JPH10327530A - Ratio-differential relay for protecting transformer - Google Patents
Ratio-differential relay for protecting transformerInfo
- Publication number
- JPH10327530A JPH10327530A JP9134039A JP13403997A JPH10327530A JP H10327530 A JPH10327530 A JP H10327530A JP 9134039 A JP9134039 A JP 9134039A JP 13403997 A JP13403997 A JP 13403997A JP H10327530 A JPH10327530 A JP H10327530A
- Authority
- JP
- Japan
- Prior art keywords
- current
- transformer
- neural network
- differential relay
- wavelet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Protection Of Transformers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、変圧器の切換操作
に際して生じる励磁突入電流に起因する誤動作の防止、
並びに異常発生時の迅速な異常発生の有無の検出を可能
にした変圧器保護用比率差動継電器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the prevention of a malfunction caused by an inrush current caused by a switching operation of a transformer.
Also, the present invention relates to a transformer protection ratio differential relay capable of quickly detecting the presence / absence of an abnormality when an abnormality occurs.
【0002】[0002]
【従来の技術】図4は従来の比率差動継電器の原理説明
図であり、変圧器1の一次側(電源側)と二次側(負荷
側)夫々に設置した電流検出用のコイル等で構成された
センサCT1 ,CT2 夫々の両端を、比率差動継電器2
内に導入し、電流検出手段2a,2b,2cにて電流値
I0 ,I1 ,I2 を検出するようにしてある。各センサ
CT1 ,CT2 は、夫々の一端部は途中に前記電流検出
手段2b,2cを介在させて相互に接続すると共に、他
端部同士は直接接続され、また両接続点同士は途中に電
流検出手段2aを介在させた状態で接続してあり、電流
検出手段2b,2cにて電源側,負荷側夫々の電流値I
1 ,I2 が、また電流検出手段2aにて差電流である電
流値I0 が求まる。2. Description of the Related Art FIG. 4 is a diagram for explaining the principle of a conventional ratio differential relay, in which current detecting coils and the like are installed on the primary side (power side) and the secondary side (load side) of a transformer 1, respectively. Both ends of the constructed sensors CT 1 and CT 2 are connected to a ratio differential relay 2.
And current values I 0 , I 1 , I 2 are detected by current detection means 2a, 2b, 2c. One end of each of the sensors CT 1 and CT 2 is connected to each other with the current detecting means 2b and 2c interposed in the middle, the other ends are directly connected to each other, and both connection points are connected in the middle. The current detection means 2a is connected with the current detection means 2a interposed therebetween.
1, I 2, but also the current value I 0 is a differential current by the current detecting means 2a obtained.
【0003】前記各電流検出手段2a,2b,2c夫々
により検出された電流値I0 ,I1,I2 の組合せによ
り図表5の如く異常の発生の有無及び発生個所の判断を
する。図表5は電流値I0 ,I1 ,I2 及び比率I2 /
I1 に基づき事故の発生を検出し、二次側内部、又は外
部事故、一次側内部、又は外部事故の有無が検出出来る
ようになっている。Based on the combination of the current values I 0 , I 1 , I 2 detected by the respective current detecting means 2 a, 2 b, 2 c, the presence / absence of an abnormality and the location of occurrence are determined as shown in FIG. Table 5 shows the current values I 0 , I 1 , I 2 and the ratio I 2 /
Detecting the occurrence of an accident on the basis of I 1, the secondary-side internal or external fault, the primary internal, or the presence or absence of external accident is adapted to be detected.
【0004】しかし変圧器には励磁突入電流が存在し、
変圧器を無負荷で投入したときは図6に示す如く定格電
流の10倍に達する電流が流れ、加えて電源側からのみ
電流が供給されるから、比率差動継電器2は励磁突入電
流が生じた際に見掛け上、内部故障電流が生じたのと同
様に作用し、誤動作する。図6は変圧器における定常電
流と励磁突入電流とを対比して示す説明図である。However, a transformer has an inrush current,
When the transformer is turned on with no load, a current that reaches 10 times the rated current flows as shown in FIG. 6, and in addition, current is supplied only from the power supply side. In this case, it acts as if an internal fault current occurred, and malfunctions. FIG. 6 is an explanatory diagram showing a comparison between the steady current and the inrush current in the transformer.
