value cannot be obtained. On the other hand, when the content of the reinforcing fiber exceeds 80% by weight, the impregnated fiber tends to generate fluff at the exit of the die, and becomes unstable in shape. .

【0007】本発明の複合体は、長手方向に対して直角
に切断した時の断面の平均直径が3mm以上の範囲のもの
である。断面の平均直径が3mm未満であると、含浸繊維
を賦形しても形状精度が向上せず、商品価値が低い製品
しか得られなくなる。
[0007] The composite of the present invention has an average cross-sectional diameter of 3 mm or more when cut at right angles to the longitudinal direction. If the average diameter of the cross section is less than 3 mm, the shape accuracy is not improved even if the impregnated fiber is shaped, and only products with low commercial value can be obtained.

【0008】本発明の複合体は、長手方向に対して直角
に切断した時の断面直径の平均偏差が0.10以下の範
囲のものである。平均偏差が0.10を越えると、得ら
れる複合体は形状精度に乏しい。0.05以下が好まし
く、0.02以下が特に好ましく。
[0008] The composite of the present invention has an average deviation of the cross-sectional diameter when cut at a right angle to the longitudinal direction within a range of 0.10 or less. When the average deviation exceeds 0.10, the resulting composite has poor shape accuracy. It is preferably at most 0.05, particularly preferably at most 0.02.

【0009】また、本発明の製造方法は、開繊含浸槽か
ら引き抜かれた含浸繊維の表面温度が、該熱可塑性樹脂
の結晶化温度範囲内になるように冷却しながら、その温
度範囲内で少なくとも2つ以上の賦形冷却スリットを通
過させる方法である。
[0009] In the production method of the present invention, the temperature of the impregnated fiber pulled out from the opening and impregnating tank is controlled so that the surface temperature falls within the crystallization temperature range of the thermoplastic resin. This is a method of passing through at least two or more shaped cooling slits.

【0010】含浸繊維の表面温度が熱可塑性樹脂の結晶
化温度範囲を大きく下回る温度で、含浸繊維を賦形冷却
スリットに通過させると、複合体が賦形冷却スリットに
入る前に、含浸繊維表面が固化してしまうので、含新繊
維の賦形が困難になり、遂には製造不能となる。
[0010] When the impregnated fiber is passed through the shaped cooling slit at a temperature where the surface temperature of the impregnated fiber is significantly lower than the crystallization temperature range of the thermoplastic resin, the impregnated fiber surface is heated before the composite enters the shaped cooling slit. Is solidified, so that it is difficult to shape the new fiber, and finally, the production becomes impossible.

【0011】反面、含浸繊維の表面温度が熱可塑性樹脂
の結晶化温度範囲を大きく上回る温度で、含浸繊維を賦
形冷却スリットに通過させると、賦形冷却スリットの含
浸繊維導入口(開繊含浸槽側入口部)で、溶融した熱可
塑性樹脂の溜りが生じてしまうので、形状コントロール
が困難になり、遂には製造不能となる。ここで言う結晶
化温度範囲とは、JIS K−7121-1987に基づい
て、熱可塑性樹脂を示差走査熱量測定(DSC)したと
きに得られる補外結晶化開始温度(Tic)と補外結晶
化終了温度(Tec)との範囲を指し、ポリプロピレン
の場合は、おおよそ90℃〜130℃が目安となる。
On the other hand, when the impregnated fiber is passed through the shaping cooling slit at a temperature at which the surface temperature of the impregnated fiber greatly exceeds the crystallization temperature range of the thermoplastic resin, the impregnated fiber inlet of the shaping cooling slit (opening impregnation) Since the molten thermoplastic resin accumulates at the inlet on the tank side), it is difficult to control the shape, and finally, the production becomes impossible. The crystallization temperature range referred to here is the extrapolated crystallization onset temperature (Tic) and extrapolated crystallization obtained when a thermoplastic resin is subjected to differential scanning calorimetry (DSC) based on JIS K- 7121-1987 . It indicates the range with the end temperature (Tec). In the case of polypropylene, approximately 90 ° C. to 130 ° C. is a standard.

