JPH10324664A - Production of unsaturated carboxylic acid ester - Google Patents

Production of unsaturated carboxylic acid ester

Info

Publication number
JPH10324664A
JPH10324664A JP9133092A JP13309297A JPH10324664A JP H10324664 A JPH10324664 A JP H10324664A JP 9133092 A JP9133092 A JP 9133092A JP 13309297 A JP13309297 A JP 13309297A JP H10324664 A JPH10324664 A JP H10324664A
Authority
JP
Japan
Prior art keywords
catalyst
unsaturated carboxylic
carboxylic acid
reaction
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9133092A
Other languages
Japanese (ja)
Inventor
Yuichi Sato
裕一 佐藤
Kimio Ariyoshi
公男 有吉
Noboru Saito
昇 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP9133092A priority Critical patent/JPH10324664A/en
Publication of JPH10324664A publication Critical patent/JPH10324664A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an α,β-unsaturated carboxylic acid ester in high selectivity and yield by the vapor-phase alkyl esterification of an α,β-unsaturated carboxylic acid with alcohol in the presence of a specific catalyst. SOLUTION: This method uses an oxide containing an alkaline metal element as the catalyst for the vapor-phase esterification of an α,β-unsaturated carboxylic acid with alcohol to produce the α,β-unsaturated carboxylic acid ester. The oxide as the catalyst preferably comprises an alkali metal element and at least one element selected from the group consisting of the groups IIIb, IVb, IIIa, IVa, and Va elements, more preferably from the group consisting of silicon, titanium and zirconium. The oxide is particularly preferably shown by the formula (M is an alkaline metal; X is Si, Ti or Zr; Q is Y, La, Ce, B or the like; (a) to (d) are each an atomic number of each element).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、α,β−不飽和カ
ルボン酸エステル類を製造する方法に関する。α,β−
不飽和カルボン酸エステル類、特にアクリル酸およびメ
タクリル酸のアルキルエステル類は、合成樹脂、合成繊
維等の原料として工業的に非常に有用な化合物である。
[0001] The present invention relates to a method for producing α, β-unsaturated carboxylic acid esters. α, β-
Unsaturated carboxylic acid esters, particularly alkyl esters of acrylic acid and methacrylic acid are industrially very useful compounds as raw materials for synthetic resins, synthetic fibers and the like.

【0002】[0002]

【従来の技術】従来、α,β−不飽和カルボン酸類とア
ルコール類のエステル化法としては、硫酸触媒または燐
酸触媒などの鉱酸触媒や強酸性のイオン交換樹脂を触媒
に用いる液相法、または固体酸触媒を用いる気相法が知
られている。
2. Description of the Related Art Heretofore, as a method of esterifying an α, β-unsaturated carboxylic acid and an alcohol, a liquid phase method using a mineral acid catalyst such as a sulfuric acid catalyst or a phosphoric acid catalyst or a strongly acidic ion exchange resin as a catalyst has been known. Alternatively, a gas phase method using a solid acid catalyst is known.

【0003】生産性の点でより優れている気相法の例と
しては、固体リン酸触媒を用いる方法(特公昭42−5
222号公報等)、硫化モリブデン触媒を用いる方法
(特公昭44−9885号公報等)が、シリカ−チタニ
ア触媒を用いる方法(特公昭55−33702号公報
等)が提案されている。
An example of a gas phase method which is more excellent in productivity is a method using a solid phosphoric acid catalyst (Japanese Patent Publication No. Sho 42-5).
No. 222), a method using a molybdenum sulfide catalyst (Japanese Patent Publication No. 44-9885, etc.) and a method using a silica-titania catalyst (Japanese Patent Publication No. 55-33702, etc.) have been proposed.

【0004】しかしながら、いずれの方法も、α,β−
不飽和カルボン酸基準でのエステル選択率をかなり高め
ているが、用いる触媒の強い固体酸性のために、二重結
合への原料アルコールのマイケル付加物によるエステル
化選択率低下や原料アルコール同志の分子間脱水による
ジアルキルエーテルの副生、分子内脱水によるオレフィ
ンの副生が起こり、アルコール基準のエステル化選択率
を低下するという問題があった。
[0004] However, both methods use α, β-
Although the ester selectivity based on unsaturated carboxylic acid is considerably increased, the strong solid acidity of the catalyst used causes a decrease in the esterification selectivity due to the Michael adduct of the starting alcohol to the double bond and a decrease in the molecular weight of the starting alcohol. There was a problem that by-products of dialkyl ether due to inter-water dehydration and by-products of olefins due to intra-molecular dehydration occurred, resulting in a decrease in esterification selectivity based on alcohol.

【0005】またこれら副生物の生成により、工業プロ
セスにおける分離精製の問題、製品品質へ悪影響の問
題、触媒の活性劣化等種々の問題が生じていた。
[0005] The generation of these by-products has caused various problems such as separation and purification in industrial processes, adverse effects on product quality, and deterioration of catalyst activity.

【0006】例えば、アクリル酸ブチルの合成では、副
生物であるジブチルエーテルの沸点(142℃)が、原
料のアクリル酸の沸点(139℃)および生成物のアク
リル酸ブチルの沸点(145℃)と差が小さいため、ジ
ブチルエーテルが製品アクリル酸ブチル中に混入してし
まい、製品の純度を下げる原因となっており、また、前
記公知の触媒は、いずれも触媒上の炭素状物質の沈着な
どによる経時的活性劣化が著しいため、工業的実施に耐
えうるものではなかった。
For example, in the synthesis of butyl acrylate, the boiling point of dibutyl ether as a by-product (142 ° C.) is the same as the boiling point of acrylic acid as a raw material (139 ° C.) and the boiling point of butyl acrylate as a product (145 ° C.). Because the difference is small, dibutyl ether is mixed into the product butyl acrylate, which causes a decrease in the purity of the product, and the known catalysts are all caused by deposition of carbonaceous substances on the catalyst. Due to the remarkable deterioration of the activity with time, it was not endurable for industrial practice.

【0007】以上のように、従来のα,β−不飽和カル
ボン酸類とアルコール類からの気相法によるα,β−不
飽和カルボン酸のアルキルエステル類の製造法では、工
業的に満足できるものではなく、長期にわたって安定な
触媒活性を有する触媒を用いた選択率の高いα,β−不
飽和カルボン酸類のアルキルエステルの製造法が強く望
まれていた。
As described above, the conventional methods for producing alkyl esters of α, β-unsaturated carboxylic acids from α, β-unsaturated carboxylic acids and alcohols by a gas phase method are industrially satisfactory. Rather, there has been a strong demand for a process for producing alkyl esters of α, β-unsaturated carboxylic acids having high selectivity using a catalyst having stable catalytic activity over a long period of time.

【0008】[0008]

【発明が解決しようとする課題】本発明は、以上のよう
な状況に鑑みてなされたものであり、本発明の目的は、
α,β−不飽和カルボン酸類とアルコール類とから、気
相でα,β−不飽和カルボン酸エステル類を製造する際
に、原料アルコール由来のジアルキルエ−テルやオレフ
ィン等の副生が少なく、未反応アルコールの回収率が高
く、高選択率および高収率でα,β−不飽和カルボン酸
エステル類を製造する方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and an object of the present invention is to provide:
When α, β-unsaturated carboxylic esters are produced in the gas phase from α, β-unsaturated carboxylic acids and alcohols, the amount of by-products such as dialkyl ethers and olefins derived from the raw material alcohol is small, and An object of the present invention is to provide a method for producing an α, β-unsaturated carboxylic acid ester with a high recovery rate of a reaction alcohol, a high selectivity and a high yield.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討するなかで、α,β−不飽和カル
ボン酸類とアルコール類とを用いて気相においてアルキ
ルエステル化する際に、触媒としてアルカリ金属元素を
含有して成る酸化物を用いることにより、従来になく極
めて高い選択率でアルキルエステルが生成することを見
いだした。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and have found that when α, β-unsaturated carboxylic acids and alcohols are used for alkyl esterification in the gas phase. In addition, they have found that the use of an oxide containing an alkali metal element as a catalyst produces an alkyl ester with an extremely high selectivity than ever before.

