WO2022044278A1 - Digital protective relay and digital protective relay monitoring system - Google Patents

Digital protective relay and digital protective relay monitoring system Download PDF

Info

Publication number
WO2022044278A1
WO2022044278A1 PCT/JP2020/032683 JP2020032683W WO2022044278A1 WO 2022044278 A1 WO2022044278 A1 WO 2022044278A1 JP 2020032683 W JP2020032683 W JP 2020032683W WO 2022044278 A1 WO2022044278 A1 WO 2022044278A1
Authority
WO
WIPO (PCT)
Prior art keywords
inrush current
harmonic
digital
transformer
unit
Prior art date
Application number
PCT/JP2020/032683
Other languages
French (fr)
Japanese (ja)
Inventor
裕紀 多田羅
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080103200.3A priority Critical patent/CN115885443A/en
Priority to PCT/JP2020/032683 priority patent/WO2022044278A1/en
Priority to JP2020566311A priority patent/JP6840306B1/en
Priority to KR1020237004244A priority patent/KR20230034393A/en
Priority to TW110109914A priority patent/TWI743010B/en
Publication of WO2022044278A1 publication Critical patent/WO2022044278A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/04Arrangements for preventing response to transient abnormal conditions, e.g. to lightning or to short duration over voltage or oscillations; Damping the influence of dc component by short circuits in ac networks
    • H02H1/043Arrangements for preventing response to transient abnormal conditions, e.g. to lightning or to short duration over voltage or oscillations; Damping the influence of dc component by short circuits in ac networks to inrush currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • H02H7/045Differential protection of transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Definitions

