JPH10323668A - Electrolytic current control circuit for electrolytic water generator - Google Patents

Electrolytic current control circuit for electrolytic water generator

Info

Publication number
JPH10323668A
JPH10323668A JP15283297A JP15283297A JPH10323668A JP H10323668 A JPH10323668 A JP H10323668A JP 15283297 A JP15283297 A JP 15283297A JP 15283297 A JP15283297 A JP 15283297A JP H10323668 A JPH10323668 A JP H10323668A
Authority
JP
Japan
Prior art keywords
current
electrolytic
electrolysis
voltage
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15283297A
Other languages
Japanese (ja)
Inventor
Susumu Tanaka
進 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON INTEC KK
Original Assignee
NIPPON INTEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON INTEC KK filed Critical NIPPON INTEC KK
Priority to JP15283297A priority Critical patent/JPH10323668A/en
Publication of JPH10323668A publication Critical patent/JPH10323668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To control a power source for electrolysis by means of electric current flowing between a cathode and an anode of an electrolysis cell. SOLUTION: An electric current flowing between a cathode 6 and an anode 5 of an electrolytic cell 3 is sensed between a rectifier block 2 and both the electrodes 6, 5 by a current sensor 10 and the sensed current is converted into voltage, which is subjected to a V/F(voltage/frequency) conversion. Frequency F relating to electrolysis degree information obtained from the converted F and an operation part 13 is added to F relating to electrolysis information obtained from the relationship between known raw water conductivity and electrolytic current to provide operation control information, whereby an originally expected predetermined current between cathode and anode can be controlled by means of a control unit 11. As a result, an effective electrolytic current control can be conducted using a simple constitution so that the electrolytic cell can always deliver electrolytic water of constant pH according to pH specified by a user of an electrolytic water generator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解水生成装置の
電解電流制御回路に関するものである。更に詳述する
と、原水を電解槽内に流入し、電解槽内に配設した陰陽
電極間に通電して電気分解することにより、酸性水とア
ルカリ水とに分離して吐水する電解水生成装置におい
て、吐水する電解水を所望するpHとする制御回路に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolysis current control circuit for an electrolyzed water generator. More specifically, an electrolyzed water generating device that flows raw water into an electrolytic cell, conducts electricity between a positive electrode and a negative electrode disposed in the electrolytic cell, and performs electrolysis, thereby separating and discharging acidic water and alkaline water. The present invention relates to a control circuit for adjusting the discharged water to a desired pH.

【0002】[0002]

【従来の技術】密閉された電解槽に連続的に原水を供給
し、電解槽内のイオン浸透性隔膜を介して分域した陰陽
極室に配設された陰陽電極間に直流電流もしくは脈流を
印加通電し、水の電気分解およびイオン浸透作用を行
い、陰極室には陰極水を、陽極室には陽極水を生成し、
これを個別の吐出口から吐水する電解水生成装置があ
る。
2. Description of the Related Art Raw water is continuously supplied to a sealed electrolytic cell, and a direct current or a pulsating current flows between a negative electrode and a positive electrode disposed in a negative anode chamber divided through an ion-permeable membrane in the electrolytic cell. To apply electricity and perform electrolysis and ion osmosis of water, generate cathode water in the cathode chamber and anode water in the anode chamber,
There is an electrolyzed water generator that discharges water from individual discharge ports.

【0003】電解水生成装置は原水中に溶解したイオン
を電解質として通電し、陰極室にpHの高いアルカリ水
を、陽極室にpHの低い酸性水を生成するが、原水に含
まれる電解質が変動するためや電極の劣化のため、ま
た、水道水中に含まれるカルシウムイオンやこれとは別
にカルシウム補給のため添加したカルシウムイオンが電
解により電荷を失い、陰電極、陰極室隔膜や陰極室吐水
口に炭酸カルシウムや水酸化カルシウムとして堆積し陰
陽電極間の通電を阻害することにより、電解槽自体の電
解条件が暫時変わる。従って、電解槽に印加する電流を
恒常状態にしておいたとしても、常に所望のpHのアル
カリ水もしくは酸性水が得られるとは限らない。
The electrolyzed water generator generates electricity by using ions dissolved in raw water as an electrolyte, and generates alkaline water having a high pH in a cathode chamber and acidic water having a low pH in an anode chamber, but the electrolyte contained in the raw water fluctuates. In addition, calcium ions contained in tap water and calcium ions added separately to supplement calcium lose their charge due to electrolysis due to electrolysis, deterioration of the electrodes, and the negative electrode, cathode chamber diaphragm and cathode chamber spout. Electrolytic conditions of the electrolytic cell itself are temporarily changed by depositing as calcium carbonate or calcium hydroxide and inhibiting the passage of electricity between the negative and positive electrodes. Therefore, even if the current applied to the electrolytic cell is kept in a constant state, it is not always possible to obtain alkaline water or acidic water having a desired pH.