【0010】すなわち本発明は、α,β−不飽和カルボ
ン酸類とアルコール類とを、気相で触媒の存在下アルキ
ルエステル化反応させてα,β−不飽和カルボン酸エス
テル類を製造する際に、前記触媒が、アルカリ金属元素
を含有して成る酸化物であることを特徴とするα,β−
不飽和カルボン酸エステル類の製造法に関するものであ
る。
That is, the present invention relates to a process for producing an α, β-unsaturated carboxylic acid ester by subjecting an α, β-unsaturated carboxylic acid and an alcohol to an alkyl esterification reaction in the gas phase in the presence of a catalyst. , Wherein the catalyst is an oxide containing an alkali metal element.
The present invention relates to a method for producing an unsaturated carboxylic acid ester.

【0011】また本発明の他の発明は、α,β−不飽和
カルボン酸類とアルコール類とを気相でアルキルエステ
ル化反応させてα,β−不飽和カルボン酸類のアルキル
エステルを製造する際に使用される触媒であって、該触
媒が、アルカリ金属元素を含有して成る酸化物である
α,β−不飽和カルボン酸類のアルキルエステル化触媒
に関するものである。
Another invention of the present invention relates to a method for producing an alkyl ester of an α, β-unsaturated carboxylic acid by subjecting an α, β-unsaturated carboxylic acid and an alcohol to alkylesterification reaction in a gas phase. The present invention relates to a catalyst used for alkyl esterification of α, β-unsaturated carboxylic acids, which is an oxide containing an alkali metal element.

【0012】[0012]

【発明の実施の形態】本発明の方法における一方の原料
であるα,β−不飽和カルボン酸類としては、特に限定
されないが、例えばアクリル酸およびメタクリル酸が挙
げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The α, β-unsaturated carboxylic acids which are one of the raw materials in the method of the present invention are not particularly limited, but include, for example, acrylic acid and methacrylic acid.

【0013】本発明の他方の原料であるアルコール類と
しては、特に限定されないが、一価の脂肪族アルコール
が反応性の点で好ましく、その例としてメタノール、エ
タノール、n−プロピルアルコール、iso−プロピル
アルコール、n−ブチルアルコール、iso−ブチルア
ルコール、2−エチルヘキシルアルコール等が挙げられ
る。
The alcohol used as the other raw material in the present invention is not particularly limited, but is preferably a monohydric aliphatic alcohol in terms of reactivity. Examples thereof include methanol, ethanol, n-propyl alcohol, and iso-propyl. Alcohol, n-butyl alcohol, iso-butyl alcohol, 2-ethylhexyl alcohol and the like can be mentioned.

【0014】本発明の方法に用いる触媒は、アルカリ金
属元素を含有してなる酸化物であれば特に限定されない
が、アルカリ金属元素と周期律表IIIb、IVb、I
IIa、IVaおよびVa族の元素からなる群より選ば
れる1種以上の元素とを含有して成る酸化物が好まし
い。より好ましくは、アルカリ金属元素とケイ素、チタ
ンおよびジルコニウムからなる群より選ばれる1種以上
の元素を含有して成る酸化物であり、さらに好ましく
は、下記一般式(1):
The catalyst used in the method of the present invention is not particularly limited as long as it is an oxide containing an alkali metal element, but the alkali metal element and the periodic table IIIb, IVb, I
An oxide containing at least one element selected from the group consisting of elements of groups IIa, IVa and Va is preferred. More preferably, it is an oxide containing an alkali metal element and at least one element selected from the group consisting of silicon, titanium and zirconium, and further preferably, the following general formula (1):

【0015】[0015]

【化2】 Embedded image

【0016】(式中、Mはアルカリ金属元素を表し、X
はケイ素、チタンおよびジルコニウムからなる群より選
ばれる1種以上の元素を表し、QはY、La、Ce、
B、Al、Ge、Sn、Pb、P、SbおよびBiから
なる群より選ばれる1種以上の元素を表し、Oは酸素を
表し、そしてa、b、cおよびdは各元素の原子数であ
って、aが1のとき、bは1〜500でcは0〜1であ
り、dはa、bおよびcの値および各種構成元素の結合
状態により定まる数値である。)で表される酸化物であ
る。
(Wherein M represents an alkali metal element, X
Represents one or more elements selected from the group consisting of silicon, titanium and zirconium, and Q represents Y, La, Ce,
Represents one or more elements selected from the group consisting of B, Al, Ge, Sn, Pb, P, Sb and Bi, O represents oxygen, and a, b, c and d are the number of atoms of each element. When a is 1, b is 1 to 500 and c is 0 to 1, and d is a numerical value determined by the values of a, b and c and the bonding state of various constituent elements. ).

【0017】前記触媒を使用することにより、極めて高
選択率でα,β−不飽和カルボン酸類のアルキルエステ
ル化が進行し、副生成物であるマイケル付加反応体は殆
ど生成せず、また反応に使用されたアルコール類は、選
択的にα,β−不飽和カルボン酸類のアルキルエステル
化に消費され、自身の分子間脱水によるジアルキルエ−
テル化および自身の分子内脱水によるオレフィン化は殆
ど起こらない点で優れている。また前記触媒は、過酷な
反応条件の下で長時間連続使用した後にコーキング発生
等のために触媒活性の低下を来したとしても、空気を通
してコークを燃焼することによって触媒活性は回復させ
ることが可能である。
By using the catalyst, the alkyl esterification of the α, β-unsaturated carboxylic acid proceeds at an extremely high selectivity, and the Michael addition reactant as a by-product is hardly formed, and The alcohols used are selectively consumed for the alkyl esterification of α, β-unsaturated carboxylic acids, and the dialkyl ethers are formed by their own intermolecular dehydration.
This is excellent in that olefination due to tellurization and its own intramolecular dehydration hardly occurs. Further, even if the catalyst is used continuously for a long period of time under severe reaction conditions and its catalytic activity is reduced due to coking or the like, the catalytic activity can be recovered by burning the coke through air. It is.

【0018】特に、本発明に係る触媒の好ましい態様の
一つである前記一般式(2)で表される酸化物において
は、aが1のとき、bが1未満であると、触媒の有効表
面積が非常に小さくなり触媒活性が低下する場合があ
り、またbが500を超えると、触媒活性が極端に低下
してしまう場合がある。
In particular, in the oxide represented by the general formula (2), which is one of the preferred embodiments of the catalyst according to the present invention, when a is 1 and b is less than 1, the effectiveness of the catalyst is reduced. When the surface area becomes extremely small, the catalytic activity may decrease. When b exceeds 500, the catalytic activity may decrease extremely.