【0012】また、本発明の製造方法においては、複数
の賦形冷却スリットを用いるが、開繊含浸槽に最も近い
側の賦形冷却スリットの径が開繊含浸槽から最も遠い側
の賦形冷却スリットの径より大きいものであることが望
ましい。スリットの径は、用いる熱可塑性樹脂の収縮度
合いを考慮して決めると良い。
Further, in the manufacturing method of the present invention, a plurality of shaping cooling slits are used, and the diameter of the shaping cooling slit closest to the opening and impregnating tank is farthest from the opening and impregnating tank. It is desirable that the diameter be larger than the diameter of the cooling slit. The diameter of the slit may be determined in consideration of the degree of shrinkage of the thermoplastic resin used.

【0013】本発明の複合体は、トンネルハウス用支
柱、自動車用サイドガード、プールの壁面手すりなどに
有用である。
The composite of the present invention is useful for columns for tunnel houses, side guards for automobiles, handrails for pool walls, and the like.

【0014】[0014]

【実施例】以下、本発明を実施例に基づいて、場合によ
っては有用な比較例を参照しながら具体的に説明する。
しかし、本発明はこれらの実施例によって何ら制約を受
けない。
The present invention will now be described in detail with reference to examples and sometimes to useful comparative examples.
However, the invention is not limited at all by these examples.

【0015】(実施例1)この実施例1は、図1に示す
ような装置を用いて複合体を成形した。すなわち、強化
用繊維であるガラス繊維のロービング(1)20本を、
熱可塑性樹脂である無水マレイン酸改質ポリプロピレン
[MFR(230℃;21.18N)100g/10min]が温度270℃
に調整された溶融物で満たされている開繊含浸槽(2)
に供給し、引取速度100cm/minで連続的に含浸を行っ
た。ロービング(1)としては、平均単繊維径17μ、テ
ックス番手1150g/kmのものを用いた。
Example 1 In Example 1, a composite was formed using an apparatus as shown in FIG. That is, 20 rovings (1) of glass fiber which is a reinforcing fiber,
Maleic anhydride-modified polypropylene [MFR (230 ° C; 21.18N) 100g / 10min] which is a thermoplastic resin has a temperature of 270 ° C
Opening impregnation tank filled with the adjusted melt (2)
And was continuously impregnated at a take-off speed of 100 cm / min. The roving (1) used had an average single fiber diameter of 17 μm and a tex count of 1150 g / km.

【0016】そして、ロービング(1)は、開繊含浸槽
(2)内に設けられた開繊ピン(3)で開繊され、溶融
した該改質ポリプロピレンで含浸される。次いで、溶融
した該改質ポリプロピレンで含浸されたロービング
(1)は、開繊含浸槽(2)の出口に設けられた内径6.
0mmのダイス(4)内を通過した後、空冷槽(5)内を
通過し、表面温度が125℃に調節される。さらに、含
浸ロービング(1)を、幅が10mmのスチール製であり、
30℃の温度にコントロールされ、40mmの間隔で配置さ
れている内径が6.1mmの第1賦形冷却スリット(6)お
よび内径が5.9mmの第2賦形冷却スリット(7)に順次
通過させることで、平均直径5.85mmの複合体を得た。得
られた複合体は、形状のバラツキが極めて小さいもので
あった。また、ガラス繊維含有率は、59重量%であっ
た。得られた複合体の下記測定試験に基づく評価結果を
表1示す。
The roving (1) is opened with an opening pin (3) provided in an opening and impregnating tank (2) and impregnated with the molten modified polypropylene. Next, the roving (1) impregnated with the modified polypropylene thus melted had an inner diameter of 6.25 provided at the outlet of the opening and impregnating tank (2).
After passing through the 0 mm die (4), it passes through the air cooling tank (5), and the surface temperature is adjusted to 125 ° C. Furthermore, the impregnated roving (1) is made of steel with a width of 10 mm,
Controlled at a temperature of 30 ° C. and passed through a first shaping cooling slit (6) having an inner diameter of 6.1 mm and a second shaping cooling slit (7) having an inner diameter of 5.9 mm, which are arranged at intervals of 40 mm. Thus, a composite having an average diameter of 5.85 mm was obtained. The obtained composite had a very small variation in shape. The glass fiber content was 59% by weight. Table 1 shows the evaluation results of the obtained composites based on the following measurement tests.