【0004】一方、電解水生成装置使用者は上記アルカ
リ水を主として飲料用に供する。また、酸性水を殺菌や
消毒液に使用する。生体を形成する細胞はpHに対して
敏感に反応し、pHの実変動は細胞に好ましくない影響
を与えるため常に所定のpHの吐水が得られることを望
んでいる。
On the other hand, a user of the electrolyzed water generator mainly supplies the alkaline water for drinking. In addition, acidic water is used for sterilizing and disinfecting solutions. Cells forming a living body are sensitive to pH, and it is hoped that water with a predetermined pH can always be obtained because actual fluctuations in pH have an undesirable effect on cells.

【0005】このため、電解槽に流入する原水中に含ま
れる特定溶解成分をイオン交換樹脂などを用いて除去
し、電解槽に流入する原水の導電率を安定化したり、改
めて定まった濃度の電解質を添加して、電解槽に流入す
る原水の導電率を一定にしたり、使用に先立つ期間や給
水停止期間中に電解槽の電極に印加する電圧の極性を反
転させ、陰極に陽電圧を陽極に陰電圧を印加して陰極に
酸性水を発生させ、発生した酸性水をもって堆積したカ
ルシウムを溶解し、電極表面を再生し、指定するpHに
従って電極に常に指定したpHに対応した同一電流が流
れるように工夫している。
[0005] For this reason, specific dissolved components contained in raw water flowing into the electrolytic cell are removed by using an ion exchange resin or the like to stabilize the conductivity of the raw water flowing into the electrolytic cell, or to remove the electrolyte having a newly determined concentration. To make the conductivity of the raw water flowing into the electrolytic cell constant, or to reverse the polarity of the voltage applied to the electrode of the electrolytic cell during the period prior to use or during the suspension of water supply, and apply the positive voltage to the cathode to the anode. Applying a negative voltage to generate acidic water at the cathode, dissolving the deposited calcium with the generated acidic water, regenerating the electrode surface, and always flowing the same current corresponding to the specified pH to the electrode according to the specified pH It is devised.

【0006】これとは別に、電解槽に供給される原水や
電解槽から吐水する陰陽極水の電気伝導度やpHなどを
測定して、所望外の吐水を吐水口前で方向切換え弁を介
して排水口に排水し、所望内の吐水のみを利用に供する
ようにしたものや、電解槽から吐水する陰陽極水の電気
伝導度やpHなどを測定して、その値を制御回路で演算
し、演算した結果が所定値にない場合、所定値になるよ
うに陰陽極の印加電圧を自動的に制御する機能をもった
電解水生成装置がある。
Separately, the electrical conductivity and pH of the raw water supplied to the electrolytic cell and the negative anodic water discharged from the electrolytic cell are measured, and undesired water is discharged through a direction switching valve in front of the water discharge port. And discharge the water to the drain port, and use only the desired water discharge, or measure the electrical conductivity and pH of the negative anode water discharged from the electrolytic tank, and calculate the value with the control circuit. There is an electrolyzed water generating apparatus having a function of automatically controlling the voltage applied to the negative electrode so that the calculated result does not reach the predetermined value so that the value becomes the predetermined value.

【0007】[0007]

【発明が解決しようとする課題】上記の原水や電解槽か
ら吐水する陰陽極水の電気伝導度やpHを測定する方式
のものにあっては、電気伝導度やpHを測定する装置を
電解槽の原水流入管や電解槽の吐水管に設ける必要があ
る。この場合、少なくともこの装置を設けなければなら
ず、この装置やその取付けに費用を要し経済性が低いば
かりでなく、電解槽等の配置に制約を受け設計しずらい
ものである。
In the above-mentioned system for measuring the electric conductivity and the pH of the anode water discharged from the raw water or the electrolytic cell, an apparatus for measuring the electric conductivity or the pH is used for the electrolytic cell. It must be installed in the raw water inflow pipe and the water discharge pipe of the electrolytic cell. In this case, at least this device must be provided, which requires cost for the device and its installation, is not economical, and is difficult to design due to restrictions on the arrangement of electrolytic cells and the like.

【0008】本発明者は電解槽の陰陽極が電気伝導度を
測定するための装置と同じく対峙する2枚の金属板から
形成され、しかも陰陽極に流れる電流変化は原水や電
極、更に電解槽の状態を表わすセンサ機能を持つことに
着眼し、陰陽極に流れる電流をセンシングすることによ
り、電気伝導度計と同じ機能をもって陰陽極間に印加す
る電解電流を制御させようとするものである。
The inventor of the present invention has found that the negative electrode of the electrolytic cell is formed of two metal plates facing each other as in the device for measuring electric conductivity, and the change in the current flowing through the negative electrode depends on the raw water, the electrode, and the electrolytic cell. Focusing on having a sensor function to represent the state of (1), by sensing the current flowing through the anode and cathode, it is intended to control the electrolytic current applied between the anode and cathode with the same function as the electric conductivity meter.