【0019】アルカリ金属を含まないケイ素のみから成
る酸化物触媒、すなわちシリカ単独では非常に弱い固体
酸のため活性が低いため、α,β−不飽和カルボン酸類
の選択的アルキルエステル化には、強い固体酸が有効と
されチタニア−シリカ触媒が最適であると報告されてい
る(特公昭55−33702号公報等)。しかし、この
ような触媒を使用しての反応では、強度の酸点(約−1
0<H0<―5)によるアルコール類のジアルキルエ−
テル化およびアルコール類のオレフィン化によるアルコ
ール類の回収ロス、コーキングによる活性低下等は避け
られない。これに対し、アルカリ金属を含有させた本発
明の触媒は、シリカ単独(H0約+3)に比べさらに酸
強度が弱められたにもかかわらず(例えばH0≧約+
5、好ましくはH0≧約+8)、活性は高められ、従来
公知の触媒に比べ極めて高い選択率でアルキルエステル
を与える。本発明の触媒がこのようなメリットをもたら
す理由は、固体塩基性の付与で原料α,β−不飽和カル
ボン酸の吸着が起こり易くなり活性が向上すること、ま
た、その非常に弱い固体酸性の故に、アルコール自身の
ジアルキルエーテル化やオレフィン化は殆ど起こらない
ためであろうと推察される。
Oxide catalysts consisting of silicon alone without alkali metals, ie, silica alone, have a low activity due to a very weak solid acid, so that they are strongly resistant to the selective alkyl esterification of α, β-unsaturated carboxylic acids. It has been reported that a solid acid is effective and a titania-silica catalyst is optimal (Japanese Patent Publication No. 55-33702). However, in the reaction using such a catalyst, a strong acid point (about -1) is used.
0 <H 0 <−5) Dialkyl ether of alcohols
Loss of alcohol recovery due to tellurization and olefination of alcohols, reduction in activity due to coking, and the like are inevitable. On the other hand, the catalyst of the present invention containing an alkali metal has a weaker acid strength than that of silica alone (H 0 about +3) (for example, H 0 ≧ about +3).
5, preferably H 0 ≧ about +8), the activity is increased, giving alkyl esters with a much higher selectivity than previously known catalysts. The reason why the catalyst of the present invention provides such an advantage is that the addition of the solid basicity makes it easier for the raw material α, β-unsaturated carboxylic acid to be adsorbed and the activity is improved. Therefore, it is presumed that dialkyl etherification or olefination of the alcohol itself hardly occurs.

【0020】本発明の触媒の調製法としては、特に限定
されるものではなく、従来公知のあらゆる方法が適用で
きる。
The method for preparing the catalyst of the present invention is not particularly limited, and any conventionally known method can be applied.

【0021】本発明に係る触媒の特に好ましい態様であ
るアルカリ金属元素とケイ素を含有して成る酸化物を例
にとって、本発明の触媒の調製法を説明すれば以下の通
りである。
The method for preparing the catalyst of the present invention will be described below with reference to an oxide containing an alkali metal element and silicon, which is a particularly preferred embodiment of the catalyst of the present invention.

【0022】前記アルカリ金属元素の原料としては、酸
化物、水酸化物、ハロゲン化物、塩類(硝酸塩、炭酸
塩、カルボン酸塩、リン酸塩、硫酸塩等)および金属な
どが用いられる。またケイ素の原料としては、酸化ケイ
素、ケイ酸、ケイ酸塩類(アルカリ金属ケイ酸塩、アル
カリ土類金属ケイ酸塩等)、有機ケイ酸エステルなどが
用いられる。また任意成分元素、例えば前記一般式
(1)においてQで表される成分元素の原料としては、
酸化物、水酸化物、ハロゲン化物、塩類(炭酸塩、硝酸
塩、カルボン酸塩、リン酸塩、硫酸塩等)および金属な
どが用いられる。
As the raw material of the alkali metal element, oxides, hydroxides, halides, salts (nitrates, carbonates, carboxylates, phosphates, sulfates, etc.) and metals are used. As a raw material of silicon, silicon oxide, silicic acid, silicates (such as alkali metal silicate and alkaline earth metal silicate), and organic silicate ester are used. In addition, as a raw material of an optional component element, for example, a component element represented by Q in the general formula (1),
Oxides, hydroxides, halides, salts (carbonate, nitrate, carboxylate, phosphate, sulfate, etc.), metals and the like are used.

【0023】前記触媒の調製法としては、アルカリ金
属元素源とケイ素源を水中に溶解もしくは懸濁させ、撹
拌下加熱濃縮し、乾燥後成型し、焼成を経て触媒とする
方法。アルカリ金属元素源の水溶液中に酸化ケイ素成
型体を浸した後、加熱乾固し、乾燥、焼成を経て触媒と
する方法。各種ケイ酸塩あるいはケイ素含有酸化物
に、アルカリ金属元素源の水溶液を加え混合した後、乾
燥、成型、焼成を経て触媒とする方法、等がある。な
お、前記任意成分元素を触媒に含有させるには、前記成
分元素を含んだアルカリ金属元素源および/またはケイ
素源を用いる方法、触媒調製途中で前記任意成分元素の
原料を加える方法等を採ることができる。
The catalyst may be prepared by dissolving or suspending an alkali metal element source and a silicon source in water, heating and concentrating under stirring, drying, molding and calcining to obtain a catalyst. A method in which a silicon oxide molded body is immersed in an aqueous solution of an alkali metal element source, heated to dryness, dried and calcined to obtain a catalyst. There is a method in which an aqueous solution of an alkali metal element source is added to various silicates or silicon-containing oxides, mixed, dried, molded, calcined, and used as a catalyst. In order to make the catalyst contain the optional component element, a method using an alkali metal element source and / or a silicon source containing the component element, a method of adding the raw material of the optional component element during catalyst preparation, and the like are adopted. Can be.

【0024】また本発明に係る触媒は、公知の坦体(例
えば、アルミナ、シリコンカーバイド、等)に坦持また
は混合して用いることもできる。
The catalyst according to the present invention can be used by being supported on or mixed with a known carrier (for example, alumina, silicon carbide, etc.).

【0025】本発明に係る触媒を調製する際の焼成温度
は、用いる触媒原料の種類にもよるが、300〜100
0℃の広い範囲を採ることができ、400〜800℃の
範囲が好ましい。
The calcination temperature for preparing the catalyst according to the present invention is 300 to 100, although it depends on the type of the catalyst raw material used.
A wide range of 0 ° C can be adopted, and a range of 400 to 800 ° C is preferable.

【0026】本発明の製造法は、気相反応で行なうこと
ができれば、固定床流通型、流動床型のいずれの型の反
応器も使用できる。
In the production method of the present invention, any type of fixed bed flow type or fluidized bed type reactor can be used as long as it can be carried out by a gas phase reaction.

【0027】本発明の製造法における原料のα,β−不
飽和カルボン酸類およびアルコール類は、通常α,β−
不飽和カルボン酸類とアルコール類とのモル比が1:1
〜20、好ましくは1:1〜10であるような割合で、
使用される。
The α, β-unsaturated carboxylic acids and alcohols used as raw materials in the production method of the present invention are usually α, β-unsaturated carboxylic acids and alcohols.
Molar ratio of unsaturated carboxylic acids to alcohols of 1: 1
-20, preferably 1: 1-10
used.

【0028】本発明の製造法においては、原料α,β−
不飽和カルボン酸類およびアルコール類が、気相状態を
維持し得る反応温度および反応圧力が採用される。反応
圧力は通常、常圧または減圧であるが、加圧も可能であ
る。反応温度は、原料α,β−不飽和カルボン酸の種類
および他の反応条件によっても異なるが、150〜40
0℃、好ましくは200〜350℃の範囲が適当であ
る。反応温度が150℃より低いと原料α,β−不飽和
カルボン酸の転化率が大幅に低下し、反応温度が350
℃より高いと原料α,β−不飽和カルボン酸または生成
物エステルの重合により目的アルキルエステルの選択率
が著しく低下する。原料α,β−不飽和カルボン酸類お
よびアルコール類の混合ガスは、希釈することなしに、
あるいは、窒素、ヘリウム、アルゴン、炭化水素等の、
目的反応に不活性な物質で希釈して、常圧または減圧下
に、触媒層に供給される。原料α,β−不飽和カルボン
酸類とアルコール類との混合ガスの空間速度(GHS
V)は、原料の種類および他の反応条件によっても異な
るが、1〜2000h-1、好ましくは100〜1000
-1の範囲である。
In the production method of the present invention, the raw materials α, β-
A reaction temperature and a reaction pressure at which unsaturated carboxylic acids and alcohols can maintain a gaseous state are employed. The reaction pressure is usually normal pressure or reduced pressure, but pressurization is also possible. The reaction temperature varies depending on the type of the raw material α, β-unsaturated carboxylic acid and other reaction conditions.
A range of 0 ° C, preferably 200-350 ° C, is suitable. When the reaction temperature is lower than 150 ° C., the conversion of the raw material α, β-unsaturated carboxylic acid is greatly reduced, and the reaction temperature is 350 ° C.
If the temperature is higher than ℃, the selectivity of the target alkyl ester is remarkably reduced due to polymerization of the raw material α, β-unsaturated carboxylic acid or product ester. The raw material gas mixture of α, β-unsaturated carboxylic acids and alcohols can be used without dilution.
Alternatively, nitrogen, helium, argon, hydrocarbons, etc.
It is diluted with a substance inert to the target reaction and supplied to the catalyst layer under normal pressure or reduced pressure. Space velocity of mixed gas of raw material α, β-unsaturated carboxylic acid and alcohol (GHS
V) varies depending on the type of raw materials and other reaction conditions, but is 1 to 2000 h -1 , preferably 100 to 1000 h -1 .
h- 1 .