  • This disclosure relates to digital protected relays and digital protected relay monitoring systems.
  • Digital protected relays are used to protect, for example, transformers in the power system.
  • Various malfunction preventions have been studied in conventional digital protected relays. For example, in order to distinguish between the exciting inrush current that flows when a transformer or the like is connected to the system and the failure current at the time of system failure, the second harmonic component included in the input signal is detected and the ratio to the fundamental wave component. When exceeds the threshold value, it is determined that the exciting inrush current is determined, and it is known that the overcurrent protection operation of the relay when dealing with the fault current is prevented.
  • This disclosure is made to solve the above-mentioned problems, and it is possible to accumulate the measured excitation inrush current and the second harmonic component and calculate the change with time including the future predicted value from the data.
  • the purpose is to provide a possible digital protected relay, and to provide a digital protected relay monitoring system that can visualize changes over time to monitor the digital protected relay and grasp the deterioration status of the equipment connected to the digital protected relay. And.
  • the digital protection relay is a digital protection relay that inputs an AC current flowing through a transformer and cuts off a breaker connected to the transformer when an overcurrent is detected, and the input AC current.
  • a / D conversion unit that samples at regular time intervals, an arithmetic processing unit that performs frequency analysis from the digital values sampled by the A / D conversion unit, and an excitation plunge of the second harmonic extracted by the arithmetic processing unit.
  • a control unit that blocks the cutoff operation of the breaker when the ratio included in the current is equal to or higher than a predetermined threshold, and a first extracted by the arithmetic processing unit each time the breaker is turned on and the transformer is connected.
  • the threshold learning unit that updates the threshold based on the ratio included in the excitation inrush current of the second harmonic, the excitation inrush current used for the threshold update in the threshold learning unit, and the ratio included in the excitation inrush current of the second harmonic.
  • the threshold learning unit includes a storage unit that stores the calculated time together with the calculated time, and the threshold learning unit includes the ratio included in the excitation inrush current and the excitation inrush current of the second harmonic stored in the storage unit, and the breaker is turned on.
  • Excitation inrush current including future predicted value based on the newly input exciting inrush current when the transformer is connected and the ratio included in the exciting inrush current of the second harmonic extracted by the arithmetic processing unit. And the ratio included in the excitation inrush current of the second harmonic, the change with time is calculated.
  • the digital protected relay monitoring system includes the digital protected relay and a monitoring device connected to the digital protected relay, and the monitoring device is calculated by the threshold learning unit of the digital protected relay. It displays the time course of each of the ratios included in the exciting inrush current including the future predicted value and the exciting inrush current of the second harmonic.
  • the ratio included in the input exciting inrush current and the excitation inrush current of the second harmonic is stored and accumulated, and the future change with time is predicted from the data, so that the future prediction can be made. It is possible to set the threshold value based on the change over time including the result, and it is possible to further improve the reliability of the digital protected relay.
  • the change over time including the predicted value of the excitation inrush current and the ratio included in the exciting inrush current of the second harmonic is visualized. Not only monitoring but also the deterioration status of equipment such as transformers connected to digital protective relays can be grasped.
  • FIG. 1 It is a circuit block diagram which applied the digital protection relay which concerns on Embodiment 1 to the transformer for electric power. It is a functional block diagram of the digital protection relay and the digital protection relay monitoring system which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram of the digital protection relay and the digital protection relay monitoring system which concerns on Embodiment 1.
  • FIG. It is a figure explaining the use state of the monitoring apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the time-dependent change of the excitation inrush current displayed in the monitoring apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the time-dependent change of the 2nd harmonic content of the excitation inrush current displayed in the monitoring apparatus which concerns on Embodiment 1.
  • FIG. 1 is a circuit configuration diagram in which the digital protected relay 1 according to the first embodiment is applied to a transformer 3 for electric power.
  • a transformer 3 to be protected is connected to a power system power supply (not shown) via a circuit breaker 2 (CB: Circuit Breaker).
  • CB Circuit Breaker
  • CT main current transformer 4
  • the low voltage side of the transformer 3 is connected to a load (not shown) via a no-fuse breaker (MCCB: Molded Case Circuit Breaker) 5a and 5b.
  • MCCB Molded Case Circuit Breaker
  • the alternating current extracted by the main current transformer 4 is input to the digital protected relay 1, and if it is determined to be an overcurrent (failure current) generated due to a system failure or the like, the transformer is transformed by performing a cutoff operation of the circuit breaker 2.
  • the vessel 3 is protected.
  • FIG. 2 is a functional block diagram of the digital protected relay 1 and the digital protected relay monitoring system 100 according to the first embodiment.
  • the alternating current extracted by the main current transformer 4 is converted into an appropriate magnitude by the current measuring unit 11.
  • the A / D conversion unit 12 samples the alternating current converted by the current measurement unit 11 at regular time intervals and converts it into digital data.
  • the digital data is input to the arithmetic processing unit 13, and frequency analysis is performed by digital arithmetic such as FFT (Fast Fourier Transform) or digital addition / subtraction processing.
  • FFT Fast Fourier Transform
  • the control unit 14 determines that it is an exciting inrush current and executes the circuit breaker 2 breaking operation.
  • the threshold learning unit 15 performs a series of learning procedures from the generation of the excitation inrush current to the threshold calculation.
  • the learned threshold value is transmitted to the control unit 14, and the control unit 14 determines the threshold value of the ratio of the second harmonic to the fundamental wave component of the current used for determining the excitation inrush current (hereinafter referred to as the second harmonic content). Updated as.
  • the frequency analysis result calculated by the arithmetic processing unit 13 and the learning result by the threshold value learning unit 15 are stored and stored in the storage unit 16 which is a non-volatile memory. Further, although details will be described later, the threshold value learning unit 15 calculates future predicted values of the excitation inrush current and the second harmonic content using the data stored in the storage unit 16.
  • the data stored in the storage unit 16 is transmitted to the monitoring device 20 outside the digital protected relay 1 via the communication unit 17.
  • the digital protected relay monitoring system 100 includes the monitoring device 20 outside the digital protected relay 1.
  • FIG. 3 is a configuration diagram showing an example of the hardware of the digital protected relay 1 and the digital protected relay monitoring system 100 according to the first embodiment.
  • the current measuring unit 11 in the digital protected relay 1 is composed of an analog circuit, except for the A / D conversion unit 12, the arithmetic processing unit 13, the control unit 14, the threshold learning unit 15, the storage unit 16, and the communication unit. 17 is composed of at least a processor 101 and a storage device 102.
  • the digital protected relay monitoring system 100 is also composed of at least a processor 101 and a storage device 102.
  • the storage device 102 includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory.
  • the auxiliary storage device of the hard disk may be provided instead of the flash memory.
  • the processor 101 executes a program input from the storage device 102, performs sampling, frequency analysis by FFT, and the like. In this case, the program is input from the auxiliary storage device to the processor 101 via the volatile storage device. Further, the processor 101 may output data such as a calculation result to the volatile storage device of the storage device 102, or may store the data in the auxiliary storage device via the volatile storage device.
  • the threshold learning function described later may also be stored as a program in the storage device 102 and executed by the processor 101. Further, depending on the circuit configuration, a configuration may be configured in which a part of the processor is combined with an ASIC (Application Specific Integrated Circuit).
  • ASIC Application Specific Integrated Circuit
  • the main current transformer 4 constantly measures an alternating current, and the measured alternating current is input to the current measuring unit 11. Each time the circuit breaker 2 is turned on and the transformer 3 is connected to the system, the main current transformer 4 measures the alternating current as an exciting inrush current and inputs it to the current measuring unit 11. The signal converted to an appropriate size by the current measuring unit 11 is converted into digital data by the A / D conversion unit 12. The digital data input to the arithmetic processing unit 13 is subjected to frequency analysis, the second harmonic is extracted, and the second harmonic content is calculated. The calculated second harmonic content is input to the control unit 14 and the threshold value learning unit 15. The excitation inrush current is input to the threshold value learning unit 15 as well as the second harmonic content. The excitation inrush current and the second harmonic content input to the threshold value learning unit 15 are stored in the storage unit 16 together with the calculated time of the data.
  • the threshold value learning unit 15 updates the threshold value based on the excitation inrush current and the second harmonic content input this time, and transmits the threshold value to the control unit 14. Further, the change with time is predicted from the excitation inrush current and the second harmonic content input this time and the excitation inrush current and the second harmonic content stored in the storage unit 16.
  • the data of the excitation inrush current and the second harmonic content stored in the storage unit 16 and the time-dependent change of the excitation inrush current and the second harmonic content predicted by the threshold learning unit 15 are referred to by the communication unit 17. It is transmitted to the monitoring device 20 via.
  • FIG. 4 is a diagram illustrating a usage state of the monitoring device 20.
  • the monitoring device 20 is a terminal such as a PC (personal computer) or a tablet, and the data transmitted from the digital protected relay 1 is displayed on the display screen thereof.
  • the user who uses the digital protected relay 1 can monitor the operating status of the digital protected relay 1 from the displayed information such as the excitation inrush current and the change over time of the second harmonic content. Further, it is possible to predict the aging deterioration of the transformer 3 and the load, and it is possible to perform maintenance before the accident occurs due to the aging deterioration of the transformer 3 and the load. Therefore, the equipment can be operated more stably.
  • FIGS. 5 and 6 are diagrams showing an example of data displayed on the monitoring device 20
  • FIG. 5 is an example of the change over time of the exciting inrush current
  • FIG. 6 is a time change of the second harmonic content of the exciting inrush current. It is a figure which shows the example of.
  • the solid line is the actual data calculated by the digital protected relay 1
  • the broken line is the future predicted value.
  • the applicant has obtained the following information by analyzing the excitation inrush current measured by the digital protected relay 1.
  • the excitation inrush current increases due to aged deterioration of the transformer and load, but the current value of the second harmonic component does not change at a constant value. Also, these data fluctuate linearly over time. Therefore, as the change with time, the magnitude of the excitation inrush current increases, but the second harmonic content tends to decrease. Based on this tendency, the simple moving average method is used to calculate the future prediction data of the excitation inrush current and the second harmonic content from the average value of the actual data.
  • the simple moving average method is expressed by the following formula, and the future prediction data is calculated by using the data average values of n immediately preceding (n is a natural number of 2 or more).
  • n ⁇ 3 it is provisional using a preset threshold value and a linear function with reference to the transformer of the same model or the state of the load connected to the transformer of the same model.
  • the prediction data by the simple moving average method is created.
  • the calculation of the n + 2nd prediction data is repeated using the n + 1 data average values including the n + 1th prediction data, and a prediction diagram of the change with time is created.
  • the transformer 3 is connected to the system and a new exciting inrush current and a second harmonic content are acquired, the predicted diagram of the change with time is updated using the new data.
  • the digital protected relay 1 Users who use the digital protected relay 1 can see the updated excitation inrush current and second harmonic content over time each time the transformer 3 is connected to the grid and acquires a new exciting inrush current and second harmonic. It becomes possible to confirm the predicted diagram of the above with the monitoring device 20. Further, the user can directly set and change the threshold value set in the control unit 14 of the digital protected relay 1 from the change with time of the second harmonic content.
  • the threshold value may be set by using the setting function normally provided in the digital protected relay 1.
  • the user who uses the digital protected relay 1 is scheduled to perform harsh operation such that the transformer 3 and the load deteriorate according to the operation plan of the transformer 3 connected to the digital protected relay 1 and the load. Can adjust the threshold value itself or the coefficient for calculating the threshold value so that the threshold value becomes smaller. As a result, the digital protected relay 1 can be set to operate reliably.
  • the user using the digital protected relay 1 can see the updated excitation inrush current and the predicted change of the second harmonic content over time displayed on the monitoring device 20 from the transformer 3 and the load. It is possible to predict the deterioration of. Equipment management will be easier, such as accelerating the maintenance plan if the slope of the forecast diagram increases moment by moment, and reviewing the maintenance plan if the tilt of the forecast diagram becomes gentle.
  • the initial value may be updated after using the value predetermined from the actual results of the transformer of the same model. Every time the transformer 3 is connected to the system and a new exciting inrush current and the second harmonic content are acquired, the acquired second harmonic content may be multiplied by a coefficient and set.
  • the calculation method disclosed in Publication No. 2019/043910 may be used.
  • the threshold value learning unit 15 calculates the threshold value, and the transformer unit 14 transmits it to the storage unit 16.
  • the data is accumulated in the circuit breaker, but the trigger for the circuit breaker 2 to be turned on and the transformer 3 to be connected to the system is used when the digital protected relay 1 itself generates the operation signal of the circuit breaker 2.
  • the arithmetic processing unit 13 calculates the second harmonic content based on the input exciting inrush current, and the threshold value learning is performed. Since the threshold value is calculated by the unit 15 and the threshold value of the control unit 14 is updated, it is possible to set the threshold value according to the change with time. Further, the exciting inrush current and the second harmonic content are stored and stored in the storage unit 16 together with the calculated time, and the accumulated data and the newly calculated exciting inrush current and the second harmonic are stored in the threshold learning unit 15. Based on the wave content, future changes over time are predicted and calculated.
  • the monitoring device 20 outside the digital protected relay 1 acquires and displays the change over time including the data stored in the storage unit 16 and the future predicted value calculated by the threshold learning unit 15, the digital protected relay is displayed.
  • the user of 1 can confirm the visualized data and directly input the change of the threshold value to the digital protected relay 1.
  • the digital protected relay monitoring system 100 visualizes changes over time including data on the excitation inrush current and the second harmonic content stored in the digital protected relay 1 and their future predicted values. Since it is provided to the user, not only the monitoring of the digital protected relay 1 but also the deterioration state of the equipment such as the transformer 3 connected to the digital protected relay can be grasped. Furthermore, it becomes possible to reasonably plan the maintenance of the equipment from the deteriorated state of the equipment.
  • 1 Digital protected relay
  • 2 Circuit breaker
  • 3 Transformer
  • 4 Main current transformer
  • 5a, 5b No fuse breaker
  • 11 Current measurement unit
  • 12 A / D conversion unit
  • 13 Arithmetic processing unit
  • 14 Control unit
  • 15 Threshold learning unit
  • 16 Storage unit
  • 17 Communication unit
  • 20 Monitoring device
  • 100 Digital protected relay monitoring system
  • 101 Processor
  • 102 Storage device