【0017】(実施例2)この実施例2は、実施例1と
略同様であるが、ロービング1の本数が異なると共に、
賦形冷却スリットが3つ設けられている点で異なってい
る。すなわち、実施例1と同様にして、ガラス繊維のロ
ービング(1)10本を、温度270℃の無水マレイン
酸改質ポリプロピレンの溶融物で満たされている開繊含
浸槽(2)に供給し、引取速度100cm/minで連続的に含
浸を行った。
(Embodiment 2) Embodiment 2 is substantially the same as Embodiment 1, except that the number of rovings 1 is different.
The difference is that three shaping cooling slits are provided. That is, in the same manner as in Example 1, ten glass fiber rovings (1) are supplied to an open fiber impregnation tank (2) filled with a melt of maleic anhydride-modified polypropylene at a temperature of 270 ° C. Impregnation was performed continuously at a take-off speed of 100 cm / min.

【0018】そして、溶融した改質ポリプロピレンで含
浸されたロービング(1)は、開繊含浸槽(2)の出口
に設けられた内径6.0mmのダイス(4)を通過した後、
空冷槽(5)内を通過し、表面温度が125℃に調節さ
れる。さらに、含浸ロービング(1)を、幅10mmのスチ
ール製であり、30℃の温度にコントロールされ、40mm
および20mmの間隔で配置されている内径が6.1mmの第1
賦形冷却スリット(6)、内径が5.9mmの第2賦形冷却
スリット(7)および内径が5.8mmの第3賦形冷却スリ
ット(8)に順次通過させることにより、平均直径5.75
mmの複合体を得た。得られた複合体は、形状のバラツキ
が極めて小さいものであった。また、ガラス繊維含有率
は、37重量%であった。得られた複合体の下記測定試
験に基づく評価結果を表1示す。
The roving (1) impregnated with the molten modified polypropylene passes through a die (4) having an inner diameter of 6.0 mm provided at the outlet of the opening and impregnating tank (2).
After passing through the air cooling tank (5), the surface temperature is adjusted to 125 ° C. Furthermore, the impregnated roving (1) is made of steel 10 mm wide and controlled at a temperature of 30 ° C.
And the first with an inner diameter of 6.1mm, spaced at 20mm intervals
An average diameter of 5.75 is obtained by sequentially passing the shaped cooling slit (6), the second shaped cooling slit (7) having an inner diameter of 5.9 mm, and the third shaped cooling slit (8) having an inner diameter of 5.8 mm.
mm of the complex was obtained. The obtained composite had a very small variation in shape. The glass fiber content was 37% by weight. Table 1 shows the evaluation results of the obtained composites based on the following measurement tests.

【0019】(実施例3)この実施例3は、実施例1と
略同様であるが、ロービング(1)の本数が異なると共
に、賦形冷却スリットが4つ設けられている点で異なっ
ている。すなわち、実施例1と同様にして、ガラス繊維
のロービング(1)4本を、温度270℃の無水マレイ
ン酸改質ポリプロピレンの溶融物で満たされている開繊
含浸槽(2)に供給し、引取速度100cm/minで連続的に
含浸を行った。
(Embodiment 3) Embodiment 3 is substantially the same as Embodiment 1, except that the number of rovings (1) is different and that four shaped cooling slits are provided. . That is, in the same manner as in Example 1, four glass fiber rovings (1) are supplied to an open fiber impregnation tank (2) filled with a melt of maleic anhydride-modified polypropylene at a temperature of 270 ° C. Impregnation was performed continuously at a take-off speed of 100 cm / min.