【0029】[0029]

【実施例】以下、実施例により、本発明を具体的に説明
するが、本発明はこれらにより何等限定されるものでは
ない。
EXAMPLES The present invention will now be described specifically with reference to examples, but the present invention is not limited to these examples.

【0030】なお、実施例および比較例中の転化率、選
択率、および単流収率は、次の定義に従う。
The conversion, selectivity, and single-stream yield in the examples and comparative examples follow the following definitions.

【0031】[0031]

【数1】 (Equation 1)

【0032】実施例1 (触媒調製)炭酸セシウム2.71gを水40gに溶解
させた液中に、球状シリカゲル(5−10メッシュ)3
0gを2時間浸漬した。その後、湯浴上で加熱乾固し、
空気中120℃で20時間乾燥後、空気中500℃で2
時間焼成して酸素を除く原子比でCs1Si30なる組成
の触媒を調製した。
Example 1 (Preparation of catalyst) In a solution of 2.71 g of cesium carbonate dissolved in 40 g of water, spherical silica gel (5-10 mesh) 3
0 g was immersed for 2 hours. After that, heat to dryness in a hot water bath,
After drying at 120 ° C in air for 20 hours,
After calcination for a time, a catalyst having a composition of Cs 1 Si 30 in atomic ratio excluding oxygen was prepared.

【0033】(反応)この触媒20mlを、内径20m
mのステンレス製反応管に充填した後、330℃の溶融
塩浴に浸漬し、該反応管内にアクリル酸とメタノールの
混合液(モル比1:3)を定量ポンプにて送液し混合ガ
ス50容量%、窒素50容量%からなる原料ガスを、ア
クリル酸とメタノール混合ガスの空間速度400h-1
で供給し、常圧で反応を行った。供給開始1時間後の反
応生成物を、ガスクロマトグラフにより分析した結果、
アクリル酸の転化率98.0モル%、アクリル酸メチル
選択率99.8モル%(単流収率97.8モル%)であ
った。またジメチルエ−テルの生成は見られず、未反応
メタノールはほぼ定量的に回収された。
(Reaction) 20 ml of this catalyst was used with an inner diameter of 20 m.
m, was immersed in a molten salt bath at 330 ° C., and a mixed solution of acrylic acid and methanol (molar ratio 1: 3) was fed into the reaction tube with a metering pump. A raw material gas consisting of 50% by volume of nitrogen and 50% by volume of nitrogen is supplied to a space velocity of 400 h -1 of a mixed gas of acrylic acid and methanol
And the reaction was carried out at normal pressure. As a result of analyzing the reaction product one hour after the start of the supply by gas chromatography,
The conversion of acrylic acid was 98.0 mol%, and the selectivity for methyl acrylate was 99.8 mol% (single-stream yield: 97.8 mol%). No dimethyl ether was produced, and unreacted methanol was almost quantitatively recovered.

【0034】実施例2 実施例1の触媒を用い、アルコールをメタノールに代え
てエタノールを用いた他は実施例1と同じ条件で反応を
行った。供給開始1時間後の反応生成物を、ガスクロマ
トグラフにより分析した結果、アクリル酸の転化率6
8.4モル%、アクリル酸エチルの選択率99.6モル
%(単流収率68.1モル%)であった。また、ジエチ
ルエーテルおよびエチレンの生成は見られず、未反応エ
タノールはほぼ定量的に回収された。
Example 2 A reaction was carried out under the same conditions as in Example 1 except that the catalyst of Example 1 was replaced with ethanol instead of methanol. The reaction product one hour after the start of the supply was analyzed by gas chromatography, and as a result, the conversion of acrylic acid was 6%.
The selectivity for ethyl acrylate was 99.6 mol% (single-stream yield: 68.1 mol%). No production of diethyl ether or ethylene was observed, and unreacted ethanol was almost quantitatively recovered.

【0035】実施例3 実施例1の触媒を用い、アルコールをメタノールに代え
てn−ブタノールを用いた他は実施例1と同じ条件で反
応を行った。供給開始1時間後の反応生成物を、ガスク
ロマトグラフにより分析した結果、アクリル酸の転化率
43.0モル%、アクリル酸ブチル選択率99.5モル
%(単流収率42.8モル%)であった。また、ジブチ
ルエーテルおよびブテンの生成は見られず、未反応ブタ
ノールはほぼ定量的に回収された。
Example 3 A reaction was carried out under the same conditions as in Example 1 except that the catalyst of Example 1 was used and n-butanol was used instead of methanol for alcohol. One hour after the start of the supply, the reaction product was analyzed by gas chromatography. As a result, the conversion of acrylic acid was 43.0% by mole, and the selectivity of butyl acrylate was 99.5% by mole (single-stream yield: 42.8% by mole). Met. Further, no production of dibutyl ether and butene was observed, and unreacted butanol was almost quantitatively recovered.

【0036】実施例4 実施例1の触媒を用い、アルコールをメタノールに代え
て2−エチルヘキシルアルコールを用いた他は実施例1
と同じ条件で反応を行った。供給開始1時間後の反応生
成物を、ガスクロマトグラフにより分析した結果、アク
リル酸の転化率40.0モル%、アクリル酸2−エチル
ヘキシル選択率99.7モル%(単流収率39.9モル
%)であった。また、ジオクチルエーテルおよびオレフ
ィンの生成は見られず、未反応2−エチルヘキシルアル
コールはほぼ定量的に回収された。
Example 4 Example 1 was repeated except that the catalyst of Example 1 was used and 2-ethylhexyl alcohol was used instead of methanol for alcohol.
The reaction was carried out under the same conditions as described above. One hour after the start of the supply, the reaction product was analyzed by gas chromatography. As a result, the conversion of acrylic acid was 40.0 mol% and the selectivity for 2-ethylhexyl acrylate was 99.7 mol% (single-stream yield: 39.9 mol%). %)Met. Further, no generation of dioctyl ether and olefin was observed, and unreacted 2-ethylhexyl alcohol was almost quantitatively recovered.

【0037】実施例5 実施例1の触媒を用い、アクリル酸に代えてメタクリル
酸を用いた他は実施例1と同じ条件で反応を行った。供
給開始1時間後の反応生成物を、ガスクロマトグラフに
より分析した結果、メタクリル酸の転化率77.0モル
%、メタクリル酸メチル選択率99.9モル%(単流収
率76.9モル%)であった。また、ジメチルエーテル
の生成は見られず、未反応メタノールはほぼ定量的に回
収された。
Example 5 A reaction was carried out under the same conditions as in Example 1 except that the catalyst of Example 1 was used and methacrylic acid was used instead of acrylic acid. One hour after the start of the supply, the reaction product was analyzed by gas chromatography. As a result, the conversion of methacrylic acid was 77.0 mol%, and the selectivity of methyl methacrylate was 99.9 mol% (single-stream yield: 76.9 mol%). Met. No dimethyl ether was generated, and unreacted methanol was almost quantitatively recovered.

【0038】実施例6 (触媒調製)炭酸ナトリウム1.76gを水40gに溶
解させた液中に、球状シリカゲル(5−10メッシュ)
30gを2時間浸漬した。その後、湯浴上で加熱乾固
し、空気中120℃で20時間乾燥後、空気中500℃
で2時間焼成して酸素を除く原子比でNa1Si30なる
組成の触媒を調製した。
Example 6 (Preparation of catalyst) Spherical silica gel (5-10 mesh) was added to a solution of 1.76 g of sodium carbonate dissolved in 40 g of water.
30 g was immersed for 2 hours. Then, it is dried by heating in a hot water bath and dried in air at 120 ° C. for 20 hours.
For 2 hours to prepare a catalyst having a composition of Na 1 Si 30 in an atomic ratio excluding oxygen.