【0009】そこで本発明は、電解槽の陰陽極間に流れ
る電流を整流ブロックと両電極の間で電流センサをもっ
て感知した後、電流を電圧に換算し、この電圧出力をV
/F(電圧/周波数)変換する。変換したFと、操作部
から得られる電解度情報に関するFや事前にわかってい
る原水伝導率と電解電流の関係から得られている電解情
報(操作電解度情報)に関するFと加算して操作制御情
報とし、本来流れるべき所定の陰陽極間電流を制御ユニ
ットをもって制御する。すなわち、所定の陰陽極間に流
れる電流でないときは制御ユニットを通じて陰陽極間の
印加電圧を変えることにより、所定の陰陽極間電流にし
ようとするものである。この結果、簡単な構成をもって
有効な電解水の電解電流制御を行うことができるので、
電解槽は電解水生成器使用者の指定pHに従って常時一
定のpHの電解水を吐水することができる。
In the present invention, after a current flowing between the negative and positive electrodes of an electrolytic cell is sensed between a rectifying block and both electrodes by a current sensor, the current is converted into a voltage, and this voltage output is converted to a voltage V.
/ F (voltage / frequency) conversion. The operation control is performed by adding the converted F to the F relating to the electrolysis information obtained from the operation unit and the F relating to the electrolysis information (operation electrolysis information) obtained from the relationship between the raw water conductivity and the electrolysis current known in advance. As information, a predetermined inter-anode current that should flow is controlled by the control unit. That is, when the current does not flow between the predetermined negative and positive electrodes, the voltage applied between the negative and positive electrodes is changed through the control unit to obtain a predetermined current between the negative and positive electrodes. As a result, effective electrolytic current control of the electrolytic water can be performed with a simple configuration.
The electrolytic cell can always discharge electrolytic water having a constant pH according to the pH specified by the user of the electrolytic water generator.

【0010】[0010]

【課題を解決するための手段】本発明の請求項1の電解
水生成装置の電解電流制御回路は、原水を連続的に電解
槽内に流入し、電解槽内に設けたイオン透過性隔膜で分
域され、陰電極を挿入した陰極室と陽電極を挿入した陽
極室との陰陽電極間に直流電圧を印加通電し、原水を電
気分解する電解水生成装置において、上記両電極間を流
れる電流を監視する電流センサから得た出力をもって電
解電源を制御することを特徴とする。
The electrolysis current control circuit of the electrolyzed water generating apparatus according to the first aspect of the present invention is characterized in that raw water is continuously flowed into the electrolysis tank, and is controlled by an ion-permeable membrane provided in the electrolysis tank. A DC voltage is applied between the negative and positive electrodes of the cathode chamber into which the cathode electrode is inserted and the anode chamber into which the positive electrode is inserted, and a current is applied between the two electrodes in the electrolyzed water generating apparatus for electrolyzing raw water. The electrolytic power supply is controlled by an output obtained from a current sensor for monitoring the electric current.

【0011】本発明の請求項2の電解水生成装置の電解
電流制御回路は、請求項1の電解水生成装置の電解電流
制御回路であって、電流センサは整流ブロックと両電極
の間で電流を感知することを特徴とする。
According to a second aspect of the present invention, there is provided an electrolytic current control circuit for an electrolyzed water generating apparatus according to the first aspect of the present invention. Is detected.

【0012】本発明の請求項3の電解水生成装置の電解
電流制御回路は、請求項1の電解水生成装置の電解電流
制御回路であって、電流センサから得た出力電圧をV/
F変換する回路と、V/F変換した出力と操作電解度情
報を加算し操作制御情報として電解電源を制御すること
を特徴とする。
According to a third aspect of the present invention, there is provided an electrolysis current control circuit for an electrolyzed water generating apparatus according to the first aspect, wherein the output voltage obtained from the current sensor is V /
It is characterized in that a circuit for F-conversion, an output obtained by V / F conversion and operation electrolysis information are added to control an electrolytic power source as operation control information.

【0013】本発明の請求項4の電解水生成装置の電解
電流制御回路は、請求項3の電解水生成装置の電解電流
制御回路であって、電流センサから得た出力電圧とV/
F変換する回路間に極性反転回路を形成したことを特徴
とする。
According to a fourth aspect of the present invention, there is provided an electrolysis current control circuit for an electrolyzed water generating apparatus according to the third aspect, wherein the output voltage obtained from the current sensor and the V / V
A polarity inversion circuit is formed between the circuits that perform F conversion.