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Protection Of Transformers (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

Provided is a digital protective relay (1) that inputs an alternating current flowing through a transformer (3) and that performs a cutoff operation of a circuit breaker (2) connected to the transformer (3) when an overcurrent is detected, the digital protective relay (1) comprising: a control unit (14) that blocks the cutoff operation of the circuit breaker when a proportion (second harmonic content) of an extracted second harmonic included in an excitation inrush current is at least a defined threshold value; a threshold value learning unit (15) that updates the threshold value on the basis of the extracted second harmonic content every time the circuit breaker (2) is inserted and the transformer (3) is connected; and a storage unit (16) that stores the excitation inrush current and the second harmonic content together with a calculated time, wherein the threshold value learning unit (15), on the basis of the excitation inrush current and the second harmonic content stored in the storage unit (16) and a newly input excitation inrush current and a second harmonic content corresponding thereto, calculates a change over time for both the excitation inrush current and the second harmonic content, including a future predicted value. A monitoring device (20) connected to the digital protective relay (1) displays the changes over time.

Description

ディジタル保護継電器及びディジタル保護継電器監視システムDigital protected relay and digital protected relay monitoring system
 本開示は、ディジタル保護継電器及びディジタル保護継電器監視システムに関する。 This disclosure relates to digital protected relays and digital protected relay monitoring systems.
 ディジタル保護継電器は、電力系統の例えば変圧器の保護に用いられるものである。従来のディジタル保護継電器において、様々な誤動作防止が検討されている。例えば、変圧器等を系統に接続した際に流れる励磁突入電流と、系統故障時の故障電流とを区別するために、入力信号に含まれる第2高調波成分を検出し、基本波成分に対する比率が閾値を超えた場合は、励磁突入電流と判定し、故障電流対応時の継電器の過電流保護動作をさせないようにすることが知られている。 Digital protected relays are used to protect, for example, transformers in the power system. Various malfunction preventions have been studied in conventional digital protected relays. For example, in order to distinguish between the exciting inrush current that flows when a transformer or the like is connected to the system and the failure current at the time of system failure, the second harmonic component included in the input signal is detected and the ratio to the fundamental wave component. When exceeds the threshold value, it is determined that the exciting inrush current is determined, and it is known that the overcurrent protection operation of the relay when dealing with the fault current is prevented.
 しかし、変圧器毎に励磁突入電流に含まれる高調波成分は異なるため、従来のように一義的に閾値を決めても、変圧器接続時に誤動作する可能性があった。これに対し、出願人は、変圧器接続時の励磁突入電流を学習して閾値を設定する学習機能を持ち、誤動作の生じない信頼性の高いディジタル保護継電器を提案している(例えば、特許文献1参照)。 However, since the harmonic component included in the exciting inrush current is different for each transformer, even if the threshold value is uniquely determined as in the past, there is a possibility of malfunction when the transformer is connected. On the other hand, the applicant has proposed a highly reliable digital protected relay that has a learning function of learning the exciting inrush current at the time of connecting a transformer and setting a threshold value and does not cause a malfunction (for example, Patent Document). 1).
国際公開第2019/043910号International Publication No. 2019/043910
 しかし、特許文献1における閾値の学習は、学習期間を設定してその期間にサンプリングを行い閾値の更新を行うようにしているので、用いられるデータに限りがある。また、蓄積されたデータの平均値をとることで、精度を上げようとしているが、さらに信頼性の高い閾値の設定を行う方法が期待されている。 However, in the learning of the threshold value in Patent Document 1, since the learning period is set and sampling is performed during that period to update the threshold value, the data used is limited. Further, although the accuracy is to be improved by taking the average value of the accumulated data, a method of setting a more reliable threshold value is expected.
 本開示は、上記の課題を解決するためになされたものであり、計測された励磁突入電流及び第2高調波成分を蓄積し、そのデータから将来の予測値を含む経時変化を算出することが可能なディジタル保護継電器を提供すること、及び経時変化を可視化してディジタル保護継電器の監視及びディジタル保護継電器に接続された設備の劣化状態の把握が可能なディジタル保護継電器監視システムを提供することを目的とする。 This disclosure is made to solve the above-mentioned problems, and it is possible to accumulate the measured excitation inrush current and the second harmonic component and calculate the change with time including the future predicted value from the data. The purpose is to provide a possible digital protected relay, and to provide a digital protected relay monitoring system that can visualize changes over time to monitor the digital protected relay and grasp the deterioration status of the equipment connected to the digital protected relay. And.
 本開示に係るディジタル保護継電器は、変圧器に流れる交流電流を入力し、過電流検出時に前記変圧器に接続される遮断器の遮断動作を行うディジタル保護継電器であって、入力された前記交流電流を一定時間間隔でサンプリングを行うA/D変換部、前記A/D変換部でサンプリングされたディジタル値から周波数解析を行う演算処理部、前記演算処理部で抽出された第2高調波の励磁突入電流に含まれる割合が定められた閾値以上のときに前記遮断器の遮断動作を阻止する制御部、前記遮断器が投入され前記変圧器が接続される毎に前記演算処理部で抽出された第2高調波の励磁突入電流に含まれる割合に基づいて閾値更新を行う閾値学習部、前記閾値学習部において閾値更新に用いられた励磁突入電流及び第2高調波の励磁突入電流に含まれる割合を算出された時刻と共に保存する記憶部を備え、前記閾値学習部は、前記記憶部に保存された励磁突入電流及び第2高調波の励磁突入電流に含まれる割合と、前記遮断器が投入され前記変圧器が接続された時に新たに入力された励磁突入電流及び前記演算処理部で抽出された第2高調波の励磁突入電流に含まれる割合とに基づいて、将来の予測値を含む励磁突入電流及び第2高調波の励磁突入電流に含まれる割合それぞれの経時変化を算出するものである。 The digital protection relay according to the present disclosure is a digital protection relay that inputs an AC current flowing through a transformer and cuts off a breaker connected to the transformer when an overcurrent is detected, and the input AC current. A / D conversion unit that samples at regular time intervals, an arithmetic processing unit that performs frequency analysis from the digital values sampled by the A / D conversion unit, and an excitation plunge of the second harmonic extracted by the arithmetic processing unit. A control unit that blocks the cutoff operation of the breaker when the ratio included in the current is equal to or higher than a predetermined threshold, and a first extracted by the arithmetic processing unit each time the breaker is turned on and the transformer is connected. The threshold learning unit that updates the threshold based on the ratio included in the excitation inrush current of the second harmonic, the excitation inrush current used for the threshold update in the threshold learning unit, and the ratio included in the excitation inrush current of the second harmonic. The threshold learning unit includes a storage unit that stores the calculated time together with the calculated time, and the threshold learning unit includes the ratio included in the excitation inrush current and the excitation inrush current of the second harmonic stored in the storage unit, and the breaker is turned on. Excitation inrush current including future predicted value based on the newly input exciting inrush current when the transformer is connected and the ratio included in the exciting inrush current of the second harmonic extracted by the arithmetic processing unit. And the ratio included in the excitation inrush current of the second harmonic, the change with time is calculated.
 本開示に係るディジタル保護継電器監視システムは、前記ディジタル保護継電器と、前記ディジタル保護継電器に接続された監視装置と、を備え、前記監視装置は、前記ディジタル保護継電器の前記閾値学習部で算出された将来の予測値を含む励磁突入電流及び第2高調波の励磁突入電流に含まれる割合それぞれの経時変化を表示するものである。 The digital protected relay monitoring system according to the present disclosure includes the digital protected relay and a monitoring device connected to the digital protected relay, and the monitoring device is calculated by the threshold learning unit of the digital protected relay. It displays the time course of each of the ratios included in the exciting inrush current including the future predicted value and the exciting inrush current of the second harmonic.