【0039】(反応)この触媒を用い、実施例1と同じ
条件で反応を行った。供給開始1時間後の反応生成物
を、ガスクロマトグラフにより分析した結果、アクリル
酸の転化率20.0モル%、アクリル酸メチル選択率9
9.9モル%(単流収率20.0モル%)であった。ま
た、ジメチルエーテルの生成は見られず、未反応メタノ
ールはほぼ定量的に回収された。
(Reaction) Using this catalyst, a reaction was carried out under the same conditions as in Example 1. One hour after the start of the supply, the reaction product was analyzed by gas chromatography. As a result, the conversion of acrylic acid was 20.0 mol% and the selectivity of methyl acrylate was 9
It was 9.9 mol% (single-stream yield: 20.0 mol%). No dimethyl ether was generated, and unreacted methanol was almost quantitatively recovered.

【0040】実施例7 (触媒調製)炭酸カリウム2.03gを水40gに溶解
させた液中に、球状シリカゲル(5−10メッシュ)3
0gを2時間浸漬した。その後、湯浴上で加熱乾固し、
空気中120℃で20時間乾燥後、空気中500℃で2
時間焼成して酸素を除く原子比でK1Si30なる組成の
触媒を調製した。
Example 7 (Preparation of catalyst) Spherical silica gel (5-10 mesh) 3 was prepared by dissolving 2.03 g of potassium carbonate in 40 g of water.
0 g was immersed for 2 hours. After that, heat to dryness in a hot water bath,
After drying at 120 ° C in air for 20 hours,
After calcination for a time, a catalyst having a composition of K 1 Si 30 in atomic ratio excluding oxygen was prepared.

【0041】(反応)この触媒を用い、実施例1と同じ
条件で反応を行った。供給開始1時間後の反応生成物
を、ガスクロマトグラフにより分析した結果、アクリル
酸の転化率64.0モル%、アクリル酸メチル選択率9
9.8モル%(単流収率63.9モル%)であった。ま
た、ジメチルエーテルの生成は見られず、未反応メタノ
ールはほぼ定量的に回収された。
(Reaction) Using this catalyst, a reaction was carried out under the same conditions as in Example 1. One hour after the start of the supply, the reaction product was analyzed by gas chromatography. As a result, the conversion of acrylic acid was 64.0 mol% and the selectivity of methyl acrylate was 9
It was 9.8 mol% (single-stream yield: 63.9 mol%). No dimethyl ether was generated, and unreacted methanol was almost quantitatively recovered.

【0042】実施例8 (触媒調製)硝酸ルビジウム7.38gを水50gに溶
解させた液中に、球状シリカゲル(5−10メッシュ)
30gを2時間浸漬した。その後、湯浴上で加熱乾固
し、空気中120℃で20時間乾燥後、空気中500℃
で2時間焼成して酸素を除く原子比でRb1Si30なる
組成の触媒を調製した。
Example 8 (Preparation of catalyst) Spherical silica gel (5-10 mesh) was placed in a solution obtained by dissolving 7.38 g of rubidium nitrate in 50 g of water.
30 g was immersed for 2 hours. Then, it is dried by heating in a hot water bath and dried in air at 120 ° C. for 20 hours.
For 2 hours to prepare a catalyst having a composition of Rb 1 Si 30 in atomic ratio excluding oxygen.

【0043】(反応)この触媒を用い、実施例1と同じ
条件で反応を行った。供給開始1時間後の反応生成物
を、ガスクロマトグラフにより分析した結果、アクリル
酸の転化率84.5モル%、アクリル酸メチル選択率9
9.8モル%(単流収率84.3モル%)であった。ま
た、ジメチルエーテルの生成は見られず、未反応メタノ
ールはほぼ定量的に回収された。
(Reaction) Using this catalyst, a reaction was carried out under the same conditions as in Example 1. One hour after the start of the supply, the reaction product was analyzed by gas chromatography. As a result, the conversion of acrylic acid was 84.5 mol% and the selectivity of methyl acrylate was 9
It was 9.8 mol% (single-stream yield: 84.3 mol%). No dimethyl ether was generated, and unreacted methanol was almost quantitatively recovered.

【0044】実施例9 (触媒調製)炭酸セシウム4.08gを水50gに溶解
させた液中に、市販二酸化チタン(片山化学製)40g
を加え、湯浴上で加熱混合しながら濃縮乾固した。次い
で、空気中120℃で20時間乾燥後、空気中500℃
で2時間焼成し、9−16メッシュに破砕することで、
酸素を除く原子比でCs1Ti20なる組成の触媒を調製
した。
Example 9 (Preparation of catalyst) In a solution of 4.08 g of cesium carbonate dissolved in 50 g of water, 40 g of commercially available titanium dioxide (manufactured by Katayama Chemical) was added.
, And concentrated to dryness while heating and mixing on a hot water bath. Then, after drying in air at 120 ° C. for 20 hours, 500 ° C. in air
By sintering for 2 hours and crushing to 9-16 mesh,
A catalyst having a composition of Cs 1 Ti 20 in atomic ratio excluding oxygen was prepared.

【0045】(反応)この触媒を用い、実施例1と同じ
条件で反応を行った。供給開始1時間後の反応生成物
を、ガスクロマトグラフにより分析した結果、アクリル
酸の転化率78.7モル%、アクリル酸メチル選択率9
9.5モル%(単流収率78.3モル%)であった。ま
た、ジメチルエーテルの生成は見られず、未反応メタノ
ールはほぼ定量的に回収された。
(Reaction) Using this catalyst, a reaction was carried out under the same conditions as in Example 1. One hour after the start of the supply, the reaction product was analyzed by gas chromatography. As a result, the conversion of acrylic acid was 78.7 mol% and the selectivity of methyl acrylate was 9
It was 9.5 mol% (single-stream yield: 78.3 mol%). No dimethyl ether was generated, and unreacted methanol was almost quantitatively recovered.

【0046】実施例10 (触媒調製)炭酸セシウム6.61gを水50gに溶解
させた液中に、市販酸化ジルコニウム(ノートン製)5
0gを2時間浸漬した。その後、湯浴上で加熱乾固し、
空気中120℃で20時間乾燥後、空気中500℃で2
時間焼成し、9−16メッシュに破砕することで、酸素
を除く原子比でCs1Zr10なる組成の触媒を調製し
た。
Example 10 (Preparation of catalyst) Commercially available zirconium oxide (manufactured by Norton) 5 was dissolved in a solution obtained by dissolving 6.61 g of cesium carbonate in 50 g of water.
0 g was immersed for 2 hours. After that, heat to dryness in a hot water bath,
After drying at 120 ° C in air for 20 hours,
By calcining for 9 hours and crushing to 9-16 mesh, a catalyst having a composition of Cs 1 Zr 10 in atomic ratio excluding oxygen was prepared.

【0047】(反応)この触媒を用い、実施例1と同じ
条件で反応を行った。供給開始1時間後の反応生成物
を、ガスクロマトグラフにより分析した結果、アクリル
酸の転化率87.5モル%、アクリル酸メチル選択率9
9.5モル%(単流収率87.1モル%)であった。ま
た、ジメチルエーテルの生成は見られず、未反応メタノ
ールはほぼ定量的に回収された。
(Reaction) Using this catalyst, a reaction was carried out under the same conditions as in Example 1. One hour after the start of the supply, the reaction product was analyzed by gas chromatography. As a result, the conversion of acrylic acid was 87.5 mol% and the selectivity of methyl acrylate was 9
It was 9.5 mol% (single-stream yield: 87.1 mol%). No dimethyl ether was generated, and unreacted methanol was almost quantitatively recovered.