【0014】[0014]

【発明の実施の形態】図1は本発明の電解水生成装置の
電解電流制御回路の原理を説明する概略図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram for explaining the principle of an electrolysis current control circuit of an electrolyzed water generating apparatus according to the present invention.

【0015】図1において、1はトランスであり、2は
トランス2次側の電流を整流する整流ブロックであり、
3は電解槽で、電解槽内には隔膜4を介して陽極5と陰
極6が対峙して配設され、通常状態において、流入側管
部材7から矢示方向に電解槽に入る原水を電解して陽極
側管部材8から陽極水を、陰極側管部材9から陰極水を
吐水する。
In FIG. 1, 1 is a transformer, 2 is a rectifying block for rectifying the current on the secondary side of the transformer,
Reference numeral 3 denotes an electrolytic cell, in which an anode 5 and a cathode 6 are disposed so as to face each other with a diaphragm 4 interposed therebetween. In a normal state, raw water entering the electrolytic cell from the inflow side pipe member 7 in the direction of the arrow is electrolyzed. Then, the anode water is discharged from the anode tube member 8 and the cathode water is discharged from the cathode tube member 9.

【0016】電流センサ10は整流ブロック2から陽極
5に至る回路に流れる電流を磁界が感知し、電流の変動
を監視する。該電流センサ10からの信号は制御ユニッ
ト11を経てトランス2次側の電圧を調整する。13は
制御ユニット11に所望pHなどの値を入力する操作部
で、その出力は周波数情報として制御ユニット11に入
力される。また、14は原水の伝導率と電解電流の関係
や電極の劣化に伴う電解電流の操作電解度情報を収納し
たROMである。この所望pH値と原水の電気伝導度か
ら算出される最適電流値、電解槽の使用時間による電極
の劣化に関する陰極間の電流変動値などは制御ユニット
11で電流センサ10から得た信号と共に処理されトラ
ンス2次側の電圧を調整する。なお、図において、電流
センサ10は整流ブロック2のプラス側から陽極5に至
る回路に設けられているが、整流ブロック2のマイナス
側から陰極6に至る回路に設けられていてもよく、また
この間に逆電のための反転回路が設けられていてもよ
い。また、図では、制御ユニット11によるトランス2
次側の電圧の調整は矢示選択部材12の移動による電圧
調整のように示されているが、トランスの一次側や二次
側にトライアックを含む通電位相制御回路を設けて連続
的に電極印加電圧を制御することもできる。
The current sensor 10 detects a current flowing in a circuit from the rectifier block 2 to the anode 5 by a magnetic field, and monitors a change in the current. The signal from the current sensor 10 passes through the control unit 11 to adjust the voltage on the secondary side of the transformer. Reference numeral 13 denotes an operation unit for inputting a value such as a desired pH to the control unit 11, and its output is input to the control unit 11 as frequency information. A ROM 14 stores the relationship between the conductivity of raw water and the electrolytic current, and information on the operating electrolyticity of the electrolytic current due to deterioration of the electrodes. The optimum current value calculated from the desired pH value and the electric conductivity of the raw water, the current fluctuation value between the cathodes related to the deterioration of the electrodes due to the use time of the electrolytic cell, and the like are processed by the control unit 11 together with the signal obtained from the current sensor 10. Adjust the voltage on the transformer secondary side. Although the current sensor 10 is provided in a circuit from the positive side of the rectification block 2 to the anode 5 in the drawing, it may be provided in a circuit from the negative side of the rectification block 2 to the cathode 6. May be provided with an inversion circuit for reverse power. In the figure, the transformer 2 is controlled by the control unit 11.
The adjustment of the voltage on the secondary side is shown as the voltage adjustment by moving the arrow selecting member 12. However, an energization phase control circuit including a triac is provided on the primary and secondary sides of the transformer to continuously apply the electrode. The voltage can also be controlled.