【0020】そして、溶融した改質ポリプロピレンで含
浸されたロービング(1)は、開繊含浸槽(2)の出口
に設けられた内径6.0mmのダイス(4)を通過した後、
空冷槽(5)内を通過し、表面温度が125℃に調整さ
れる。さらに、含浸ロービング(1)を、幅10mmのスチ
ール製であり、30℃の温度にコントロールされ、40m
m、20mmおよび20mmの間隔で配置されている内径が6.1mm
の第1賦形冷却スリット(6)、内径が5.9mmの第2賦
形冷却スリット(7)、内径が5.8mmの第3賦形冷却ス
リット(8)および内径が5.7mmの第4賦形冷却スリッ
ト(9)に順次通過させることにより、平均直径5.65mm
の複合体を得た。得られた複合体は、形状のバラツキが
極めて小さいものであった。また、ガラス繊維含有率
は、18重量%であった。得られた複合体の下記測定試
験に基づく評価結果を表1示す。
The roving (1) impregnated with the molten modified polypropylene passes through a die (4) having an inner diameter of 6.0 mm provided at the outlet of the opening and impregnating tank (2).
After passing through the air cooling tank (5), the surface temperature is adjusted to 125 ° C. Furthermore, the impregnated roving (1) is made of steel with a width of 10 mm and is controlled at a temperature of 30 ° C.
6.1mm inside diameter, spaced at m, 20mm and 20mm intervals
The first shaping cooling slit (6), the second shaping cooling slit (7) having an inner diameter of 5.9 mm, the third shaping cooling slit (8) having an inner diameter of 5.8 mm, and the fourth shaping having an inner diameter of 5.7 mm Average diameter 5.65mm by passing through cooling slit (9) sequentially
Was obtained. The obtained composite had a very small variation in shape. The glass fiber content was 18% by weight. Table 1 shows the evaluation results of the obtained composites based on the following measurement tests.

【0021】(実施例4)この実施例4は、実施例1と
略同様であるが、ロービング(1)の本数、ダイス
(4)、第1賦形冷却スリット(6)の径および第2賦
形冷却スリット(7)の径が異なっている。すなわち、
実施例1と同様にして、ガラス繊維のロービング(1)
10本を、温度270℃の無水マレイン酸改質ポリプロ
ピレンの溶融物で満たされている開繊含浸槽(2)に供
給し、引取速度100cm/minで連続的に含浸を行った。
Embodiment 4 Embodiment 4 is substantially the same as Embodiment 1, except that the number of rovings (1), the dies (4), the diameter of the first shaping cooling slit (6) and the second The diameter of the shaping cooling slit (7) is different. That is,
Roving of glass fiber in the same manner as in Example 1 (1)
Ten of these were supplied to an open fiber impregnation tank (2) filled with a melt of maleic anhydride-modified polypropylene at a temperature of 270 ° C., and were continuously impregnated at a take-off speed of 100 cm / min.

【0022】そして、溶融した改質ポリプロピレンで含
浸されたロービング(1)は、開繊含浸槽(2)の出口
に設けられた内径3.5mmのダイス(4)を通過した後、
空冷槽(5)内を通過し、表面温度が125℃に調整さ
れる。さらに、含浸ロービング(1)を、幅10mmのスチ
ール製であり、30℃の温度にコントロールされ、20mm
の間隔で配置されている内径が3.6mmの第1賦形冷却ス
リット(6)および内径が3.5mmの第2賦形冷却スリッ
ト(7)に順次通過させることにより、平均直径3.46mm
の複合体を得た。得られた複合体は、形状のバラツキが
極めて小さいものであった。また、ガラス繊維含有率
は、73重量%であった。得られた複合体の下記測定試
験に基づく評価結果を表1示す。
The roving (1) impregnated with the molten modified polypropylene passes through a die (4) having an inner diameter of 3.5 mm provided at the outlet of the opening and impregnating tank (2).
After passing through the air cooling tank (5), the surface temperature is adjusted to 125 ° C. Furthermore, the impregnated roving (1) is made of steel 10 mm wide and controlled at a temperature of 30 ° C.
Are sequentially passed through a first shaped cooling slit (6) having an inner diameter of 3.6 mm and a second shaped cooling slit (7) having an inner diameter of 3.5 mm.
Was obtained. The obtained composite had a very small variation in shape. The glass fiber content was 73% by weight. Table 1 shows the evaluation results of the obtained composites based on the following measurement tests.