【0048】実施例11 (触媒調製)炭酸セシウム2.22gを水40gに溶解
させた液中に、ケイ酸ジルコニウム50g(和光純薬工
業製)50gを加え、湯浴上で加熱混合しながら濃縮乾
固した。次いで、空気中120℃で20時間乾燥後、空
気中500℃で2時間焼成し、9−16メッシュに破砕
することで、酸素を除く原子比でCs1Zr20Si20
る組成の触媒を調製した。
Example 11 (Preparation of catalyst) 50 g of zirconium silicate (manufactured by Wako Pure Chemical Industries) was added to a solution obtained by dissolving 2.22 g of cesium carbonate in 40 g of water, and concentrated while heating and mixing on a hot water bath. To dryness. Next, after drying in air at 120 ° C. for 20 hours, it is calcined in air at 500 ° C. for 2 hours and crushed to 9-16 mesh to prepare a catalyst having a composition of Cs 1 Zr 20 Si 20 in an atomic ratio excluding oxygen. did.

【0049】(反応)この触媒を用い、実施例1と同じ
条件で反応を行った。供給開始1時間後の反応生成物
を、ガスクロマトグラフにより分析した結果、アクリル
酸の転化率76.3モル%、アクリル酸メチル選択率9
9.5モル%(単流収率75.9モル%)であった。ま
た未反応メタノールはほぼ定量的に回収された。
(Reaction) Using this catalyst, a reaction was carried out under the same conditions as in Example 1. One hour after the start of the supply, the reaction product was analyzed by gas chromatography. As a result, the conversion of acrylic acid was 76.3 mol% and the selectivity of methyl acrylate was 9
It was 9.5 mol% (single-stream yield: 75.9 mol%). Unreacted methanol was almost quantitatively recovered.

【0050】実施例12 (触媒調製)塩化セシウム2.34gおよび硝酸ランタ
ン6水和物1.80gを水50gに溶解させた液中に、
球状シリカゲル(5−10メッシュ)25gを2時間浸
漬した。その後、湯浴上で加熱乾固し、空気中120℃
で20時間乾燥後、空気中500℃で2時間焼成して酸
素を除く原子比でCs1Si30La0.3なる組成の触媒を
調製した。
Example 12 (Preparation of catalyst) 2.34 g of cesium chloride and 1.80 g of lanthanum nitrate hexahydrate were dissolved in 50 g of water.
25 g of spherical silica gel (5-10 mesh) was immersed for 2 hours. Then, heat to dryness in a hot water bath, and in air at 120 ° C.
And then calcined in air at 500 ° C. for 2 hours to prepare a catalyst having a composition of Cs 1 Si 30 La 0.3 in atomic ratio excluding oxygen.

【0051】(反応)この触媒を用い、実施例1と同じ
条件で反応を行った。供給開始1時間後の反応生成物
を、ガスクロマトグラフにより分析した結果、アクリル
酸の転化率72.3モル%、アクリル酸メチル選択率9
9.5モル%(単流収率71.9モル%)であった。ま
た、ジメチルエーテルの生成は見られず、未反応メタノ
ールはほぼ定量的に回収された。
(Reaction) Using this catalyst, a reaction was carried out under the same conditions as in Example 1. One hour after the start of the supply, the reaction product was analyzed by gas chromatography. As a result, the conversion of acrylic acid was 72.3 mol% and the selectivity of methyl acrylate was 9
It was 9.5 mol% (single-stream yield: 71.9 mol%). No dimethyl ether was generated, and unreacted methanol was almost quantitatively recovered.

【0052】実施例13 (触媒調製)炭酸セシウム2.03gおよび85%オル
トリン酸2.88gを水40gに溶解させた液中に、球
状シリカゲル(5−10メッシュ)30gを2時間浸漬
した。その後、湯浴上で加熱乾固し、空気中120℃で
20時間乾燥後、空気中500℃で2時間焼成して酸素
を除く原子比でCs1Si402なる組成の触媒を調製し
た。
Example 13 (Preparation of catalyst) 30 g of spherical silica gel (5-10 mesh) was immersed in a solution prepared by dissolving 2.03 g of cesium carbonate and 2.88 g of 85% orthophosphoric acid in 40 g of water for 2 hours. Thereafter, the mixture was heated to dryness on a hot water bath, dried in air at 120 ° C. for 20 hours, and calcined in air at 500 ° C. for 2 hours to prepare a catalyst having a composition of Cs 1 Si 40 P 2 in an atomic ratio excluding oxygen. .

【0053】(反応)この触媒を用い、実施例1と同じ
条件で反応を行った。供給開始1時間後の反応生成物
を、ガスクロマトグラフにより分析した結果、アクリル
酸の転化率25.6モル%、アクリル酸ブチル選択率9
9.3モル%(単流収率25.4モル%)であった。ま
た、ジブチルエーテルおよびブテンの生成は見られず、
未反応ブタノールはほぼ定量的に回収された。
(Reaction) Using this catalyst, a reaction was carried out under the same conditions as in Example 1. One hour after the start of the supply, the reaction product was analyzed by gas chromatography. As a result, the conversion of acrylic acid was 25.6 mol% and the selectivity of butyl acrylate was 9
It was 9.3 mol% (single-stream yield: 25.4 mol%). Also, no formation of dibutyl ether and butene was observed,
Unreacted butanol was recovered almost quantitatively.

【0054】実施例14 (触媒調製)炭酸セシウム8.13gおよび硝酸アルミ
ニウム9水和物6.24gを水40gに溶解させた液中
に、球状シリカゲル(5−10メッシュ)30gを2時
間浸漬した。その後、湯浴上で加熱乾固し、空気中12
0℃で20時間乾燥後、空気中500℃で3時間焼成し
て酸素を除く原子比でCs1Si10Al0.33なる組成の
触媒を調製した。
Example 14 (Preparation of catalyst) 30 g of spherical silica gel (5-10 mesh) was immersed in a solution of 8.13 g of cesium carbonate and 6.24 g of aluminum nitrate nonahydrate in 40 g of water for 2 hours. . Then, heat and dry on a hot water bath,
After drying at 0 ° C. for 20 hours, it was calcined in air at 500 ° C. for 3 hours to prepare a catalyst having a composition of Cs 1 Si 10 Al 0.33 in atomic ratio excluding oxygen.

【0055】(反応)この触媒を用い、反応温度を30
0℃にした他は実施例1と同じ条件で反応を行った。供
給開始1時間後の反応生成物を、ガスクロマトグラフに
より分析した結果、アクリル酸の転化率82.5モル
%、アクリル酸メチル選択率99.7モル%(単流収率
82.3モル%)であった。また、ジメチルエーテルの
生成は見られず、未反応メタノールはほぼ定量的に回収
された。
(Reaction) Using this catalyst, a reaction temperature of 30
The reaction was carried out under the same conditions as in Example 1 except that the temperature was changed to 0 ° C. One hour after the start of the supply, the reaction product was analyzed by gas chromatography. As a result, the conversion of acrylic acid was 82.5 mol% and the selectivity for methyl acrylate was 99.7 mol% (single-stream yield: 82.3 mol%). Met. No dimethyl ether was generated, and unreacted methanol was almost quantitatively recovered.

【0056】実施例15 (触媒調製)炭酸セシウム8.13gおよびほう酸1.
03gを水40gに溶解させた液中に、球状シリカゲル
(5−10メッシュ)30gを2時間浸漬した。その
後、湯浴上で加熱乾固し、空気中120℃で20時間乾
燥後、空気中500℃で2時間焼成して酸素を除く原子
比でCs1Si100.33なる組成の触媒を調製した。
Example 15 (Preparation of catalyst) 8.13 g of cesium carbonate and 1. boric acid
30 g of spherical silica gel (5-10 mesh) was immersed in a solution of 03 g in 40 g of water for 2 hours. Thereafter, the mixture was heated to dryness on a hot water bath, dried in air at 120 ° C. for 20 hours, and calcined in air at 500 ° C. for 2 hours to prepare a catalyst having a composition of Cs 1 Si 10 B 0.33 in an atomic ratio excluding oxygen. .