 本開示のディジタル保護継電器によれば、入力された励磁突入電流及び第2高調波の励磁突入電流に含まれる割合を保存、蓄積し、そのデータから将来の経時変化を予測するので、将来の予測結果を含む経時変化を基に閾値を設定することが可能となりディジタル保護継電器の信頼性をさらに向上させることが可能となる。 According to the digital protected relay of the present disclosure, the ratio included in the input exciting inrush current and the excitation inrush current of the second harmonic is stored and accumulated, and the future change with time is predicted from the data, so that the future prediction can be made. It is possible to set the threshold value based on the change over time including the result, and it is possible to further improve the reliability of the digital protected relay.
 また、本開示に係るディジタル保護継電器監視システムによれば、励磁突入電流及び第2高調波の励磁突入電流に含まれる割合の予測値を含む経時変化を可視化するようにしたので、ディジタル保護継電器の監視のみならずディジタル保護継電器に接続された変圧器等の設備の劣化状態も把握可能となる。 Further, according to the digital protected relay monitoring system according to the present disclosure, the change over time including the predicted value of the excitation inrush current and the ratio included in the exciting inrush current of the second harmonic is visualized. Not only monitoring but also the deterioration status of equipment such as transformers connected to digital protective relays can be grasped.
実施の形態1に係るディジタル保護継電器を電力用変圧器に適用した回路構成図である。It is a circuit block diagram which applied the digital protection relay which concerns on Embodiment 1 to the transformer for electric power. 実施の形態1に係るディジタル保護継電器及びディジタル保護継電器監視システムの機能ブロック図である。It is a functional block diagram of the digital protection relay and the digital protection relay monitoring system which concerns on Embodiment 1. FIG. 実施の形態1に係るディジタル保護継電器及びディジタル保護継電器監視システムのハードウエア構成図である。It is a hardware block diagram of the digital protection relay and the digital protection relay monitoring system which concerns on Embodiment 1. FIG. 実施の形態1に係る監視装置の使用状態を説明する図である。It is a figure explaining the use state of the monitoring apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る監視装置に表示される励磁突入電流の経時変化の例を示す図である。It is a figure which shows the example of the time-dependent change of the excitation inrush current displayed in the monitoring apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る監視装置に表示される励磁突入電流の第2高調波含有率の経時変化の例を示す図である。It is a figure which shows the example of the time-dependent change of the 2nd harmonic content of the excitation inrush current displayed in the monitoring apparatus which concerns on Embodiment 1. FIG.
 以下、本実施の形態について図を参照して説明する。なお、各図中、同一符号は、同一または相当部分を示すものとする。 Hereinafter, the present embodiment will be described with reference to the drawings. In each figure, the same reference numerals indicate the same or corresponding parts.
実施の形態1.
 以下、実施の形態1に係るディジタル保護継電器及びディジタル保護継電器監視システムについて図を用いて説明する。
 図1は、実施の形態1に係るディジタル保護継電器1を電力用の変圧器3に適用した回路構成図である。図1において、電力系統電源(図示せず) には、遮断器2(CB:Circuit Breaker)を介して被保護対象である変圧器3 が接続されている。また、各相の交流電流を抽出する主変流器4(CT:Circuit Transformer)が設けられている。変圧器3の低圧側は、ノーヒューズブレーカー(MCCB:Molded Case Circuit Breaker)5a、5bを介して負荷(図示せず)に接続される。主変流器4により抽出された交流電流がディジタル保護継電器1に入力され、系統故障等により発生する過電流(故障電流)と判断されれば、遮断器2の遮断動作を行うことにより、変圧器3が保護される。
Embodiment 1.
Hereinafter, the digital protected relay and the digital protected relay monitoring system according to the first embodiment will be described with reference to the drawings.
FIG. 1 is a circuit configuration diagram in which the digital protected relay 1 according to the first embodiment is applied to a transformer 3 for electric power. In FIG. 1, a transformer 3 to be protected is connected to a power system power supply (not shown) via a circuit breaker 2 (CB: Circuit Breaker). Further, a main current transformer 4 (CT: Circuit Transformer) for extracting the alternating current of each phase is provided. The low voltage side of the transformer 3 is connected to a load (not shown) via a no-fuse breaker (MCCB: Molded Case Circuit Breaker) 5a and 5b. The alternating current extracted by the main current transformer 4 is input to the digital protected relay 1, and if it is determined to be an overcurrent (failure current) generated due to a system failure or the like, the transformer is transformed by performing a cutoff operation of the circuit breaker 2. The vessel 3 is protected.
 図2は、実施の形態1に係るディジタル保護継電器1及びディジタル保護継電器監視システム100の機能ブロック図である。図2において、主変流器4により抽出された交流電流は電流計測部11により適当な大きさに変換される。A/D変換部12は、電流計測部11により変換された交流電流を一定時間間隔でサンプリングし、ディジタルデータに変換する。ディジタルデータは演算処理部13に入力され、FFT(Fast Fourier Transform)またはディジタル加減算処理などのディジタル演算による周波数解析を実施する。周波数解析の結果、電流の基本波成分に対する第2高調波の割合が閾値以上のときは、制御部14において励磁突入電流と判定して遮断器2の遮断動作を実行する。 FIG. 2 is a functional block diagram of the digital protected relay 1 and the digital protected relay monitoring system 100 according to the first embodiment. In FIG. 2, the alternating current extracted by the main current transformer 4 is converted into an appropriate magnitude by the current measuring unit 11. The A / D conversion unit 12 samples the alternating current converted by the current measurement unit 11 at regular time intervals and converts it into digital data. The digital data is input to the arithmetic processing unit 13, and frequency analysis is performed by digital arithmetic such as FFT (Fast Fourier Transform) or digital addition / subtraction processing. As a result of the frequency analysis, when the ratio of the second harmonic to the fundamental wave component of the current is equal to or higher than the threshold value, the control unit 14 determines that it is an exciting inrush current and executes the circuit breaker 2 breaking operation.
 閾値学習部15で、励磁突入電流発生から閾値演算までの一連の学習のための手順を行う。学習された閾値は制御部14に送信され、制御部14において、励磁突入電流の判定に用いる電流の基本波成分に対する第2高調波の割合(以下、第2高調波含有率と称する)の閾値として更新される。演算処理部13で算出された周波数解析の結果及び閾値学習部15での学習結果は不揮発性メモリである記憶部16に格納され、蓄積される。また、詳細は後述するが、記憶部16に蓄積されたデータを用いて、閾値学習部15では励磁突入電流及び第2高調波含有率の将来の予測値の算出を行う。記憶部16に蓄積されたデータは通信部17を介してディジタル保護継電器1外の監視装置20に送信される。ここでは、ディジタル保護継電器1外の監視装置20を含めたものがディジタル保護継電器監視システム100である。 The threshold learning unit 15 performs a series of learning procedures from the generation of the excitation inrush current to the threshold calculation. The learned threshold value is transmitted to the control unit 14, and the control unit 14 determines the threshold value of the ratio of the second harmonic to the fundamental wave component of the current used for determining the excitation inrush current (hereinafter referred to as the second harmonic content). Updated as. The frequency analysis result calculated by the arithmetic processing unit 13 and the learning result by the threshold value learning unit 15 are stored and stored in the storage unit 16 which is a non-volatile memory. Further, although details will be described later, the threshold value learning unit 15 calculates future predicted values of the excitation inrush current and the second harmonic content using the data stored in the storage unit 16. The data stored in the storage unit 16 is transmitted to the monitoring device 20 outside the digital protected relay 1 via the communication unit 17. Here, the digital protected relay monitoring system 100 includes the monitoring device 20 outside the digital protected relay 1.