【0005】この対策として励磁突入電流と内部事故電
流を区別して判定するために、従来は励磁突入電流に含
まれる第2高調波成分を検出し、その含有率を演算する
ことによって励磁突入電流と、内部事故電流との区分を
可能とした比率差動継電器が提案されている。As a countermeasure against this, conventionally, in order to distinguish between the inrush current and the internal fault current, a second harmonic component contained in the inrush current is detected and its content is calculated to calculate the inrush current and the internal inrush current. There has been proposed a ratio differential relay that can be classified as an internal fault current.
【0006】図7は上記した従来の比率差動継電器の構
成を示すブロック図である。図中1は変圧器、2は比率
差動継電器を示している。変圧器1の両側には夫々電流
検出用のコイルで構成されたセンサCT1 ,CT2 が設
けられ、その出力は比率差動継電器2における前処理部
11へ入力されるようにしてある。前処理部11の構成
は図4に示す原理説明図のそれと実質的に同じであり、
3個の電流検出手段を備え、夫々の検出値である電流値
I0 ,I1 ,I2 がA/D変換部12へ入力される。A
/D変換部12はアナログ信号である電流値I0 ,
I1 ,I2をディジタル信号に変換し、夫々比率差動検
出部13、及び第2高調波検出部14へ出力する。FIG. 7 is a block diagram showing the configuration of the above-mentioned conventional ratio differential relay. In the figure, reference numeral 1 denotes a transformer, and 2 denotes a ratio differential relay. Sensors CT 1 and CT 2 each having a coil for current detection are provided on both sides of the transformer 1 , and outputs thereof are input to a pre-processing unit 11 in the ratio differential relay 2. The configuration of the preprocessing unit 11 is substantially the same as that of the principle explanatory diagram shown in FIG.
Three current detection means are provided, and current values I 0 , I 1 , and I 2 , which are respective detection values, are input to the A / D converter 12. A
The / D converter 12 outputs current values I 0 , which are analog signals,
I 1 and I 2 are converted into digital signals and output to the ratio differential detection unit 13 and the second harmonic detection unit 14, respectively.
【0007】比率差動検出部13は電流値の比率I2 /
I1 を算出し、これをアンドゲート15の一方の入力端
へ入力すると共に、動作タイマ16a、復帰タイマ17
aを経てインヒビット回路18の一方の入力端へ入力す
る。[0007] The ratio differential detection unit 13 outputs a current value ratio I 2 /
Together to calculate the I 1, and inputs it to one input terminal of the AND gate 15, the operation timer 16a, recovery timer 17
The signal is input to one input terminal of the inhibit circuit 18 via a.
【0008】一方、第2高調波検出部14は第2高調波
成分を検出し、これをアンドゲート15の他方の入力端
へ入力する。アンドゲート15は第2高調波検出部14
と比率差動検出部13との出力の論理積をとり、動作タ
イマ16b、復帰タイマ17bを経てインヒビット回路
18の他方の入力端へ否定入力する。インヒビット回路
18は、第2高調波が含まれていない場合は事故判定出
力を行い、また第2高調波が含まれている場合には事故
判定出力を行わないようにしてある。On the other hand, the second harmonic detecting section 14 detects the second harmonic component and inputs it to the other input terminal of the AND gate 15. The AND gate 15 is a second harmonic detector 14.
The logical product of the output of the differential circuit and the output of the ratio differential detection unit 13 is calculated, and the result is negatively input to the other input terminal of the inhibit circuit 18 via the operation timer 16b and the recovery timer 17b. The inhibit circuit 18 performs an accident determination output when the second harmonic is not included, and does not perform an accident determination output when the second harmonic is included.
【0009】[0009]
【発明が解決しようとする課題】ところでこのような従
来の比率差動継電器では、近年の配電系統の複雑化と相
俟って、停電時における非常用発電機の運転状態から復
電後における買電への切替え時の如く、負荷を切らずに
変圧器を投入することが増すと、第2高調波成分が少な
いため、誤動作する場合が生じるという問題があった。
本発明はかかる事情に鑑みなされたものであって、その
目的とするところは事故の有無の判定をニューラルネッ
トワークを用いることで高速に、しかも正確に行えるよ
うにした変圧器保護用比率差動継電器を提供するにあ
る。However, in such a conventional ratio differential relay, the operating state of the emergency generator at the time of a power failure has been reduced and the purchase after the power recovery has been completed, in conjunction with the recent complexity of the distribution system. When the transformer is turned on without turning off the load, such as when switching to electric power, the second harmonic component is small, so that a malfunction may occur.
