JP3960107B2 - Alkaline ion water conditioner - Google Patents

Alkaline ion water conditioner Download PDF

Info

Publication number
JP3960107B2
JP3960107B2 JP2002112992A JP2002112992A JP3960107B2 JP 3960107 B2 JP3960107 B2 JP 3960107B2 JP 2002112992 A JP2002112992 A JP 2002112992A JP 2002112992 A JP2002112992 A JP 2002112992A JP 3960107 B2 JP3960107 B2 JP 3960107B2
Authority
JP
Japan
Prior art keywords
electrolysis
voltage
water
output
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002112992A
Other languages
Japanese (ja)
Other versions
JP2003305468A (en
Inventor
幸治 野口
昌浩 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2002112992A priority Critical patent/JP3960107B2/en
Publication of JP2003305468A publication Critical patent/JP2003305468A/en
Application granted granted Critical
Publication of JP3960107B2 publication Critical patent/JP3960107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水道水等の原水を電気分解して、飲料用や医療用として利用するアルカリイオン水および化粧水、殺菌洗浄水等として利用する酸性イオン水を生成するアルカリイオン整水器に関するものである。
【0002】
【従来の技術】
近年、連続電解方式のイオン水生成器として、アルカリイオン整水器が普及している。このアルカリイオン整水器は、電解槽内で水道水等を電気分解して、陽極側に酸性イオン水を生成し、陰極側にアルカリイオン水を生成するものである。
【0003】
以下、従来の連続電解方式のアルカリイオン整水器について説明する。
【0004】
図3は、従来のアルカリイオン整水器の概略構成図である。
【0005】
図3に示すように従来の連続電解方式のアルカリイオン整水器は、水道水等の原水管1と、水栓2と、水栓2を介して原水管1と接続されたアルカリイオン整水器3と、原水を浄化する浄水部4と、通水流量を後述の制御部に知らせる流量センサ5と、カルシウム等のカルシウムイオンを原水中に付与し導電率を高めるカルシウム供給部6と、流量センサ5およびカルシウム供給部6を経由してきた水を電気分解する電解槽7と、電解槽7を2分し電極室を形成する隔膜8と、隔膜8で2分されて形成された各電極室に配置された電極板9、10と、電極板10側の水を通水する通水管11と、電極板9側の水を吐水する吐水管12を備え、さらに商用電源から電気を供給する電源投入用プラグ13と、商用電源を整流して電解および制御に必要な直流電源にする電源部14と、電解槽7に電力出力を行う電解出力部15と、電解出力時の電流値および電圧値を検知する電解電流検出回路16および電解電圧検出回路17と、使用者が電解の強さおよび酸性水またはアルカリイオン水の選択を行う操作表示部18と、操作表示部18の設定にもとづき、電解電流検出回路16および電解電圧検出回路17の値を監視しながら、電解出力の制御を行う制御部19を備えて構成されている。
【0006】
次に以上のように構成された従来の連続電解方式のアルカリイオン整水器について、アルカリイオン水を生成する際の動作を説明する。
【0007】
利用者は、操作表示部18のモード選択ボタンを押圧してアルカリイオン水生成モード、または酸性イオン水生成モードおよび必要とするpH値レンジを選択し、水栓2を開く。水栓2から通水された原水は、浄水部4で浄化され、流量センサ5を経てカルシウム供給部6にてカルシウム等が溶解されて電解容易な水に処理された後、電解槽7に通水される。
【0008】