【0057】(反応)この触媒を用い、実施例1と同じ
条件で反応を行った。供給開始1時間後の反応生成物
を、ガスクロマトグラフにより分析した結果、アクリル
酸の転化率88.6モル%、アクリル酸メチル選択率9
9.6モル%(単流収率88.2モル%)であった。ま
た、ジメチルエーテルの生成は見られず、未反応メタノ
ールはほぼ定量的に回収された。
(Reaction) Using this catalyst, a reaction was carried out under the same conditions as in Example 1. One hour after the start of the supply, the reaction product was analyzed by gas chromatography. As a result, the conversion of acrylic acid was 88.6 mol% and the selectivity for methyl acrylate was 9
It was 9.6 mol% (single-stream yield: 88.2 mol%). No dimethyl ether was generated, and unreacted methanol was almost quantitatively recovered.

【0058】実施例16 実施例1の触媒10mlをステンレス製反応管に充填し
た後、330℃の溶融塩浴に浸した。次いで、該反応管
内を真空ポンプで減圧し、アクリル酸とメタノールの混
合液(モル比1:3)を定量ポンプにて送液し混合ガス
の出口圧を380mmHg、空間速度400h-1 の条
件で供給した。供給開始1時間後の反応生成物を、ガス
クロマトグラフにより分析した結果、アクリル酸の転化
率68.0モル%、アクリル酸メチル選択率99.5モ
ル%(単流収率67.7モル%)であった。またジメチ
ルエ−テルの生成は見られず、未反応メタノールはほぼ
定量的に回収された。
Example 16 10 ml of the catalyst of Example 1 was charged into a stainless steel reaction tube, and then immersed in a molten salt bath at 330 ° C. Then, the pressure inside the reaction tube was reduced by a vacuum pump, and a mixed liquid of acrylic acid and methanol (molar ratio 1: 3) was sent by a quantitative pump, and the outlet pressure of the mixed gas was 380 mmHg, and the space velocity was 400 h -1 . Supplied. One hour after the start of the supply, the reaction product was analyzed by gas chromatography. As a result, the conversion of acrylic acid was 68.0 mol%, and the selectivity for methyl acrylate was 99.5 mol% (single-stream yield: 67.7 mol%). Met. No dimethyl ether was produced, and unreacted methanol was almost quantitatively recovered.

【0059】実施例17 実施例1の触媒10mlをステンレス製反応管に充填し
た後、300℃の溶融塩浴に浸した。次いで、常圧でア
クリル酸とメタノールの混合液(モル比1:3)を定量
ポンプにて送液し、空間速度400h-1 の条件で該反
応管に供給した。反応を50時間連続して行った後、原
料供給を停止し、次いで400℃で24時間空気を流通
して、触媒上に析出した炭素上物質を燃焼することによ
って、触媒を再生した。その後、再び前述の反応条件に
戻し反応を行った。最初に原料の供給を開始ししてから
各時間後および触媒再生後の反応生成物のガスクロマト
グラフにより分析した結果のアクリル酸転化率およびア
クリル酸メチル選択率は表1に示すとおりであった。
Example 17 10 ml of the catalyst of Example 1 was filled in a stainless steel reaction tube, and then immersed in a molten salt bath at 300 ° C. Next, a mixed solution of acrylic acid and methanol (molar ratio 1: 3) was fed at a normal pressure by a metering pump and supplied to the reaction tube at a space velocity of 400 h -1 . After the reaction was continuously carried out for 50 hours, the supply of the raw material was stopped, and then the air was passed at 400 ° C. for 24 hours to burn the substances on carbon deposited on the catalyst, thereby regenerating the catalyst. Thereafter, the reaction conditions were returned to the above-described reaction conditions, and the reaction was performed. The conversion of acrylic acid and the selectivity of methyl acrylate were as shown in Table 1 as a result of analyzing the reaction products by gas chromatography after each time from the start of the supply of the raw materials and after the regeneration of the catalyst.

【0060】[0060]

【表1】 [Table 1]

【0061】比較例1 (触媒調製)オルトケイ酸エチル52.0gをエタノー
ルー水(4:1)溶液200mlに溶解させた。また別
に四塩化チタン57.4gを氷冷した希塩酸200ml
中にゆっくりと加えて均一な溶液とした。これら両者の
液を混合し、激しく攪拌しながら、1:5に希釈したア
ンモニア水で中和し、水1.6Lを加えてpH7に調節
し、2時間攪拌した後、一夜静置して共沈させた。その
後、生成した沈殿をろ別し、水で十分に洗浄した後、空
気中120℃で乾燥後、空気中400℃で2時間焼成
し、9―16メッシュに破砕し、チタニア−シリカ固体
酸触媒を調製した。(以上、特公昭55−33702号
公報号記載の方法に準じた。) (反応)この触媒を用いて、メタノールの代りにn−ブ
タノールを使用した他は実施例1と同様にして反応を行
った。供給開始1時間後の反応生成物を、ガスクロマト
グラフにより分析した結果、アクリル酸の転化率59.
0モル%、アクリル酸ブチル選択率91.0モル%(単
流収率53.7モル%)であった。また、n−ブタノー
ル基準でのアクリル酸転化率85.2モル%、アクリル
酸ブチル選択率11.9モル%であり、副生成物として
ブテンおよびジブチルエーテルの生成が見られた。
Comparative Example 1 (Preparation of catalyst) 52.0 g of ethyl orthosilicate was dissolved in 200 ml of an ethanol-water (4: 1) solution. Separately, 57.4 g of titanium tetrachloride was ice-cooled and diluted with 200 ml of dilute hydrochloric acid.
The solution was added slowly to make a homogeneous solution. These two solutions were mixed and neutralized with a 1: 5 dilution of aqueous ammonia with vigorous stirring, adjusted to pH 7 by adding 1.6 L of water, stirred for 2 hours, and allowed to stand overnight for common use. Sinked. After that, the generated precipitate was separated by filtration, sufficiently washed with water, dried in air at 120 ° C., calcined at 400 ° C. in air for 2 hours, crushed to 9-16 mesh, and titania-silica solid acid catalyst. Was prepared. (The above was carried out according to the method described in JP-B-55-33702.) (Reaction) Using this catalyst, a reaction was carried out in the same manner as in Example 1 except that n-butanol was used instead of methanol. Was. One hour after the start of the supply, the reaction product was analyzed by gas chromatography.
It was 0 mol% and the selectivity for butyl acrylate was 91.0 mol% (single-stream yield: 53.7 mol%). The conversion of acrylic acid based on n-butanol was 85.2 mol%, and the selectivity for butyl acrylate was 11.9 mol%. Butene and dibutyl ether were generated as by-products.

【0062】比較例2 (反応)球状シリカゲル(500℃、2時間焼成品)を
用いて、実施例1と同様にして反応を行った。供給開始
1時間後の反応生成物を、ガスクロマトグラフにより分
析した結果、アクリル酸の転化率は49.0モル%でア
クリル酸メチル選択率は99.5%であった。
Comparative Example 2 (Reaction) A reaction was carried out in the same manner as in Example 1 using spherical silica gel (calcined at 500 ° C. for 2 hours). One hour after the start of the supply, the reaction product was analyzed by gas chromatography. As a result, the conversion of acrylic acid was 49.0 mol% and the selectivity for methyl acrylate was 99.5%.