The present invention has been made in view of the above circumstances, and an object of the present invention is to use a neural network to quickly and accurately determine whether or not an accident has occurred. To provide.
【0010】[0010]
【課題を解決するための手段】本発明に係る変圧器保護
用比率差動継電器は、変圧器の一次側、二次側の各電流
及びその差電流を検出する各電流検出手段と、各電流及
び差電流をA/D変換出力するA/D変換部と、該A/
D変換部の出力データを相似変換して周波数成分に対応
する基底関数群を得るウェーブレット解析部と、該ウェ
ーブレット解析部の出力である基底関数群のデータと別
に与えられた正規データとこれらに基づいてなすべき判
断との関係を学習する学習手段と、該学習手段の支援の
もとで変圧器の異常の有無を判別するニューラルネット
ワークとを具備することを特徴とする。SUMMARY OF THE INVENTION According to the present invention, there is provided a transformer protection ratio differential relay comprising: a current detecting means for detecting currents on a primary side and a secondary side of a transformer; An A / D conversion unit for A / D converting and outputting the difference current and the A / D
A wavelet analysis unit that obtains a basis function group corresponding to a frequency component by performing a similarity transformation on the output data of the D conversion unit, and normal data provided separately from the basis function group data that is the output of the wavelet analysis unit. It is characterized by comprising a learning means for learning a relationship with a judgment to be made, and a neural network for determining the presence or absence of an abnormality in the transformer with the support of the learning means.
【0011】本発明にあっては、学習を重ねた学習支持
手段のもとでニューラルネットワークを動作させること
で迅速に、しかもより正確な異常検知が可能となる。In the present invention, by operating the neural network under the learning support means that has learned repeatedly, it is possible to detect abnormalities quickly and more accurately.
【0012】[0012]
【原理説明】図1は本発明の原理説明図であり、配電系
統に設置された電気量の監視センサ21からの出力であ
る監視信号を比率差動継電器22へ取り込む。比率差動
継電器22は、前処理部31、A/D変換部32、ウェ
ーブレット解析部33、ニューラルネットワーク34を
用いて構成された異常判定手段及び学習支援手段35を
備えている。前処理部31、A/D変換部32の構成は
従来のそれと実質的に同じである。即ち、前処理部31
は監視センサ21からの監視信号である電気量を取り込
み、これから、例えば電流値等を求め、A/D変換部3
2へ出力する。A/D変換部32は入力されたアナログ
量である電流値等をディジタル値に変換し、これをウェ
ーブレット解析部33へ出力する。FIG. 1 is an explanatory view of the principle of the present invention, in which a monitoring signal, which is an output from a monitoring sensor 21 for an electric quantity installed in a distribution system, is taken into a ratio differential relay 22. The ratio differential relay 22 includes a preprocessing unit 31, an A / D conversion unit 32, a wavelet analysis unit 33, and an abnormality determination unit and a learning support unit 35 configured using a neural network 34. The configurations of the preprocessing unit 31 and the A / D conversion unit 32 are substantially the same as those of the related art. That is, the pre-processing unit 31
Captures a quantity of electricity, which is a monitoring signal from the monitoring sensor 21, and obtains, for example, a current value and the like from the
Output to 2. The A / D converter 32 converts the input current value or the like, which is an analog amount, into a digital value, and outputs the digital value to the wavelet analyzer 33.
【0013】ウェーブレット解析部33は入力された電
流値等に対し、ウェーブレット変換を施し、ニューラル
ネットワーク34へ出力する。ウェーブレット変換され
たデータ、例えば入力データが方形波の場合、その立上
り時には変換波形に不連続点が現れたデータとなる。こ
のようなウェーブレット変換されたデータが連続的にニ
ューラルネットワーク34及び学習支援手段35へ出力
されることとなる。学習支援手段35は、ニューラルネ
ットワーク34の各層間の結合重み計数を決定する機能
を備えており、予め異常発生時のウェーブレット変換後
の波形と、別に用意した正規な方形波とを与え、これら
の波形パターンとこれらに基づいてなすべき判断(事故
又は非事故、即ち健全)との関係についての学習を行わ
せておく。The wavelet analysis unit 33 performs a wavelet transform on the input current value and the like, and outputs the result to the neural network 34. When the wavelet-transformed data, for example, the input data is a square wave, it becomes data in which a discontinuous point appears in the converted waveform at the time of rising. Such wavelet-transformed data is continuously output to the neural network 34 and the learning support means 35. The learning support means 35 has a function of determining the connection weight count between the layers of the neural network 34, and gives a waveform after wavelet transform when an abnormality occurs and a regular square wave prepared separately, and The learning about the relationship between the waveform patterns and the judgment to be made based on these (accident or non-accident, that is, sound) is performed.