一方、電源投入用プラグ13からは商用電源であるAC100Vが供給され、電源部14内のトランスおよび整流回路で電気分解に必要な直流電圧電流を発生させ、制御部19の指示に従い、電解出力部15を介して電解槽7の電極板9および10に電気分解に必要な電力が供給される。このとき相対的にプラス電圧を印加する電極板を陽極、マイナス電圧を印加する電極板を陰極とすると、電解槽7内に隔膜8で仕切られた陽極室と陰極室とが形成される。なお、アルカリイオン水生成モード時においては電極10が陽極となり、電極板9が陰極となる。また酸性イオン水生成モード時においては電極板9が陽極となり、電極板10が陰極となる。
【0009】
さて、通水後、制御部19は流量センサ5の信号を読み取り、信号のレベルが一定量を超えると、この状態を通水中と判断する。このとき、操作表示部18の生成モードおよびpH値レンジ選択ボタンの押圧によりすでに電気分解条件が設定されているので、制御部19は電解槽7にて電気分解を行うため電極板9および10に所定の電圧が印加されるように電解出力部15に動作命令の出力をおこなう。これにより、アルカリイオン水生成モード時においては電極板9が陰極、電極板10が陽極となり、吐水管12よりアルカリイオン水が吐水され、酸性イオン水生成モード時においては電極板9が陽極、電極板10が陰極となり、吐水管12より酸性イオン水が吐水される。水栓2により原水が止水されると、流量センサ5の信号レベルが一定量を下回り、制御部19は止水と判断し、その電解出力部15より電解槽7の電極板9および10への電圧印加を停止する。
【0010】
ここで、アルカリイオン水生成モード時および酸性イオン水生成モード時に、制御部19は電解出力部15で発生する直流電圧を電解槽7の電極板9および10に供給する。一定の直流電圧を電極板9および10に供給した場合、原水の水質および通水流量によって、電極板9および10との間に流れる電流は変化し、生成されるpH値も変化する。そこで、pH値を一定に保つために、その電流および水量の変化を電解電流検出回路17および流量センサ5により検出し、流量センサ5で検出した信号レベルに応じた電解電流を印加する必要がある。そのためには、電解槽7の電極板9と10に供給する直流電圧を一定周期で供給時間を制御する、いわゆるデューティを可変することで電解制御する方法があり、電解電流検出回路17で検出された電解電流値が利用者の必要とするpH値レンジの電解電流値に到達していなければ、前記デューティを上げることで電解電流を増加させ、あるいは、電解電流検出回路16で検出された電解電流値が利用者の必要とするpH値レンジの電解電流値を超えていれば、前記デューティを下げることで電解電流を減少させ、利用者の必要とするpH値レンジに合わせるように制御部19の指示で制御する。なお、電圧検知回路17で検知した電圧は、原水の電気導電率が低く電流が流れにくい場合の各レンジでのpHの目標値に近づけるための電圧上限値として予め決めておき、それ以上電圧を印加しないように制御するためのものである。
【0011】
【発明が解決しようとする課題】
前記した従来の連続電解方式のアルカリイオン整水器では、電解出力制御は直流電源電圧を一定周期でオン、オフ制御している。このような状態で電解電流を正確に検知するには、電解電流を電圧信号に変換し、その変換した電圧波形を電解電流検出回路部でコンデンサ等を用いてオンとオフ信号を鈍らせ平均化し検出している。しかし、滑らかな波形となるように平均化するためには、電解電流検出回路17内にあるサンプリング回路のコンデンサの容量をある程度大きくしたり、制限抵抗の抵抗値を大きくする必要があり、コンデンサの容量や制限抵抗の抵抗値を大きくすることにより検出する信号波形の変化が遅くなり、電解出力制御の応答が遅くなる傾向にあった。
【0012】
本発明は上記従来の問題点を解決するもので、通水開始時と通水時の通水流量または水質の変化に迅速に対応し、必要とするpH値のイオン水を安定して供給できる連続電解方式のアルカリイオン整水器を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明は上記の課題を解決するため、原水を電気分解してアルカリイオン水および酸性イオン水を生成するアルカリイオン整水器であって、操作表示部からの操作指令にしたがい、前記流量センサの検出した通水流量と原水の水質により変化する電解電流および電圧値を前記電解電流検出回路および電解電圧検出回路で検出し、制御部からの不連続な数値コードを電解制御回路に出力する構成としたものである。
【0014】
本発明によれば、目的のpHのイオン水を生成するのに必要な電解電流および電解電圧のフィードバック制御を正確かつ迅速にして、原水の水質や通水流量が変化してもより安定したpH値のイオン水を生成することができる。