【0063】[0063]

【発明の効果】上記した実施例および比較例から明らか
なように、本発明の触媒を用いれば、α,β−不飽和カ
ルボン酸類とアルコール類とから気相でα,β−不飽和
カルボン酸類のアルキルエステルを製造する際、従来に
なく極めて高い選択率および収率をもって、長期にわた
って安定的にα,β−不飽和カルボン酸類のアルキルエ
ステルが得られる。また原料アルコールからのジアルキ
ルエ−テルおよびオレフィン等の副生成物が殆どないた
め未反応アルコールの回収率が高いという効果を奏す
る。従って本発明の方法はα,β−不飽和カルボン酸類
のアルキルエステルを工業的に製造する方法として優れ
たものであると言える。
As is clear from the above Examples and Comparative Examples, when the catalyst of the present invention is used, α, β-unsaturated carboxylic acids are formed in a gas phase from α, β-unsaturated carboxylic acids and alcohols. In the production of the alkyl ester of α, β-unsaturated carboxylic acids, an alkyl ester of an α, β-unsaturated carboxylic acid can be stably obtained over a long period of time with extremely high selectivity and yield. In addition, since there are almost no by-products such as dialkyl ethers and olefins from the starting alcohol, the effect of recovering the unreacted alcohol is high. Therefore, it can be said that the method of the present invention is excellent as a method for industrially producing alkyl esters of α, β-unsaturated carboxylic acids.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C07B 61/00 300 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C07B 61/00 300 C07B 61/00 300

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 α,β−不飽和カルボン酸類とアルコー
ル類とを、気相で触媒の存在下アルキルエステル化反応
させてα,β−不飽和カルボン酸エステル類を製造する
際に、前記触媒が、アルカリ金属元素を含有して成る酸
化物であることを特徴とするα,β−不飽和カルボン酸
エステル類の製造法。
1. The method according to claim 1, wherein the α, β-unsaturated carboxylic acid is reacted with an alcohol in the gas phase in the presence of a catalyst to produce an α, β-unsaturated carboxylic acid ester. Is an oxide containing an alkali metal element, wherein α, β-unsaturated carboxylic acid esters are produced.
【請求項2】 前記触媒が、アルカリ金属元素と、周期
律表IIIb、IVb、IIIa、IVaおよびVa族
の元素からなる群より選ばれる1種以上の元素とを含有
して成る酸化物である請求項1に記載の製造法。
2. The catalyst according to claim 1, wherein the catalyst is an oxide containing an alkali metal element and at least one element selected from the group consisting of elements of the periodic table IIIb, IVb, IIIa, IVa and Va. The method according to claim 1.
【請求項3】 前記触媒が、アルカリ金属元素と、ケイ
素、チタンおよびジルコニウムからなる群より選ばれる
1種以上の元素とを含有して成る酸化物である請求項1
または2に記載の製造法。
3. The catalyst according to claim 1, wherein the catalyst is an oxide containing an alkali metal element and at least one element selected from the group consisting of silicon, titanium and zirconium.
Or the production method according to 2.
【請求項4】 前記触媒が、一般式(1): 【化1】 (式中、Mはアルカリ金属元素を表し、Xはケイ素、チ
タンおよびジルコニウムからなる群より選ばれる1種以
上の元素を表し、QはY、La、Ce、B、Al、G
e、Sn、Pb、P、SbおよびBiからなる群より選
ばれる1種以上の元素を表し、Oは酸素を表し、a、
b、cおよびdは各元素の数であって、aが1のとき、
bは1〜500でcは0〜1であり、dはa、bおよび
cの値および各種構成元素の結合状態により定まる数値
である。)で表される酸化物である請求項1〜3のいず
れか1項に記載の製造法。
4. The catalyst according to claim 1, wherein the catalyst has the general formula (1): (Wherein M represents an alkali metal element, X represents one or more elements selected from the group consisting of silicon, titanium and zirconium, and Q represents Y, La, Ce, B, Al, G
e, at least one element selected from the group consisting of Sn, Pb, P, Sb and Bi, O represents oxygen, a,
b, c and d are the numbers of each element, and when a is 1,
b is 1 to 500 and c is 0 to 1, and d is a numerical value determined by the values of a, b and c and the bonding state of various constituent elements. The method according to any one of claims 1 to 3, which is an oxide represented by the formula:
【請求項5】 α,β−不飽和カルボン酸類とアルコ
ール類とを気相でアルキルエステル化させて、α,β−
不飽和カルボン酸類のアルキルエステルを製造する際に
使用される触媒であって、該触媒が、アルカリ金属元素
を含有して成る酸化物であることを特徴とするα,β−
不飽和カルボン酸類のアルキルエステル化触媒。
5. An α, β-unsaturated carboxylic acid and an alcohol are subjected to alkyl esterification in a gas phase to form an α, β-unsaturated carboxylic acid and an alcohol.
A catalyst for use in producing an alkyl ester of an unsaturated carboxylic acid, wherein the catalyst is an oxide containing an alkali metal element.
Catalyst for alkyl esterification of unsaturated carboxylic acids.
JP9133092A 1997-05-23 1997-05-23 Production of unsaturated carboxylic acid ester Pending JPH10324664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9133092A JPH10324664A (en) 1997-05-23 1997-05-23 Production of unsaturated carboxylic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9133092A JPH10324664A (en) 1997-05-23 1997-05-23 Production of unsaturated carboxylic acid ester

Publications (1)

Publication Number Publication Date
JPH10324664A true JPH10324664A (en) 1998-12-08

Family

ID=15096668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9133092A Pending JPH10324664A (en) 1997-05-23 1997-05-23 Production of unsaturated carboxylic acid ester

Country Status (1)

Country Link
JP (1) JPH10324664A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351399B2 (en) 1999-06-29 2002-02-26 Mitsubishi Denki Kabushiki Kaisha Power converter
JP2002155025A (en) * 2000-09-11 2002-05-28 Mitsubishi Gas Chem Co Inc Method for producing methacrylates
WO2009095458A1 (en) * 2008-01-31 2009-08-06 Basf Se METHOD FOR THE PRODUCTION OF ESTERS OF α, β-UNSATURATED CARBOXYLIC ACIDS

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351399B2 (en) 1999-06-29 2002-02-26 Mitsubishi Denki Kabushiki Kaisha Power converter
JP2002155025A (en) * 2000-09-11 2002-05-28 Mitsubishi Gas Chem Co Inc Method for producing methacrylates
WO2009095458A1 (en) * 2008-01-31 2009-08-06 Basf Se METHOD FOR THE PRODUCTION OF ESTERS OF α, β-UNSATURATED CARBOXYLIC ACIDS

Similar Documents

Publication Publication Date Title
UA112887C2 (en) METHOD OF PREPARATION OF ACETIC ACID AND DIMETHYL Ether
EP0230776A2 (en) Process for producing cyclic amines
AU2011273219B2 (en) A nitrided mixed oxide catalyst system and a process for the production of ethylenically unsaturated carboxylic acids or esters
JP4508545B2 (en) Dimethyl carbonate synthesis catalyst
KR101660560B1 (en) - method for producing -hydroxycarboxylic acid ester
KR950014222B1 (en) Process for producing (alpha),(beta)-linsaturated carboxylic acid esters
JPH10324664A (en) Production of unsaturated carboxylic acid ester
JPS6363537B2 (en)
JPH11152245A (en) Production of unsaturated ketone
JP2660169B2 (en) Catalyst for producing tertiary N-alkenylcarboxylic amides and method for producing tertiary N-alkenylcarboxylic amides
JP2740479B2 (en) Process for producing unsaturated ethers and catalyst for producing unsaturated ethers
EP0701986B1 (en) Process for production of unsaturated ether and catalyst used for production of unsaturated ether
JPH06279396A (en) Producing thiol group-containing carboxylic acid esters
JPH01113341A (en) Production of methyl carboxylate
JPH09249608A (en) Production of vinyl ether
JP2712136B2 (en) Method for producing alkylene sulfide
JPH0576343B2 (en)
JP2002363177A (en) Process for producing alkylene carbonate and catalyst to be used for the same
JPH0576344B2 (en)
JP2782883B2 (en) Method for producing tertiary olefin
JPH0873411A (en) Production of dialkyl carbonate
JP3960504B2 (en) Method for producing asymmetric carbonate
JP3173273B2 (en) Method for producing glyoxylate
JPH0959186A (en) Production of (perfluoroalkyl)ethene and catalyst therefor
JP3279946B2 (en) Catalyst for alkylene sulfide production