【0014】ニューラルネットワーク34は通常入力
層、中間層、及び出力層からなり、入力層の各ニューロ
ンには、ウェーブレット変換された信号(0又は1)が
入力される。入力層のニューロンと中間層のニューロン
とは互いに所定の結合重み係数によって結合され、また
中間層の各ニューロンと出力層の各ニューロンとも所定
の結合重み係数によって結合されている。各結合重み係
数は、学習支援手段35からの指示により、出力層から
所定の出力値が得られるよう設定される。The neural network 34 usually comprises an input layer, a hidden layer, and an output layer. Each neuron in the input layer receives a signal (0 or 1) subjected to wavelet transform. The neurons in the input layer and the neurons in the intermediate layer are connected to each other by a predetermined connection weight coefficient, and each neuron in the intermediate layer and each neuron in the output layer are connected to each other by a predetermined connection weight coefficient. Each connection weight coefficient is set in accordance with an instruction from the learning support means 35 so that a predetermined output value is obtained from the output layer.
【0015】[0015]
【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づき説明する。図2は本発明に係る変圧器保
護用比率差動継電器の構成を示すブロック図であり、図
中1は変圧器、CT1 ,CT2 は変圧器1の一次側、二
次側夫々に配した電流検出用のコイル等で構成されたセ
ンサ、2は比率差動継電器を示している。比率差動継電
器2は前記コイルCT1 ,CT2 を流れる電流値I0 ,
I1 ,I2を求める電流検出手段を含む前処理部11、
A/D変換部12、及びCPU又はDSPにて構成され
る比率差動検出部13、ウェーブレット解析部33、異
常判定手段を構成するニューラルネットワーク34及び
学習支援手段35を備えている。Embodiments of the present invention will be described below with reference to the drawings. Figure 2 is a block diagram showing a configuration of a transformer protection ratio differential relay of the present invention, reference numeral 1 is a transformer, CT 1, CT 2 primary side of the transformer 1, distribution on the secondary side respectively A sensor composed of a current detection coil and the like, 2 indicates a ratio differential relay. The ratio differential relay 2 has a current value I 0 flowing through the coils CT 1 and CT 2 ,
A preprocessing unit 11 including current detection means for obtaining I 1 and I 2 ;
An A / D converter 12, a ratio differential detector 13 composed of a CPU or a DSP, a wavelet analyzer 33, a neural network 34 constituting an abnormality determination unit, and a learning support unit 35 are provided.
【0016】前処理部11、A/D変換部12及び比率
差動検出部13は、図1に示すものと実質的に同じであ
る。ウェーブレット解析部33の出力はニューラルネッ
トワーク34及び学習支援手段35へ入力され、ニュー
ラルネットワーク34の出力と前記比率差動検出部13
の出力とをインヒビット回路18を通すことで事故検出
結果として出力する。The pre-processing unit 11, A / D conversion unit 12, and ratio differential detection unit 13 are substantially the same as those shown in FIG. The output of the wavelet analysis unit 33 is input to a neural network 34 and learning support means 35, and the output of the neural network 34 and the ratio differential detection unit 13
Is output as an accident detection result by passing through the inhibit circuit 18.
【0017】ウェーブレット解析部33は入力された関
数(波形データ)を相似変換することにより、時間的及
び周波数的に局在化した基底関数群を作成する。この基
底関数群を積分核として、解析対象信号(入力データ)
と基底関数群(変換されたデータ)との相関値を求め
る。つまり、この基底関数群のある基底関数と解析対象
信号との相関値を求めることにより、その基底関数が示
す時刻のある周波数における対象信号の成分を求める。The wavelet analysis unit 33 performs similarity conversion of the input function (waveform data) to create a set of basis functions localized in time and frequency. Signals to be analyzed (input data) using these basis functions as integration kernels
And a correlation value between the basis function group (converted data). That is, by calculating a correlation value between a certain basis function of the group of basis functions and the analysis target signal, a component of the target signal at a certain frequency at a time indicated by the basis function is determined.