【0023】(比較例1)実施例1と同様にして、ガラ
ス繊維のロービング(1)20本を、温度270℃の無
水マレイン酸改質ポリプロピレンの溶融物で満たされて
いる開繊含浸槽(2)に供給し、引取速度100cm/minで
連続的に含浸を行った。
(Comparative Example 1) In the same manner as in Example 1, an open fiber impregnation tank (20) in which 20 glass fiber rovings (1) were filled with a melt of maleic anhydride-modified polypropylene at a temperature of 270 ° C. 2) and was continuously impregnated at a take-off speed of 100 cm / min.

【0024】そして、溶融した改質ポリプロピレンで含
浸されたロービング(1)は、開繊含浸槽(2)の出口
に設けられた内径6.0mmのダイス(4)を通過した後、
空冷槽(5)内を通過し、表面温度が125℃に調整さ
れる。そして、含浸ロービング(1)を、賦形冷却スリ
ットを使用せず、平均直径5.87mmの複合体を得た。しか
しながら、このようにして得られた複合体は、形状のバ
ラツキが大きいものであった。また、ガラス繊維含有率
は、59重量%であった。得られた複合体の下記測定試
験に基づく評価結果を表1示す。
The roving (1) impregnated with the molten modified polypropylene passes through a die (4) having an inner diameter of 6.0 mm provided at the outlet of the opening and impregnating tank (2).
After passing through the air cooling tank (5), the surface temperature is adjusted to 125 ° C. Then, the impregnated roving (1) was used without using a shaped cooling slit to obtain a composite having an average diameter of 5.87 mm. However, the composite thus obtained had a large variation in shape. The glass fiber content was 59% by weight. Table 1 shows the evaluation results of the obtained composites based on the following measurement tests.

【0025】(比較例2)実施例1と同様にして、ガラ
ス繊維のロービング(1)10本を、温度270℃の無
水マレイン酸改質ポリプロピレンの溶融物で満たされて
いる開繊含浸槽(2)に供給し、引取速度100cm/minで
連続的に含浸を行った。
Comparative Example 2 In the same manner as in Example 1, a fiber impregnating tank (10) in which ten glass fiber rovings (1) were filled with a maleic anhydride-modified polypropylene melt at a temperature of 270 ° C. 2) and was continuously impregnated at a take-off speed of 100 cm / min.

【0026】そして、溶融した改質ポリプロピレンで含
浸されたロービング(1)は、開繊含浸槽(2)の出口
に設けられた内径3.5mmのダイス(4)を通過した後、
空冷槽(5)内を通過し、表面温度が125℃に調整さ
れる。そして、含浸ロービング(1)を、賦形冷却スリ
ットを使用せず、平均直径3.44mmの複合体を得た。しか
しながら、このようにして得られた複合体は、形状のバ
ラツキが大きいものであった。また、ガラス繊維含有率
は、73重量%であった。得られた複合体の下記測定試
験に基づく評価結果を表1示す。
The roving (1) impregnated with the molten modified polypropylene passes through a die (4) having an inner diameter of 3.5 mm provided at the outlet of the opening and impregnating tank (2).
After passing through the air cooling tank (5), the surface temperature is adjusted to 125 ° C. Then, the impregnated roving (1) was used without using a shaped cooling slit to obtain a composite having an average diameter of 3.44 mm. However, the composite thus obtained had a large variation in shape. The glass fiber content was 73% by weight. Table 1 shows the evaluation results of the obtained composites based on the following measurement tests.

【0027】(比較例3)実施例1と同様にして、ガラ
ス繊維のロービング(1)20本を、温度270℃の無
水マレイン酸改質ポリプロピレンの溶融物で満たされて
いる開繊含浸槽(2)に供給し、引取速度100cm/minで
連続的に含浸を行った。
(Comparative Example 3) In the same manner as in Example 1, an open fiber impregnation tank (20) filled with 20 glass fiber rovings (1) filled with a melt of maleic anhydride-modified polypropylene at a temperature of 270 ° C. 2) and was continuously impregnated at a take-off speed of 100 cm / min.