【0017】このような構成によれば、電解水生成器の
pHを所定の値に設定したときに、電流センサ10に本
来流れるべき整流ブロック2から陽極5に至る回路に流
れる電流に異状を感知したとき、制御ユニット11はト
ランス2次側の電圧を調整し最適電圧とし、整流ブロッ
ク2から陽極5に至る回路に流れる電流を調節すること
ができる。例えば、電解によって水道水中に含まれるカ
ルシウムイオンなどのために、使用に伴ってカルシウム
イオンが電荷を失い、陰電極や陰極室隔膜に堆積する。
堆積に伴って陰陽電極間の抵抗が高まり通電を阻害する
ため、電解条件が逐次変わり、両極間に流れる電流が減
少する方向に推移していくが、電流センサ10はこれを
感知し電流の減少と共に制御ユニット11を介して電圧
を高める方向、つまり、陰陽電極間の抵抗に抗する方向
に作動するので、両極間に堆積前と同じ電流を流すこと
ができる。この結果、上記堆積の影響のない所望のpH
のアルカリ水もしくは酸性水が得られる。
According to such a configuration, when the pH of the electrolyzed water generator is set to a predetermined value, an abnormality is detected in the current flowing in the circuit from the rectifying block 2 to the anode 5, which should flow to the current sensor 10. Then, the control unit 11 can adjust the voltage on the secondary side of the transformer to an optimum voltage and adjust the current flowing in the circuit from the rectifying block 2 to the anode 5. For example, due to calcium ions and the like contained in tap water due to electrolysis, the calcium ions lose their charge with use and accumulate on the negative electrode and the cathode compartment diaphragm.
Since the resistance between the negative and positive electrodes increases with the deposition and inhibits current flow, the electrolysis conditions change successively, and the current flowing between the two electrodes decreases, but the current sensor 10 senses this and decreases the current. At the same time, it operates in the direction of increasing the voltage via the control unit 11, that is, in the direction against the resistance between the negative and positive electrodes, so that the same current as before the deposition can flow between the two electrodes. As a result, the desired pH without the influence of the deposition
Alkaline water or acidic water is obtained.

【0018】図2は電流センサの特性と電解度の関係と
電解槽に流れる電流と電圧との関係の一例を示す図であ
り、図2(a)は電解槽から吐水する陰極水のpHと陰
陽両極間に流れる電流との関係を示す図で、図2(b)
は電解槽に流れる電流と電圧との関係を示す図である。
FIG. 2 is a diagram showing an example of the relationship between the characteristics of the current sensor and the electrolyticity, and the relationship between the current and the voltage flowing through the electrolytic cell. FIG. 2A shows the relationship between the pH of the cathode water discharged from the electrolytic cell and the pH. FIG. 2B shows the relationship between the current flowing between the positive and negative poles, and FIG.
FIG. 3 is a diagram showing a relationship between a current flowing through an electrolytic cell and a voltage.

【0019】図2(a)から陰陽両極間に流れる電流
(横軸)と電解槽から吐水する陰極水のpH(縦軸)と
の間には図示の関係があり、電流が増大するに従ってp
Hは高まりある高さで飽和することがわかる。また、図
2(b)から電解槽に流れる電流と電圧はほぼ比例関係
にあることが分かり、上記電流を増加させるためには電
圧を上昇させればよいことがわかる。
FIG. 2A shows the relationship between the current (horizontal axis) flowing between the negative and positive electrodes and the pH (vertical axis) of the cathode water discharged from the electrolytic cell.
It can be seen that H increases and saturates at a certain height. In addition, it can be seen from FIG. 2B that the current flowing in the electrolytic cell and the voltage are substantially proportional to each other, and that the current can be increased by increasing the voltage.

【0020】図3は上記の技術思想に基づいて構成され
た実用装置の一例で電流センサからV/F変換後の出力
に至る回路図ある。この出力と所望pH値と原水の電気
伝導度などから算出される最適電流値などの出力との加
算は制御ユニット自体の構成であり、公知の技術が利用
される。
FIG. 3 is a circuit diagram showing an example of a practical device constructed based on the above-mentioned technical idea, from a current sensor to an output after V / F conversion. The addition of the output, the desired pH value, and the output such as the optimal current value calculated from the electric conductivity of the raw water is a configuration of the control unit itself, and a known technique is used.

【0021】図3に示す電流センサ10から両電極に流
れる電流に比例した電圧を取り出すことができる。この
ような電流センサ10は量産化されたものが市販されて
おり好適に使用できる。電流センサ10を構成するコン
パレータ15は電解槽の逆電圧の印加に対応できるよう
に正負電圧が図示していない電源から供給される。その
出力はLC積分回路16をもって平滑にされ、コンパレ
ータとレギュレータからなるV/F変換回路17に入力
されてV/F変換され、フオットスイッチ18から両電
極に流れる電流値と対応するパルス電流を発生する。こ
のパルス電流は操作部13から入力された所望電解度に
対応する図示しないパルス電流やROMに収納された事
前にわかっている原水伝導率と電解電流の関係から得ら
れている電解情報に関する基準パルス電流と自在に比
較、加算され選択部材12に出力され、電解電圧が調整
される。
A voltage proportional to the current flowing through both electrodes can be obtained from the current sensor 10 shown in FIG. Such a current sensor 10 which is mass-produced is commercially available and can be suitably used. The comparator 15 constituting the current sensor 10 is supplied with positive and negative voltages from a power source (not shown) so as to be able to respond to the application of a reverse voltage to the electrolytic cell. The output is smoothed by an LC integration circuit 16 and input to a V / F conversion circuit 17 composed of a comparator and a regulator, where the output is subjected to V / F conversion. Occur. This pulse current is a reference pulse relating to electrolysis information obtained from a previously known relationship between raw water conductivity and electrolysis current stored in the ROM and a pulse current (not shown) corresponding to a desired electrolysis degree input from the operation unit 13. The current is freely compared with and added to the current, output to the selection member 12, and the electrolysis voltage is adjusted.