【0018】A/D変換部12から入力されるディジタ
ル値である入力信号をウェーブレット解析部33で連続
してウェーブレット変換すると、事故発生点、もしくは
励磁突入発生点で不連続点が現れ、その不連続点の基底
関数には、事故時と励磁突入時とでは含まれる周波数成
分が違うため、違う基底関数として検出されることとな
る。このような基底関数をニューラルネットワーク34
に入力すると、ニューラルネットワーク34は予め学習
を行った学習支援手段35のもとで判定を行う。When an input signal which is a digital value input from the A / D converter 12 is continuously wavelet-converted by the wavelet analyzer 33, a discontinuity appears at a point where an accident or an inrush occurs, and the discontinuity appears. Since the basis functions of the continuous points have different frequency components between the time of the accident and the time of the excitation rush, they are detected as different basis functions. Neural network 34
, The neural network 34 makes a determination under the learning support means 35 that has learned in advance.
【0019】図3はニューラルネットワーク34の学習
過程を示すフローチャートであり、重みの初期設定を行
った後 (ステップS1)、ウェーブレット解析部33か
らの変換データ及び外部からの評価基準を与える (ステ
ップS2)。先ず、事故発生の判断を行うべき絶対値で
ある波形を与えて、評価基準として、“動作”、即ち事
故発生と判断する場合を設定する。次に同じ絶対値であ
るが、第2高調波を含んだ励磁突入電流の波形を与え
て、評価基準として“不動作”、即ち励磁突入電流と判
断する場合を設定する。このような操作を各種の波形値
に対して行ない重み調整する(ステップS3)。つまり
学習時にはニューラルネットワーク34に対して事故発
生時における種々のウェーブレット変換後の波形と、正
規な方形波の波形を与えることにより、波形パターンと
なすべき判断との関係を学習、換言すれば重みの調整を
行う。FIG. 3 is a flowchart showing a learning process of the neural network 34. After initial setting of weights (step S1), conversion data from the wavelet analysis unit 33 and an external evaluation standard are given (step S2). ). First, a waveform which is an absolute value to be used for determining the occurrence of an accident is given, and "operation", that is, a case where it is determined that an accident has occurred is set as an evaluation standard. Next, a waveform of the inrush current having the same absolute value but including the second harmonic is given, and "inactive", that is, a case where the inrush current is determined as the evaluation criterion is set. Such an operation is performed on various waveform values to adjust the weight (step S3). That is, at the time of learning, the relationship between the waveform after various wavelet transforms at the time of occurrence of an accident and the waveform of a normal square wave is given to the neural network 34 to learn the relationship between the determination to be a waveform pattern, in other words, the weight of the waveform pattern. Make adjustments.
【0020】次に、実際の配電系統に設置した状態で、
実際の励磁突入電流を流して、評価基準として“不動
作”の状態を与える。励磁突入電流は投入位相、負荷の
状況によって変わるので、何回も反復的に学習させ、信
頼性を高める。Next, in a state of being installed in an actual distribution system,
An actual inrush current is supplied to give an "inoperative" state as an evaluation criterion. Since the exciting inrush current changes depending on the applied phase and the load condition, the learning is repeatedly performed many times to enhance the reliability.
【0021】[0021]
【発明の効果】以上の如く本発明にあってはA/D変換
後のデータを比率作動検出手段に導入すると同時に、ウ
ェーブレット変換を実施し、そのデータをニューラルネ
ットワークに導入することとしたから、励磁突入電流と
事故電流との判別を正確に、しかも高速で判定が可能と
なる。また、従来必要とされていた動作タイマが不要と
なり、事故の被害を最小限に留め得ることが出来る等、
本発明は優れた効果を奏する。As described above, according to the present invention, the data after the A / D conversion is introduced into the ratio operation detecting means, and at the same time, the wavelet transform is performed and the data is introduced into the neural network. The discrimination between the inrush current and the fault current can be made accurately and at a high speed. In addition, the operation timer, which was conventionally required, becomes unnecessary, and the damage of the accident can be minimized.
The present invention has excellent effects.
【図1】 本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.
【図2】 本発明に係る実施の形態の構成を示すブロッ
ク図である。FIG. 2 is a block diagram showing a configuration of an embodiment according to the present invention.
【図3】 ニューラルネットワークの学習過程を示すフ
ローチャートである。FIG. 3 is a flowchart showing a learning process of the neural network.