 図3は、実施の形態1に係るディジタル保護継電器1及びディジタル保護継電器監視システム100のハードウエアの一例を示す構成図である。ディジタル保護継電器1内の電流計測部11はアナログ回路で構成されるが、それを除く、A/D変換部12、演算処理部13、制御部14、閾値学習部15、記憶部16及び通信部17は、少なくともプロセッサ101と記憶装置102とから構成される。また、ディジタル保護継電器監視システム100も同様に、少なくともプロセッサ101と記憶装置102とから構成される。記憶装置102には図示していないが、ランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ101は、記憶装置102から入力されたプログラムを実行し、サンプリング、及びFFTによる周波数解析等を実施する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ101にプログラムが入力される。また、プロセッサ101は、演算結果等のデータを記憶装置102の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。後述する閾値の学習機能も、プログラムとして記憶装置102に記憶され、プロセッサ101で実行されてもよい。また、回路構成によっては、プロセッサに一部ASIC(Application Specific Integrated  Circuit)を組み合わせた構成としてもよい。 FIG. 3 is a configuration diagram showing an example of the hardware of the digital protected relay 1 and the digital protected relay monitoring system 100 according to the first embodiment. The current measuring unit 11 in the digital protected relay 1 is composed of an analog circuit, except for the A / D conversion unit 12, the arithmetic processing unit 13, the control unit 14, the threshold learning unit 15, the storage unit 16, and the communication unit. 17 is composed of at least a processor 101 and a storage device 102. Similarly, the digital protected relay monitoring system 100 is also composed of at least a processor 101 and a storage device 102. Although not shown, the storage device 102 includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory. Further, the auxiliary storage device of the hard disk may be provided instead of the flash memory. The processor 101 executes a program input from the storage device 102, performs sampling, frequency analysis by FFT, and the like. In this case, the program is input from the auxiliary storage device to the processor 101 via the volatile storage device. Further, the processor 101 may output data such as a calculation result to the volatile storage device of the storage device 102, or may store the data in the auxiliary storage device via the volatile storage device. The threshold learning function described later may also be stored as a program in the storage device 102 and executed by the processor 101. Further, depending on the circuit configuration, a configuration may be configured in which a part of the processor is combined with an ASIC (Application Specific Integrated Circuit).
 次に、閾値学習部15及び監視装置20の動作について説明する。
 主変流器4は常時交流電流を計測し、計測された交流電流は電流計測部11に入力される。遮断器2が投入され、変圧器3が系統に接続される毎に、主変流器4は交流電流を励磁突入電流として計測し、電流計測部11に入力する。電流計測部11により適当な大きさに変換された信号は、A/D変換部12で、ディジタルデータに変換される。演算処理部13に入力されたディジタルデータは、周波数解析が実施され、第2高調波が抽出されるとともに第2高調波含有率が算出される。算出された第2高調波含有率は制御部14及び閾値学習部15に入力される。閾値学習部15には、第2高調波含有率とともに、励磁突入電流も入力される。閾値学習部15に入力された励磁突入電流及び第2高調波含有率はデータの算出された時刻とともに記憶部16に保存される。
Next, the operation of the threshold value learning unit 15 and the monitoring device 20 will be described.
The main current transformer 4 constantly measures an alternating current, and the measured alternating current is input to the current measuring unit 11. Each time the circuit breaker 2 is turned on and the transformer 3 is connected to the system, the main current transformer 4 measures the alternating current as an exciting inrush current and inputs it to the current measuring unit 11. The signal converted to an appropriate size by the current measuring unit 11 is converted into digital data by the A / D conversion unit 12. The digital data input to the arithmetic processing unit 13 is subjected to frequency analysis, the second harmonic is extracted, and the second harmonic content is calculated. The calculated second harmonic content is input to the control unit 14 and the threshold value learning unit 15. The excitation inrush current is input to the threshold value learning unit 15 as well as the second harmonic content. The excitation inrush current and the second harmonic content input to the threshold value learning unit 15 are stored in the storage unit 16 together with the calculated time of the data.
 閾値学習部15は、今回入力された励磁突入電流及び第2高調波含有率を基に、閾値を更新し、制御部14に送信する。さらに、今回入力された励磁突入電流及び第2高調波含有率と、記憶部16に蓄積されている励磁突入電流及び第2高調波含有率とから経時変化を予測する。 The threshold value learning unit 15 updates the threshold value based on the excitation inrush current and the second harmonic content input this time, and transmits the threshold value to the control unit 14. Further, the change with time is predicted from the excitation inrush current and the second harmonic content input this time and the excitation inrush current and the second harmonic content stored in the storage unit 16.
 記憶部16に蓄積されている励磁突入電流及び第2高調波含有率のデータと、閾値学習部15で予測された励磁突入電流及び第2高調波含有率の経時変化とは、通信部17を介して監視装置20に送信される。 The data of the excitation inrush current and the second harmonic content stored in the storage unit 16 and the time-dependent change of the excitation inrush current and the second harmonic content predicted by the threshold learning unit 15 are referred to by the communication unit 17. It is transmitted to the monitoring device 20 via.
 図4は、監視装置20の使用状態を説明する図である。監視装置20は例えばPC(パーソナルコンピュータ)あるいはタブレット等の端末であり、その表示画面に、ディジタル保護継電器1から送信されたデータが表示される。ディジタル保護継電器1を使用するユーザは、表示された励磁突入電流及び第2高調波含有率の経時変化等の情報からディジタル保護継電器1の動作状況を監視することができる。また、変圧器3、負荷の経年劣化の予測が可能となり、変圧器3、負荷の経年劣化による事故発生前にメンテナンスを行うことが可能となる。そのため、設備をより安定的に運用することが可能となる。 FIG. 4 is a diagram illustrating a usage state of the monitoring device 20. The monitoring device 20 is a terminal such as a PC (personal computer) or a tablet, and the data transmitted from the digital protected relay 1 is displayed on the display screen thereof. The user who uses the digital protected relay 1 can monitor the operating status of the digital protected relay 1 from the displayed information such as the excitation inrush current and the change over time of the second harmonic content. Further, it is possible to predict the aging deterioration of the transformer 3 and the load, and it is possible to perform maintenance before the accident occurs due to the aging deterioration of the transformer 3 and the load. Therefore, the equipment can be operated more stably.
 次に、励磁突入電流及び第2高調波の割合の経時変化の予測方法について、監視装置20に表示されるデータを参照して説明する。
 図5及び図6は、監視装置20に表示されるデータの例を示す図で、図5は励磁突入電流の経時変化の例、図6は励磁突入電流の第2高調波含有率の経時変化の例を示す図である。図5及び図6において、実線はディジタル保護継電器1で算出した実績データ、破線は将来の予測値である。
Next, a method of predicting the change with time of the excitation inrush current and the ratio of the second harmonic will be described with reference to the data displayed on the monitoring device 20.
5 and 6 are diagrams showing an example of data displayed on the monitoring device 20, FIG. 5 is an example of the change over time of the exciting inrush current, and FIG. 6 is a time change of the second harmonic content of the exciting inrush current. It is a figure which shows the example of. In FIGS. 5 and 6, the solid line is the actual data calculated by the digital protected relay 1, and the broken line is the future predicted value.
 ディジタル保護継電器1で計測した励磁突入電流を解析し、出願人は次の情報を得ている。変圧器及び負荷の経年劣化によって、励磁突入電流は大きくなるが、第2高調波成分の電流値に関しては、一定値で変化しない。また、これらのデータは時間の経過と共に線形に変動する。そのため、経時変化として、励磁突入電流の大きさは増加するが、第2高調波含有率は減少する傾向となる。
 この傾向を基に、単純移動平均法を用い、実績データの平均値から励磁突入電流及び第2高調波含有率の将来予測データを算出する。
The applicant has obtained the following information by analyzing the excitation inrush current measured by the digital protected relay 1. The excitation inrush current increases due to aged deterioration of the transformer and load, but the current value of the second harmonic component does not change at a constant value. Also, these data fluctuate linearly over time. Therefore, as the change with time, the magnitude of the excitation inrush current increases, but the second harmonic content tends to decrease.
Based on this tendency, the simple moving average method is used to calculate the future prediction data of the excitation inrush current and the second harmonic content from the average value of the actual data.
 単純移動平均法は次の式で表され、この式により直前n個(nは2以上の自然数)のデータ平均値を用いて将来予測データを算出するものである。
Figure JPOXMLDOC01-appb-M000001
The simple moving average method is expressed by the following formula, and the future prediction data is calculated by using the data average values of n immediately preceding (n is a natural number of 2 or more).
Figure JPOXMLDOC01-appb-M000001
 なお、n≦3の場合は、同機種の変圧器、あるいは同機種の変圧器に接続された負荷の状況を参考にした予め設定された初期値の閾値及び1次関数を用いて暫定的な経時変化の予測線図を作成しておく。n>3で、単純移動平均法による予測データを作成する。この時、n+1番目の予測データを算出後、それを含めたn+1個のデータ平均値を用いてn+2番目の予測データを算出することを繰り返し、経時変化の予測線図を作成する。
 変圧器3が系統に接続され、新しく励磁突入電流と第2高調波含有率を取得すると、新しいデータを用いて、経時変化の予測線図を更新する。