【0022】図4は図3に対応する上記の技術思想に基
づいて構成された実用装置の別な例で電流センサからV
/F変換後の出力に至る回路図である。
FIG. 4 shows another example of a practical device constructed based on the above technical idea corresponding to FIG.
FIG. 9 is a circuit diagram showing an output after / F conversion.

【0023】前記したように、電解水生成装置の使用に
伴ってカルシウム化合物の陰電極上などの堆積によって
次第に陰陽極間の導電性が悪くなる。このため、給水停
止期間中などに電解槽の電極に印加する電圧の極性を反
転させ、陰極に陽電圧を陽極に陰電圧を印加して陰極に
酸性水を発生させ、発生した酸性水をもって堆積したカ
ルシウムを溶解し、電極表面を再生する逆電解が行われ
る。逆電解においては陰陽極電流は反転するため、電流
センサ10から出力される両電極に流れる電流に比例す
る電圧も反転する。図4に示した回路図の構成によれ
ば、極性反転回路をもって、逆電解したとき自動的に電
圧極性を反転させ常に一方方向、例えば、正電圧として
フオットスイッチ18から両電極に流れる電流値と対応
するパルス電流を発生することができる。
As described above, with the use of the electrolyzed water generating apparatus, the conductivity between the anode and the cathode gradually deteriorates due to the deposition of the calcium compound on the cathode and the like. For this reason, the polarity of the voltage applied to the electrodes of the electrolytic cell is reversed during the suspension of water supply, and a positive voltage is applied to the cathode and a negative voltage is applied to the anode to generate acidic water at the cathode. Reverse electrolysis for dissolving the calcium thus obtained and regenerating the electrode surface is performed. In the reverse electrolysis, since the anode current is inverted, the voltage output from the current sensor 10 and proportional to the current flowing through both electrodes is also inverted. According to the configuration of the circuit diagram shown in FIG. 4, the polarity inversion circuit automatically reverses the voltage polarity when reverse electrolysis is performed, so that the current value flowing from the photo-switch 18 to both electrodes as a positive voltage at all times is always positive. And a corresponding pulse current can be generated.

【0024】図4において、上記反転を行う回路は図3
に示した電流センサ10の出力端子とV/F変換回路1
7入力端子間に置かれる極性反転アンプ19と2つのダ
イオードD1、D2にから構成される。アルカリ水を得よう
とするとき、陽極に正電位を、陰極は0電位とした電流
が電流センサ10に流れ、この流れによって正電圧がオ
ペアンプ15に発生する。発生した正電圧はダイオード
D1を導通させV/F変換回路17に入力される。このと
き、極性反転アンプ19の出力は負電圧となるためダイ
オードD2は逆バイアスされることになり出力は現われな
い。逆洗のために陰陽極電圧を反転させるとオペアンプ
15に負電圧が発生する。このときはダイオードD1が逆
バイアスされることになり、極性反転アンプ19の出力
が正電圧になることからダイオードD2が導通し、V/F
変換回路17に入力される。この結果、逆洗の場合でも
アルカリ水を得るときと同じ信号がV/F変換回路17
に入力される。
In FIG. 4, a circuit for performing the above inversion is shown in FIG.
Output terminal of the current sensor 10 and the V / F conversion circuit 1 shown in FIG.
It comprises a polarity inversion amplifier 19 placed between the seven input terminals and two diodes D1 and D2. When alkaline water is to be obtained, a current having a positive potential at the anode and a potential of 0 at the cathode flows through the current sensor 10, and a positive voltage is generated in the operational amplifier 15 by this flow. The generated positive voltage is a diode
D1 is made conductive and input to the V / F conversion circuit 17. At this time, since the output of the polarity inversion amplifier 19 becomes a negative voltage, the diode D2 is reverse-biased and no output appears. When the anode voltage is inverted for backwashing, a negative voltage is generated in the operational amplifier 15. At this time, the diode D1 is reverse-biased, and the output of the polarity inversion amplifier 19 becomes a positive voltage, so that the diode D2 conducts and V / F
It is input to the conversion circuit 17. As a result, even in the case of back washing, the same signal as when alkaline water is obtained is output to the V / F conversion circuit 17.
Is input to

【0025】このような周波数の比較やデータの読み取
りはマイクロコンピュータのタイミングクロックと連動
させてソフト的に行うと都合がよい。この場合、制御ユ
ニット11で電流センサ10の出力をデジタル的に正確
にカウントし選択部材12を介して調整することができ
るので、電解槽の状態や電解槽に給水される水の導電率
に合わせて両電極への印加電圧を正確に算出し印加する
ことができる。
It is convenient to perform such frequency comparison and data reading in software in conjunction with the timing clock of the microcomputer. In this case, the output of the current sensor 10 can be accurately counted digitally by the control unit 11 and adjusted via the selection member 12, so that the output of the current sensor 10 can be adjusted according to the state of the electrolytic cell and the conductivity of the water supplied to the electrolytic cell. Thus, the applied voltage to both electrodes can be accurately calculated and applied.