【図4】 比率差動継電器の原理説明図である。FIG. 4 is a diagram illustrating the principle of a ratio differential relay.
【図5】 事故ケース別の各電流値の関係を示す図表で
ある。FIG. 5 is a chart showing a relationship between respective current values for each accident case.
【図6】 変圧器における定常電流と励磁突入電流とを
対比して示す説明図である。FIG. 6 is an explanatory diagram showing a comparison between a steady current and an exciting inrush current in a transformer.
【図7】 従来の比率差動継電器の構成を示すブロック
図である。FIG. 7 is a block diagram showing a configuration of a conventional ratio differential relay.
1 変圧器、2,22 比率差動継電器、11,31
前処理部、12,32A/D変換部、13 比率差動検
出部、21 監視センサ、、33 ウェーブレット解析
部、34 ニューラルネットワーク、35 学習支援手
段。1 transformer, 2,22 ratio differential relay, 11,31
Preprocessing unit, 12, 32 A / D conversion unit, 13 ratio differential detection unit, 21 monitoring sensor, 33 wavelet analysis unit, 34 neural network, 35 learning support means.
Claims (1)
の差電流を検出する各電流検出手段と、各電流及び差電
流をA/D変換出力するA/D変換部と、該A/D変換
部の出力データを相似変換して周波数成分に対応する基
底関数群を得るウェーブレット解析部と、該ウェーブレ
ット解析部の出力である基底関数群のデータと別に与え
られた正規データとこれらに基づいてなすべき判断との
関係を学習する学習手段と、該学習手段の支援のもとで
変圧器の異常の有無を判別するニューラルネットワーク
とを具備することを特徴とする変圧器保護用比率差動継
電器。A current detecting means for detecting currents on a primary side and a secondary side of a transformer and a current difference between the currents; an A / D converter for A / D converting and outputting the currents and the current difference; A wavelet analysis unit that obtains a basis function group corresponding to a frequency component by performing similarity conversion on the output data of the A / D conversion unit, and normal data provided separately from the basis function group data output from the wavelet analysis unit. A learning means for learning a relationship with a judgment to be made based on the above, and a neural network for judging the presence or absence of an abnormality in the transformer with the aid of the learning means. Differential relay.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9134039A JPH10327530A (en) | 1997-05-23 | 1997-05-23 | Ratio-differential relay for protecting transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9134039A JPH10327530A (en) | 1997-05-23 | 1997-05-23 | Ratio-differential relay for protecting transformer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10327530A true JPH10327530A (en) | 1998-12-08 |
Family
ID=15118950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9134039A Pending JPH10327530A (en) | 1997-05-23 | 1997-05-23 | Ratio-differential relay for protecting transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10327530A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100367155B1 (en) * | 2001-02-20 | 2003-01-09 | 학교법인 성균관대학 | Method for reclosing a transmission line using nural network |
KR100492526B1 (en) * | 2002-10-15 | 2005-06-02 | 디이시스 주식회사 | A Digital Protective Relaying Method for Power Transformer |
WO2014040448A1 (en) * | 2012-09-11 | 2014-03-20 | 南京南瑞继保电气有限公司 | Frequency-conversion differential protection method for output transformer of static frequency convertor system |
CN103675399A (en) * | 2012-09-17 | 2014-03-26 | 上海汽车集团股份有限公司 | Hall current measurement device with strong anti-jamming capability |
CN105281294A (en) * | 2014-06-13 | 2016-01-27 | 山东科技大学 | Transformer protection device based on wavelet IP core |
CN106019947A (en) * | 2016-07-31 | 2016-10-12 | 太原科技大学 | Servo direct drive pump control hydraulic system wavelet neural network control method |
JPWO2016035159A1 (en) * | 2014-09-03 | 2017-04-27 | 富士電機株式会社 | In-vehicle charger |
WO2019043910A1 (en) * | 2017-09-01 | 2019-03-07 | 三菱電機株式会社 | Digital protection relay and threshold learning method of digital protection relay |
JP6840306B1 (en) * | 2020-08-28 | 2021-03-10 | 三菱電機株式会社 | Digital Protective Relay and Digital Protective Relay Monitoring System |
CN115047240A (en) * | 2022-05-17 | 2022-09-13 | 国网湖北省电力有限公司黄冈供电公司 | Transformer magnetizing inrush current discrimination method using wavelet detail component change characteristics |
-
1997