In the case of n≤3, it is provisional using a preset threshold value and a linear function with reference to the transformer of the same model or the state of the load connected to the transformer of the same model. Create a predicted diagram of changes over time. When n> 3, the prediction data by the simple moving average method is created. At this time, after calculating the n + 1st prediction data, the calculation of the n + 2nd prediction data is repeated using the n + 1 data average values including the n + 1th prediction data, and a prediction diagram of the change with time is created.
When the transformer 3 is connected to the system and a new exciting inrush current and a second harmonic content are acquired, the predicted diagram of the change with time is updated using the new data.
 ディジタル保護継電器1を使用するユーザは、変圧器3が系統に接続され、新しく励磁突入電流と第2高調波を取得する毎に、更新された励磁突入電流及び第2高調波含有率の経時変化の予測線図を監視装置20で確認することが可能となる。また、ユーザは、第2高調波含有率の経時変化からディジタル保護継電器1の制御部14に設定されている閾値を直接設定、変更することができる。閾値の設定は、ディジタル保護継電器1に通常設けられている設定機能を用いればよい。 Users who use the digital protected relay 1 can see the updated excitation inrush current and second harmonic content over time each time the transformer 3 is connected to the grid and acquires a new exciting inrush current and second harmonic. It becomes possible to confirm the predicted diagram of the above with the monitoring device 20. Further, the user can directly set and change the threshold value set in the control unit 14 of the digital protected relay 1 from the change with time of the second harmonic content. The threshold value may be set by using the setting function normally provided in the digital protected relay 1.
 また、ディジタル保護継電器1を使用するユーザは、ディジタル保護継電器1に接続された変圧器3及び負荷の運用計画に応じ、例えば変圧器3及び負荷の劣化が進む過酷な運用が予定されている場合は、閾値が小さくなるように閾値自身あるいは閾値を算出する係数を調整する等を行うことが可能となる。これにより、ディジタル保護継電器1が確実に動作するように設定することができる。 Further, the user who uses the digital protected relay 1 is scheduled to perform harsh operation such that the transformer 3 and the load deteriorate according to the operation plan of the transformer 3 connected to the digital protected relay 1 and the load. Can adjust the threshold value itself or the coefficient for calculating the threshold value so that the threshold value becomes smaller. As a result, the digital protected relay 1 can be set to operate reliably.
 上述したように、ディジタル保護継電器1を使用するユーザは、監視装置20に表示される更新される励磁突入電流及び第2高調波含有率の経時変化の予測線図をから、変圧器3及び負荷の劣化を予測することが可能となる。予測線図の傾きが刻々と大きくなればメンテナンス計画を早める、予測線図の傾きが緩やかになればメンテナンス計画を見直す等、設備管理も容易となる。 As described above, the user using the digital protected relay 1 can see the updated excitation inrush current and the predicted change of the second harmonic content over time displayed on the monitoring device 20 from the transformer 3 and the load. It is possible to predict the deterioration of. Equipment management will be easier, such as accelerating the maintenance plan if the slope of the forecast diagram increases moment by moment, and reviewing the maintenance plan if the tilt of the forecast diagram becomes gentle.
 閾値の設定及び更新方法について説明を省略したが、初期値は同機種の変圧器の実績から予め決められた値を用いた後、更新していけばよい。変圧器3が系統に接続され、新しく励磁突入電流と第2高調波含有率を取得する毎に、取得された第2高調波含有率に係数を掛けて設定するようにしてもよいし、国際公開第2019/043910号に開示された計算方法を用いてもよい。 Although the explanation of the threshold setting and updating method is omitted, the initial value may be updated after using the value predetermined from the actual results of the transformer of the same model. Every time the transformer 3 is connected to the system and a new exciting inrush current and the second harmonic content are acquired, the acquired second harmonic content may be multiplied by a coefficient and set. The calculation method disclosed in Publication No. 2019/043910 may be used.
 また、遮断器2が投入され、変圧器3が系統に接続される毎に交流電流を励磁突入電流として計測し、閾値学習部15で閾値を算出し、制御部14に送信し、記憶部16にデータが蓄積されていくが、遮断器2が投入され変圧器3が系統に接続されるトリガーは、ディジタル保護継電器1自身が遮断器2の動作信号を生成している場合はそれを用いる。 Further, every time the circuit breaker 2 is turned on and the transformer 3 is connected to the system, the AC current is measured as an exciting inrush current, the threshold value learning unit 15 calculates the threshold value, and the transformer unit 14 transmits it to the storage unit 16. The data is accumulated in the circuit breaker, but the trigger for the circuit breaker 2 to be turned on and the transformer 3 to be connected to the system is used when the digital protected relay 1 itself generates the operation signal of the circuit breaker 2.
 以上のように実施の形態1によれば、本実施の形態に係るディジタル保護継電器1は、入力された励磁突入電流を基に演算処理部13で第2高調波含有率を算出し、閾値学習部15で閾値を算出して制御部14の閾値を更新するので、経時変化に伴った閾値を設定することが可能となる。また、励磁突入電流及び第2高調波含有率は算出された時刻と共に記憶部16に格納されて蓄積され、閾値学習部15では蓄積されたデータ及び新たに算出された励磁突入電流及び第2高調波含有率を基に、将来の経時変化を予測して算出するようにした。ディジタル保護継電器1外の監視装置20は、記憶部16に蓄積されたデータ及び閾値学習部15で算出された将来の予測値を含む経時変化を取得し、表示するようにしたので、ディジタル保護継電器1のユーザは可視化されたデータを確認し、ディジタル保護継電器1に直接、閾値の変更を入力することが可能となる。 As described above, according to the first embodiment, in the digital protected relay 1 according to the present embodiment, the arithmetic processing unit 13 calculates the second harmonic content based on the input exciting inrush current, and the threshold value learning is performed. Since the threshold value is calculated by the unit 15 and the threshold value of the control unit 14 is updated, it is possible to set the threshold value according to the change with time. Further, the exciting inrush current and the second harmonic content are stored and stored in the storage unit 16 together with the calculated time, and the accumulated data and the newly calculated exciting inrush current and the second harmonic are stored in the threshold learning unit 15. Based on the wave content, future changes over time are predicted and calculated. Since the monitoring device 20 outside the digital protected relay 1 acquires and displays the change over time including the data stored in the storage unit 16 and the future predicted value calculated by the threshold learning unit 15, the digital protected relay is displayed. The user of 1 can confirm the visualized data and directly input the change of the threshold value to the digital protected relay 1.
 また、本実施の形態に係るディジタル保護継電器監視システム100は、ディジタル保護継電器1に蓄積された励磁突入電流及び第2高調波含有率のデータ及びそれらの将来の予測値を含む経時変化を可視化してユーザに提供するので、ディジタル保護継電器1の監視のみならずディジタル保護継電器に接続された変圧器3等の設備の劣化状態も把握可能となる。さらに、設備の劣化状態から設備のメンテナンスを合理的に計画することが可能となる。 Further, the digital protected relay monitoring system 100 according to the present embodiment visualizes changes over time including data on the excitation inrush current and the second harmonic content stored in the digital protected relay 1 and their future predicted values. Since it is provided to the user, not only the monitoring of the digital protected relay 1 but also the deterioration state of the equipment such as the transformer 3 connected to the digital protected relay can be grasped. Furthermore, it becomes possible to reasonably plan the maintenance of the equipment from the deteriorated state of the equipment.
 本開示は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
The present disclosure describes various exemplary embodiments and examples, although the various features, embodiments, and functions described in one or more embodiments are those of a particular embodiment. It is not limited to application, but can be applied to embodiments alone or in various combinations.
Therefore, innumerable variations not illustrated are envisioned within the scope of the techniques disclosed herein. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
 1:ディジタル保護継電器、 2:遮断器、 3:変圧器、 4:主変流器、 5a、5b:ノーヒューズブレーカー、 11:電流計測部、 12:A/D変換部、 13:演算処理部、 14:制御部、 15:閾値学習部、 16:記憶部、 17:通信部、 20:監視装置、 100:ディジタル保護継電器監視システム、 101:プロセッサ、 102:記憶装置 1: Digital protected relay, 2: Circuit breaker, 3: Transformer, 4: Main current transformer, 5a, 5b: No fuse breaker, 11: Current measurement unit, 12: A / D conversion unit, 13: Arithmetic processing unit , 14: Control unit, 15: Threshold learning unit, 16: Storage unit, 17: Communication unit, 20: Monitoring device, 100: Digital protected relay monitoring system, 101: Processor, 102: Storage device