【0026】[0026]

【発明の効果】本発明の電解水生成装置の電解電流制御
回路は、電解槽の陰陽極間に流れる電流を電流センサで
受けた後、電流を電圧に換算し、この電圧出力をV/F
変換し、F(周波数を)を、正常状態の所定の陰陽極間
に流れる電流と比較し、所定の陰陽極間に流れる電流で
ないときは制御ユニットを介して陰陽極間の印加電圧を
変えることにより、所定の陰陽極間電流にすることがで
きるので、実用上下記の効果が得られる。 イ 電気伝導度を測定する装置やpH計を電解槽の原水
流入管や電解槽の吐水管に設ける必要がないので、電解
槽の配置に制約を受けることがない。 ロ 改めて電気伝導度を測定する装置やpH計を設けな
いので経済性が高い。 ハ 電解槽は電解水生成器使用者の指定pHに従って常
時一定のpHの電解水を吐水することができる。 ニ 逆電解の場合でもアルカリ水を得るときと同じよう
なV/F変換したパルス電流を得ることができる。 ホ 回路が簡単で経済性が高いばかりか、安定に動作す
ることができる。
The electrolysis current control circuit of the electrolyzed water generating apparatus according to the present invention receives the current flowing between the anode and the anode of the electrolytic cell by a current sensor, converts the current into a voltage, and converts this voltage output to V / F.
Converting and comparing F (frequency) with the current flowing between the predetermined anode and anode in the normal state, and changing the applied voltage between the cathode and anode via the control unit when the current is not the current flowing between the cathode and anode. As a result, a predetermined current between the negative and positive electrodes can be obtained, and the following effects can be obtained practically. (B) Since there is no need to provide a device for measuring electric conductivity or a pH meter in the raw water inflow pipe of the electrolytic cell or the water discharge pipe of the electrolytic cell, the arrangement of the electrolytic cell is not restricted. (B) Since there is no need to provide a device for measuring electrical conductivity or a pH meter, it is economical. (C) The electrolytic cell can always discharge electrolytic water having a constant pH according to the pH specified by the user of the electrolytic water generator. D) Even in the case of reverse electrolysis, it is possible to obtain a V / F converted pulse current similar to that obtained when obtaining alkaline water. E The circuit is simple and economical, and can operate stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電解水生成装置の電解電流制御回路の
原理を説明する概略図である。
FIG. 1 is a schematic diagram illustrating the principle of an electrolysis current control circuit of an electrolyzed water generation device of the present invention.

【図2】電流センサの特性と電解度の関係と電解槽に流
れる電流と電圧との関係の一例を示す図である。
FIG. 2 is a diagram illustrating an example of a relationship between a characteristic of a current sensor and an electrolytic degree and a relationship between a current flowing through an electrolytic cell and a voltage.

【図3】本発明の技術思想に基づいて構成された実用装
置の一例で、電流センサからV/F変換後の出力に至る
回路図ある。
FIG. 3 is a circuit diagram showing an example of a practical device configured based on the technical idea of the present invention, from a current sensor to an output after V / F conversion.

【図4】本発明の技術思想に基づいて構成された実用装
置の別な例で電流センサから極性反転回路を経てV/F
変換後の出力に至る回路図ある。
FIG. 4 is another example of a practical device constructed based on the technical idea of the present invention, and a V / F from a current sensor via a polarity inversion circuit.
FIG. 9 is a circuit diagram showing an output after conversion.

【符号の説明】[Explanation of symbols]

10 電流センサ 11 制御ユニット 13 操作部 17 V/F変換回路 18 フオットスイッチ 19 極性反転アンプ DESCRIPTION OF SYMBOLS 10 Current sensor 11 Control unit 13 Operation part 17 V / F conversion circuit 18 Foot switch 19 Polarity inversion amplifier