【0028】そして、溶融した改質ポリプロピレンで含
浸されたロービング(1)は、開繊含浸槽(2)の出口
に設けられた内径6.0mmのダイス(4)を通過した後、
空冷槽(5)内を通過し、表面温度が140℃に調整さ
れる。さらに、含浸ロービング(1)を、幅10mmのスチ
ール製であり、30℃の温度にコントロールされた内径
が6.2mmの第1賦形冷却スリット(6)に通過させたと
ころ、スリット入口にポリプロピレン樹脂溶融溜まりが
発生して、ラインが停止し複合体は得られなかった。そ
の評価結果を表1示す。
Then, the roving (1) impregnated with the molten modified polypropylene passes through a die (4) having an inner diameter of 6.0 mm provided at the outlet of the opening and impregnating tank (2).
After passing through the air cooling tank (5), the surface temperature is adjusted to 140 ° C. Further, when the impregnated roving (1) was passed through a first shaping cooling slit (6) made of steel having a width of 10 mm and having an inner diameter controlled at 30 ° C. and having an inner diameter of 6.2 mm, a polypropylene resin was introduced into the slit entrance. A melt pool occurred, the line stopped, and no composite was obtained. Table 1 shows the evaluation results.

【0029】(比較例4)実施例1と同様にして、ガラ
ス繊維のロービング(1)20本を、温度270℃の無
水マレイン酸改質ポリプロピレンの溶融物で満たされて
いる開繊含浸槽(2)に供給し、引取速度100cm/minで
連続的に含浸を行った。
(Comparative Example 4) In the same manner as in Example 1, a fiber impregnating tank (20) in which 20 glass fiber rovings (1) were filled with a melt of maleic anhydride-modified polypropylene at a temperature of 270 ° C. 2) and was continuously impregnated at a take-off speed of 100 cm / min.

【0030】そして、溶融した改質ポリプロピレンで含
浸されたロービング(1)は、開繊含浸槽(2)の出口
に設けられた内径6.0mmのダイス(4)を通過した後、
空冷槽(5)内を通過し、表面温度が60℃に調整され
る。さらに、含浸ロービング(1)を、幅10mmのスチー
ル製であり、30℃の温度にコントロールされた内径が
6.2mmの第1賦形冷却スリット(6)に通過させたとこ
ろ、スリット入口で固化したポリプロピレン樹脂が入り
口に引っかかり賦形できず、ラインが停止し複合体は得
られなかった。その評価結果を表1示す。
The roving (1) impregnated with the molten modified polypropylene passes through a die (4) having an inner diameter of 6.0 mm provided at the outlet of the opening and impregnating tank (2).
After passing through the air cooling tank (5), the surface temperature is adjusted to 60 ° C. Furthermore, the impregnated roving (1) is made of steel with a width of 10 mm and has an inner diameter controlled at a temperature of 30 ° C.
When the resin was passed through the 6.2 mm first shaping cooling slit (6), the polypropylene resin solidified at the slit entrance was caught by the inlet and could not be shaped, the line stopped, and no composite was obtained. Table 1 shows the evaluation results.

【0031】(測定試験) *直径:得られた複合体の直径をJIS K6911-1979に準拠
して測定した。すなわち、長手方向に対して直角に切断
した時の複合体断面の直径を、同一平面上で45゜間隔で4
ヶ所測定(D11、D12、D13、D14)した。この操作を同一
の複合体に設定された他の断面においても求め(D21、D
22、D23、D24)、その相加平均値(平均径Dm)からの
平均偏差(真円度MD)を測定した。MDは、下記式に
より導き出されるものであり、MDの値が小さいほど真
円に近づき形状精度が高いことを意味する。
(Measurement Test) * Diameter: The diameter of the obtained composite was measured according to JIS K6911-1979 . That is, the diameter of the cross section of the composite when cut at right angles to the longitudinal direction is 4 at 45 ° intervals on the same plane.
Measurements were made at various locations (D11, D12, D13, D14). This operation is also performed for other sections set for the same complex (D21, D21
22, D23, D24) and their average deviation (roundness MD) from the arithmetic mean value (average diameter Dm) were measured. The MD is derived from the following equation, and the smaller the value of the MD, the closer to a perfect circle and the higher the shape accuracy.