- 1997-05-23 JP JP9134039A patent/JPH10327530A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100367155B1 (en) * | 2001-02-20 | 2003-01-09 | 학교법인 성균관대학 | Method for reclosing a transmission line using nural network |
KR100492526B1 (en) * | 2002-10-15 | 2005-06-02 | 디이시스 주식회사 | A Digital Protective Relaying Method for Power Transformer |
WO2014040448A1 (en) * | 2012-09-11 | 2014-03-20 | 南京南瑞继保电气有限公司 | Frequency-conversion differential protection method for output transformer of static frequency convertor system |
US9640981B2 (en) | 2012-09-11 | 2017-05-02 | Nr Electric Co., Ltd. | Frequency-conversion differential protection method for output transformer of static frequency converter system |
CN103675399A (en) * | 2012-09-17 | 2014-03-26 | 上海汽车集团股份有限公司 | Hall current measurement device with strong anti-jamming capability |
CN105281294A (en) * | 2014-06-13 | 2016-01-27 | 山东科技大学 | Transformer protection device based on wavelet IP core |
JPWO2016035159A1 (en) * | 2014-09-03 | 2017-04-27 | 富士電機株式会社 | In-vehicle charger |
CN106019947A (en) * | 2016-07-31 | 2016-10-12 | 太原科技大学 | Servo direct drive pump control hydraulic system wavelet neural network control method |
WO2019043910A1 (en) * | 2017-09-01 | 2019-03-07 | 三菱電機株式会社 | Digital protection relay and threshold learning method of digital protection relay |
JPWO2019043910A1 (en) * | 2017-09-01 | 2019-11-07 | 三菱電機株式会社 | Digital protective relay and threshold learning method for digital protective relay |
KR20200026986A (en) * | 2017-09-01 | 2020-03-11 | 미쓰비시덴키 가부시키가이샤 | Digital protective relays, and how to learn thresholds for digital protective relays |
JP6840306B1 (en) * | 2020-08-28 | 2021-03-10 | 三菱電機株式会社 | Digital Protective Relay and Digital Protective Relay Monitoring System |
WO2022044278A1 (en) * | 2020-08-28 | 2022-03-03 | 三菱電機株式会社 | Digital protective relay and digital protective relay monitoring system |
CN115047240A (en) * | 2022-05-17 | 2022-09-13 | 国网湖北省电力有限公司黄冈供电公司 | Transformer magnetizing inrush current discrimination method using wavelet detail component change characteristics |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1047887C (en) | Device for differentially protecting a power transformer | |
US9612269B2 (en) | System for detection of a ground fault in a high resistance ground network | |
US5677611A (en) | Control apparatus for an electric vehicle | |
JPH10327530A (en) | Ratio-differential relay for protecting transformer | |
JP2608701B2 (en) | Inspection circuit for protective device | |
EP3496222B1 (en) | Earth leakage circuit breaker based on the ratio of a specific harmonic current component to the fundamental wave current component | |
KR100495771B1 (en) | Fault Classification of Power System using Neuro-Fuzzy Network and method for judgement thereof | |
CN110703124B (en) | Method for detecting and protecting three-phase power supply and load phase loss | |
KR101999606B1 (en) | Protective Apparatus and Method for Zero Harmonic Filter | |
JPH1141793A (en) | Exciting inrush current discriminator | |
JP3786845B2 (en) | Anomaly detector for differential transformer | |
JPH11326393A (en) | Fault detector circuit for dc current detector | |
CN110879370B (en) | Fault current rapid judgment method based on multiple data windows | |
JP3019607B2 (en) | Overcurrent relay | |
JPH0654439A (en) | Digital type transformer protection relay device | |
JPH0118646B2 (en) | ||
CN116165594A (en) | Fault diagnosis method for output voltage sensor of parallel auxiliary converter of motor train unit | |
JPH0622441A (en) | Three-phase imbalance detector | |
JP2005027436A (en) | Circuit for detecting cross current of power converter, and uninterruptive power supply system | |
JPH06276670A (en) | Equipment for protecting power converter from overvoltage | |
JPH03270633A (en) | Ground relay device | |
JP2520714B2 (en) | Inspection and monitoring system for input circuits of digital protective relays | |
JPH0299431A (en) | Detecting relay for dc variation | |
JPH06339221A (en) | Ground-fault relay | |
JPH0613583Y2 (en) | Residual voltage / current removal circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20031216 |