Claims (4)

  1.  変圧器に流れる交流電流を入力し、過電流検出時に前記変圧器に接続される遮断器の遮断動作を行うディジタル保護継電器であって、
     入力された前記交流電流を一定時間間隔でサンプリングを行うA/D変換部、
     前記A/D変換部でサンプリングされたディジタル値から周波数解析を行う演算処理部、
     前記演算処理部で抽出された第2高調波の励磁突入電流に含まれる割合が定められた閾値以上のときに前記遮断器の遮断動作を阻止する制御部、
     前記遮断器が投入され前記変圧器が接続される毎に前記演算処理部で抽出された第2高調波の励磁突入電流に含まれる割合に基づいて閾値更新を行う閾値学習部、
     前記閾値学習部において閾値更新に用いられた励磁突入電流及び第2高調波の励磁突入電流に含まれる割合を算出された時刻と共に保存する記憶部を備え、
     前記閾値学習部は、前記記憶部に保存された励磁突入電流及び第2高調波の励磁突入電流に含まれる割合と、前記遮断器が投入され前記変圧器が接続された時に新たに入力された励磁突入電流及び前記演算処理部で抽出された第2高調波の励磁突入電流に含まれる割合とに基づいて、将来の予測値を含む励磁突入電流及び第2高調波の励磁突入電流に含まれる割合それぞれの経時変化を算出するディジタル保護継電器。
    A digital protective relay that inputs an alternating current flowing through a transformer and cuts off the circuit breaker connected to the transformer when an overcurrent is detected.
    A / D converter that samples the input AC current at regular time intervals,
    An arithmetic processing unit that performs frequency analysis from digital values sampled by the A / D conversion unit.
    A control unit that prevents the circuit breaker from breaking when the ratio included in the exciting inrush current of the second harmonic extracted by the arithmetic processing unit is equal to or greater than a predetermined threshold value.
    A threshold learning unit that updates the threshold value based on the ratio included in the exciting inrush current of the second harmonic extracted by the arithmetic processing unit each time the circuit breaker is turned on and the transformer is connected.
    The threshold learning unit is provided with a storage unit that stores the ratio included in the excitation inrush current used for threshold update and the excitation inrush current of the second harmonic together with the calculated time.
    The threshold learning unit is newly input when the breaker is turned on and the transformer is connected to the ratio included in the exciting inrush current and the exciting inrush current of the second harmonic stored in the storage unit. It is included in the exciting inrush current including the future predicted value and the exciting inrush current of the second harmonic based on the exciting inrush current and the ratio included in the exciting inrush current of the second harmonic extracted by the arithmetic processing unit. A digital protection relay that calculates the change over time for each ratio.
  2.  前記閾値学習部において、単純移動平均法を用いて将来の予測値を含む励磁突入電流及び第2高調波の励磁突入電流に含まれる割合それぞれの経時変化を算出する請求項1に記載のディジタル保護継電器。 The digital protection according to claim 1, wherein in the threshold learning unit, a simple moving average method is used to calculate changes over time in the exciting inrush current including the future predicted value and the ratio included in the exciting inrush current of the second harmonic. relay.
  3.  前記閾値学習部は、前記遮断器が投入され前記変圧器が接続される毎に新たに入力された励磁突入電流及び前記演算処理部で抽出された第2高調波の励磁突入電流に含まれる割合に基づいて、将来の予測値を含む励磁突入電流及び第2高調波の励磁突入電流に含まれる割合それぞれの経時変化を算出し更新する請求項1または2に記載のディジタル保護継電器。 The threshold learning unit is included in the newly input exciting inrush current and the exciting inrush current of the second harmonic extracted by the arithmetic processing unit each time the circuit breaker is turned on and the transformer is connected. The digital protection relay according to claim 1 or 2, wherein the change with time of each of the excitation inrush current including the future predicted value and the ratio included in the excitation inrush current of the second harmonic is calculated and updated based on the above.
  4.  請求項1から3のいずれか1項に記載のディジタル保護継電器と、
     前記ディジタル保護継電器に接続された監視装置と、を備え、
     前記監視装置は、前記ディジタル保護継電器の前記閾値学習部で算出された将来の予測値を含む励磁突入電流及び第2高調波の励磁突入電流に含まれる割合それぞれの経時変化を表示するディジタル保護継電器監視システム。
    The digital protected relay according to any one of claims 1 to 3.
    A monitoring device connected to the digital protective relay is provided.
    The monitoring device is a digital protective relay that displays changes over time in the excitation inrush current including the future predicted value calculated by the threshold learning unit of the digital protection relay and the ratio included in the excitation inrush current of the second harmonic. Monitoring system.
PCT/JP2020/032683 2020-08-28 2020-08-28 Digital protective relay and digital protective relay monitoring system WO2022044278A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080103200.3A CN115885443A (en) 2020-08-28 2020-08-28 Digital protection relay and digital protection relay monitoring system
PCT/JP2020/032683 WO2022044278A1 (en) 2020-08-28 2020-08-28 Digital protective relay and digital protective relay monitoring system
JP2020566311A JP6840306B1 (en) 2020-08-28 2020-08-28 Digital Protective Relay and Digital Protective Relay Monitoring System
KR1020237004244A KR20230034393A (en) 2020-08-28 2020-08-28 Digital protection relays and digital protection relay monitoring systems
TW110109914A TWI743010B (en) 2020-08-28 2021-03-19 Digital protection relay and digital protection relay monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/032683 WO2022044278A1 (en) 2020-08-28 2020-08-28 Digital protective relay and digital protective relay monitoring system