【0032】[0032]

【数1】 (Equation 1)

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明の複合体は、真円に極めて近く、
形状精度の非常に優れた複合体であり、実用的で商品価
値の高いものである。また、本発明の製造方法は、本発
明の複合体を真円に極めて近く、しかも形状精度の非常
に優れた状態で安定生産することのできる方法である。
The composite of the present invention is very close to a perfect circle,
It is a composite with excellent shape accuracy, practical and of high commercial value. Further, the production method of the present invention is a method capable of stably producing the composite of the present invention in a state very close to a perfect circle and with extremely excellent shape accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、この発明の実施例を示す製造装置の説
明図である。
FIG. 1 is an explanatory view of a manufacturing apparatus showing an embodiment of the present invention.

【符号の説明】 1 ロービング(強化用繊維) 2 開繊含浸槽 3 開繊ピン 4 ダイス 5 空冷槽 6 第1賦形冷却スリット 7 第2賦形冷却スリット 8 第3賦形冷却スリット 9 第4賦形冷却スリット[Description of Signs] 1 Roving (reinforcing fiber) 2 Opening impregnation tank 3 Opening pin 4 Dice 5 Air cooling tank 6 First shaping cooling slit 7 Second shaping cooling slit 8 Third shaping cooling slit 9 Fourth Shaped cooling slit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】強化用繊維で長手方向が強化された長繊維
強化熱可塑性樹脂複合体において、強化用繊維含有率が
10〜80重量%、該複合体を長手方向に対して直角に
切断した時の断面の平均直径が3mm以上およびその直径
の平均偏差が0.10以下である長繊維強化熱可塑性樹
脂複合体。
1. A long-fiber-reinforced thermoplastic resin composite reinforced in the longitudinal direction with reinforcing fibers, wherein the reinforcing fiber content is 10 to 80% by weight, and the composite is cut at right angles to the longitudinal direction. A long fiber reinforced thermoplastic resin composite having an average diameter of the cross section at the time of 3 mm or more and an average deviation of the diameter of 0.10 or less.
【請求項2】強化用繊維を開繊含浸槽内に導入し、溶融
した熱可塑性樹脂を含浸させたのち、開繊含浸槽の出口
部であるダイスから引く抜いて得た熱可塑性樹脂が含浸
された強化用繊維を、その表面温度が該熱可塑性樹脂の
結晶化温度範囲内になるように冷却しながら、その温度
範囲内で少なくとも2つ以上の賦形冷却スリットを通過
させる強化用繊維含有率が10〜80重量%で平均直径
が3mm以上の長繊維強化熱可塑性樹脂複合体の製造方
法。
2. A reinforcing fiber is introduced into an opening impregnation tank, impregnated with a molten thermoplastic resin, and then pulled out from a die at an outlet of the opening impregnation tank. The reinforcing fiber containing the reinforcing fiber passed through at least two or more shaping cooling slits within the temperature range while cooling the reinforcing fiber so that its surface temperature is within the crystallization temperature range of the thermoplastic resin. A method for producing a long fiber reinforced thermoplastic resin composite having a ratio of 10 to 80% by weight and an average diameter of 3 mm or more.
【請求項3】 前記複数の賦形冷却スリットを通過して
賦形冷却する際、開繊含浸槽に最も近い側の賦形冷却ス
リットの径が開繊含浸槽から最も遠い側の賦形冷却スリ
ットの径より大きい請求項2記載の長繊維強化熱可塑性
樹脂複合体の製造方法。
3. The shaping cooling when the shaping cooling slit on the side closest to the spread and impregnating tank has the diameter farthest from the spread and impregnating tank when shaping and cooling through the plurality of shaping and cooling slits. 3. The method for producing a long fiber reinforced thermoplastic resin composite according to claim 2, wherein the diameter is larger than the diameter of the slit.
JP07846998A 1997-04-02 1998-03-11 Method for producing long fiber reinforced thermoplastic resin composite Expired - Lifetime JP4096396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07846998A JP4096396B2 (en) 1997-04-02 1998-03-11 Method for producing long fiber reinforced thermoplastic resin composite