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原水を連続的に電解槽内に流入し、電解
槽内に設けたイオン透過性隔膜で分域され、陰電極を挿
入した陰極室と陽電極を挿入した陽極室との陰陽電極間
に直流電圧を印加通電し、原水を電気分解する電解水生
成装置において、 上記両電極間を流れる電流を監視する電流センサから得
た出力をもって電解電源を制御することを特徴とする電
解水生成装置の電解電流制御回路。
1. A method according to claim 1, wherein the raw water is continuously introduced into the electrolytic cell and is divided by an ion-permeable diaphragm provided in the electrolytic cell. An electrolyzed water generating apparatus for applying a direct current voltage between electrodes and conducting electricity to electrolyze raw water, wherein an electrolyzed power supply is controlled by an output obtained from a current sensor for monitoring a current flowing between the two electrodes. Electrolytic current control circuit of generator.
【請求項2】 請求項1の電解水生成装置の電解電流制
御回路であって、電流センサは整流ブロックと両電極の
間で電流を感知することを特徴とする電解水生成装置の
電解電流制御回路。
2. The electrolytic current control circuit for an electrolyzed water generator according to claim 1, wherein the current sensor senses a current between the rectifying block and both electrodes. circuit.
【請求項3】 請求項1の電解水生成装置の電解電流制
御回路であって、電流センサから得た出力電圧をV/F
変換する回路と、V/F変換した出力と操作電解度情報
を加算し操作制御情報として電解電源を制御することを
特徴とする電解水生成装置の電解電流制御回路。
3. The electrolytic current control circuit of the electrolyzed water generating apparatus according to claim 1, wherein the output voltage obtained from the current sensor is V / F.
An electrolysis current control circuit for an electrolyzed water generator, comprising: a circuit for converting; and an output obtained by V / F conversion and operation electrolysis information, and an electrolysis power supply is controlled as operation control information.
【請求項4】 請求項3の電解水生成装置の電解電流制
御回路であって、電流センサから得た出力電圧とV/F
変換する回路間に極性反転回路を形成したことを特徴と
する電解水生成装置の電解電流制御回路。
4. The electrolytic current control circuit according to claim 3, wherein the output voltage obtained from the current sensor and V / F
An electrolysis current control circuit for an electrolyzed water generator, wherein a polarity inversion circuit is formed between circuits for conversion.
JP15283297A 1997-05-27 1997-05-27 Electrolytic current control circuit for electrolytic water generator Pending JPH10323668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15283297A JPH10323668A (en) 1997-05-27 1997-05-27 Electrolytic current control circuit for electrolytic water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15283297A JPH10323668A (en) 1997-05-27 1997-05-27 Electrolytic current control circuit for electrolytic water generator

Publications (1)

Publication Number Publication Date
JPH10323668A true JPH10323668A (en) 1998-12-08

Family

ID=15549117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15283297A Pending JPH10323668A (en) 1997-05-27 1997-05-27 Electrolytic current control circuit for electrolytic water generator

Country Status (1)

Country Link
JP (1) JPH10323668A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021337A (en) * 2005-07-14 2007-02-01 Noritz Corp Ion water generator
JP2016087591A (en) * 2014-11-11 2016-05-23 森永乳業株式会社 Incorporating device and method for controlling the incorporating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021337A (en) * 2005-07-14 2007-02-01 Noritz Corp Ion water generator
JP2016087591A (en) * 2014-11-11 2016-05-23 森永乳業株式会社 Incorporating device and method for controlling the incorporating device

Similar Documents

Publication Publication Date Title
KR0152284B1 (en) Controlling apparatus for continuous electrolytic ion water producing apparatus
CN101613144A (en) A kind of electrolysis water method and device with the water flow velocity compensation
JPH10323668A (en) Electrolytic current control circuit for electrolytic water generator
JP3284350B2 (en) Electrolytic ionic water generator
JPH07136653A (en) Electrolytic water maker
JPH11207352A (en) Production of antibacterial metallic ionic water
JP3631347B2 (en) Electrolytic water conductivity measurement control circuit
JP2991016B2 (en) Continuous ion-rich water generation method and apparatus
CN110872143A (en) Electrolyzed water production device and electrolyzed water production method
JPH08155456A (en) Electrolytic water generator
JPH06312185A (en) Electrolytic water forming apparatus
JPH11147092A (en) Sterilizing electrolytic cell
JPH07124562A (en) Electrolytic water making machine
JP2709326B2 (en) Electrolytic ionic water generator
JPH11244857A (en) Electrolyzed ionic water producing implement
JPH07290059A (en) Ionized water producer
JP2002282856A (en) Electrolytic water producing equipment
JP3932432B2 (en) Power supply for electrolyzed water generator
JP3960107B2 (en) Alkaline ion water conditioner
JPH11290852A (en) Display device of continuous electrolytic water making apparatus
JPH11197667A (en) Display device of continuous electrolytic water making apparatus
JP2580914Y2 (en) Ion water generator with pH control function
JP4244395B2 (en) Alkaline ion water conditioner
JPH1110153A (en) Electric power source of electrolytic solution producing apparatus
KR100478658B1 (en) Method for controlling water quality of ionic water

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Effective date: 20040506

Free format text: JAPANESE INTERMEDIATE CODE: A7433

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041004

A072 Dismissal of procedure

Effective date: 20041116

Free format text: JAPANESE INTERMEDIATE CODE: A073

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Effective date: 20061031

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306