Publications (1)

Publication Number Publication Date
WO2022044278A1 true WO2022044278A1 (en) 2022-03-03

Family

ID=74845324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032683 WO2022044278A1 (en) 2020-08-28 2020-08-28 Digital protective relay and digital protective relay monitoring system

Country Status (5)

Country Link
JP (1) JP6840306B1 (en)
KR (1) KR20230034393A (en)
CN (1) CN115885443A (en)
TW (1) TWI743010B (en)
WO (1) WO2022044278A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115800213A (en) * 2022-11-29 2023-03-14 珠海康晋电气股份有限公司 Distributed distribution automation measurement and control terminal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230164719A (en) * 2021-05-10 2023-12-04 미쓰비시덴키 가부시키가이샤 protection relay

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327530A (en) * 1997-05-23 1998-12-08 Mitsubishi Electric Corp Ratio-differential relay for protecting transformer
JPH11252783A (en) * 1998-03-05 1999-09-17 Toshiba Corp Over-current relaying apparatus
JP2009148018A (en) * 2007-12-12 2009-07-02 Tokyo Electric Power Co Inc:The Method for specifying excitation rush current phenomenon
WO2019043910A1 (en) * 2017-09-01 2019-03-07 三菱電機株式会社 Digital protection relay and threshold learning method of digital protection relay

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283938B2 (en) * 2008-03-18 2013-09-04 株式会社東芝 Digital protective relay device
US8553379B2 (en) * 2009-09-17 2013-10-08 Schweitzer Engineering Laboratories Inc Transformer differential protection
CN104348156A (en) * 2013-07-29 2015-02-11 国网青海省电力公司 Integrated method for suppressing high-capacity transformer no-load excitation inrush current
TWI545862B (en) * 2015-07-30 2016-08-11 國立臺灣科技大學 Fault current identification method and system applied to a differential protection relay of a transformer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327530A (en) * 1997-05-23 1998-12-08 Mitsubishi Electric Corp Ratio-differential relay for protecting transformer
JPH11252783A (en) * 1998-03-05 1999-09-17 Toshiba Corp Over-current relaying apparatus
JP2009148018A (en) * 2007-12-12 2009-07-02 Tokyo Electric Power Co Inc:The Method for specifying excitation rush current phenomenon
WO2019043910A1 (en) * 2017-09-01 2019-03-07 三菱電機株式会社 Digital protection relay and threshold learning method of digital protection relay

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115800213A (en) * 2022-11-29 2023-03-14 珠海康晋电气股份有限公司 Distributed distribution automation measurement and control terminal
CN115800213B (en) * 2022-11-29 2023-07-04 珠海康晋电气股份有限公司 Distributed power distribution automation measurement and control terminal

Also Published As

Publication number Publication date
CN115885443A (en) 2023-03-31
TWI743010B (en) 2021-10-11
JPWO2022044278A1 (en) 2022-03-03
KR20230034393A (en) 2023-03-09
TW202209778A (en) 2022-03-01
JP6840306B1 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
WO2022044278A1 (en) Digital protective relay and digital protective relay monitoring system
CN101647167B (en) System and method for circuit overcurrent protection
WO2015027127A1 (en) Oil-immersed transformed thermal monitoring and prediction system
EP2482409B1 (en) DC Arc fault detection and protection
JPS63121422A (en) Digital solid tripper of breaker
EP2053716A2 (en) Alternating current series arc fault detection method
EP2884291B1 (en) Fault location in electrical network
KR100777828B1 (en) Electronic wattmeter capable of power distribution line and the fault monitoring method thereby
CA2743580A1 (en) Method and system for estimation of source impedence on electrical distribution lines
CN111033922B (en) Digital protection relay and threshold learning method of digital protection relay
JP5591505B2 (en) Power system stabilization system
JP2006204069A (en) Individual operation detecting method and individual operation detecting device
JP2010093946A (en) Electronic circuit breaker
EP2110917A2 (en) Method of setting a ground fault trip function for a trip unit and a trip unit having a defined trip function for ground fault protection
US20160225548A1 (en) Power switching control apparatus and closing control method
KR101389793B1 (en) Apparatus and method for monitoring and analyzing motor
JP4874480B2 (en) Circuit breaker monitoring system
JP5225448B2 (en) Circuit breaker
CN112332529B (en) Improved electronic protection device for an electric distribution network
JP7479012B2 (en) Circuit breaker systems, circuit breakers and distribution boards
CN110366765B (en) Circuit breaker
JP5030713B2 (en) Short-circuit accident detection relay
CN115735128A (en) Method and system for determining characteristic variables
JP2000201430A (en) Harmonic relay
CN117223183A (en) Protective relay

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020566311

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237004244

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951528

Country of ref document: EP

Kind code of ref document: A1