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-99716 1997-04-02
JP9971697 1997-04-02
JP07846998A JP4096396B2 (en) 1997-04-02 1998-03-11 Method for producing long fiber reinforced thermoplastic resin composite

Publications (2)

Publication Number Publication Date
JPH10329225A true JPH10329225A (en) 1998-12-15
JP4096396B2 JP4096396B2 (en) 2008-06-04

Family

ID=26419532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07846998A Expired - Lifetime JP4096396B2 (en) 1997-04-02 1998-03-11 Method for producing long fiber reinforced thermoplastic resin composite

Country Status (1)

Country Link
JP (1) JP4096396B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3003194A1 (en) * 2013-03-15 2014-09-19 Faurecia Automotive Composites METHOD AND DEVICE FOR MAKING A PROFILE OF FIBER-REINFORCED THERMOPLASTIC MATERIAL COMPRISING A THERMOPLASTIC MATERIAL TEMPERATURE REGULATION STEP

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3003194A1 (en) * 2013-03-15 2014-09-19 Faurecia Automotive Composites METHOD AND DEVICE FOR MAKING A PROFILE OF FIBER-REINFORCED THERMOPLASTIC MATERIAL COMPRISING A THERMOPLASTIC MATERIAL TEMPERATURE REGULATION STEP

Also Published As

Publication number Publication date
JP4096396B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
US4680224A (en) Reinforced plastic
KR930000743B1 (en) Process for the production of profiles of a thermoplastic resin reinforced with continual fibers device for obtaining them
JP4876377B2 (en) Method for producing flat glass fiber-containing pellets
US3993726A (en) Methods of making continuous length reinforced plastic articles
US5114516A (en) Method for pultruding fiber-reinforced, thermoplastic stock
CA2831358C (en) Continuous fiber reinforced thermoplastic rods and pultrusion method for its manufacture
EP0125472B1 (en) Process for preparing shaped objects of poly(arylene sulfide) and product thereof
CA2005552A1 (en) Thermoplastic pultrusion
JPH0732495A (en) Manufacture of long fiber-reinforced thermoplastic resin composition
US6548167B1 (en) Continuous-strand pellets and method and device for preparing continuous-strand pellets
Krajangsawasdi et al. Batch production and fused filament fabrication of highly aligned discontinuous fibre thermoplastic filaments
US20200114544A1 (en) Method and Apparatus for Manufacturing Fiber Composite Parts Utilizing Direct, Continuous Conversion of Raw Materials
TW201406842A (en) Carbon fiber composite material and molded article formed by the same, and manufacturing method of these
JPH10329225A (en) Long fiber-reinforced thermoplastic resin composite material and its manufacture
JPH10264152A (en) Manufacture of fiber reinforced resin pellet
US6264746B1 (en) Cross-head die
JP3040865B2 (en) Long fiber reinforced thermoplastic resin pellets
JPH05278126A (en) Forming material of fiber reinforced thermoplastic resin
JP3386158B2 (en) Molding materials and filament wound moldings
JP3982007B2 (en) -Direction reinforced thermoplastic resin structure manufacturing method and manufacturing apparatus
JPH04197726A (en) Manufacture of long fiber reinforced composite material
JP3437651B2 (en) Method for producing pellet-shaped long fiber reinforced resin structure
WO1998043807A1 (en) Long fiber-reinforced thermoplastic resin composite body
JPH07227915A (en) Manufacture of fiber-reinforced thermoplastic resin composition
JPH0462108A (en) Preparation of fiber-reinforced thermoplastic resin pellet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term