【0015】
【発明の実施の形態】
本発明の請求項1に記載の発明は、通水路に通水流量を検出できる流量センサと、原水を電気分解してアルカリイオン水または酸性イオン水を生成する電解槽と、商用電源に接続されて電解槽へ通電出力する内部に出力調整回路を備えた電源部と、通電出力状態の電流および電圧値を検出する電解電流検出回路および電解電圧検出回路と、通電出力状態の電流および電圧値をもとに電源部を制御するための数値コードを出力する制御部と、制御部からの数値コードを電圧出力に変換し、内部にD/A変換回路と信号増幅回路とを備え電源部の電源電圧出力を決定する電解制御部と、制御部へ操作指令を行う操作部および動作状態を表示する表示部を有する操作表示部とを備えたアルカリイオン整水器において、操作表示部からの操作指令にしたがい、流量センサの検出した通水流量と原水の水質により変化する電解電流値および電解電圧値を電解電流検出回路および電解電圧検出回路で検出し、検出した電解電流値および電解電圧値に応じた電解槽への通電出力として制御部からの数値コードを電解制御部に出力し、電解制御部内のD/A変換回路により数値コードに応じた電圧レベルに変換し信号増幅回路を通して電源部内の出力調整回路へ出力し、電解槽への通電出力状態を制御するようにしたアルカリイオン整水器であり、電源回路の出力電圧の閾値を迅速に変化させ、電解槽への通電出力状態を変化させることで、イオン水生成における電解時の電解電流の迅速なフィードバック制御を行うという作用を有する。
【0016】
本発明の請求項2に記載の発明は、請求項1に記載のアルカリイオン整水器において、制御部からの数値コード出力を一定周期毎に変化させるようにしたものであり、不連続なある数値コードと、次の数値コード間の電圧出力を擬似的につくり出すという作用を有する。
【0017】
以下、本発明の実施の形態について図面を参照しながら説明する。
【0018】
(実施の形態1)
図1は、本発明の実施の形態1におけるアルカリイオン整水器の概略構成図、図2は、同アルカリイオン整水器における制御ブロック図である。
【0019】
なお、図1において従来の技術の説明で用いた符号と同一符号のものは、本実施の形態1においても基本的に同一であるため、これらの詳細な説明は従来の技術に譲って省略する。
【0020】
図1において、1は水道水等の原水管、2は水栓、3は本実施の形態のアルカリイオン整水器本体、4は浄水部、5は流量センサ、6はカルシウム供給部、7は電解槽、8は隔膜、9および10は電極板、11は通水管、12は吐水管、13は電源投入用プラグである。
【0021】
図1および図2において、20は本実施の形態1の電源部で内部に出力調整回路を備えたスイッチング電源回路になっている。15は電解出力部、16は電解電流検出回路、17は電解電圧検出回路、18は操作表示部、19は操作表示部18の設定にもとづき電解電流検出回路16および電解電圧検出回路17で検出した電解電流および電圧値を監視しながら、電解出力の制御を行う制御部であり、後述電解制御部に数値コードで電解電圧の制御を行う。21は制御部からの数値コードを電圧信号に変換する電解制御部であり、内部にD/A変換回路と信号増幅回路を備えている。
【0022】
以上のように構成された本実施の形態1のアルカリイオン整水器3について、アルカリイオン水を生成する際の動作を説明する。
【0023】
利用者は、操作表示部18のモード選択ボタンを押圧してアルカリイオン水生成モード、または酸性イオン水生成モードおよび必要とするpH値レンジを選択し、水栓2を開く。水栓2から通水された原水は、浄水部4で浄化され、流量センサ5を経てカルシウム供給部6にてカルシウム等が溶解されて電解容易な水に処理された後、電解槽7に通水される。
【0024】
一方、電源投入用プラグ13からは商用電源であるAC100Vが供給され、電源部20内のトランスおよび整流回路で直流電圧変換し、出力調整回路で電解に必要な直流電圧電流を発生させる。そのとき、制御部19は所定の数値コードを電解制御部21に出力し、電解制御部21内のD/A変換回路により数値コードに応じた電圧レベルに変換し信号増幅回路を通して電源部20内の出力調整回路へ電解電圧信号を出力する。電源部20内の出力調整回路で電解に必要な直流電圧電流は、電解出力部15を介して電解槽7の電極版9および10に電気分解に必要な電力が供給される。このとき相対的にプラス電圧を印加する電極板を陽極、マイナス電圧を印加する電極板を陰極とすると、電解槽7内に隔膜8で仕切られた陽極室と陰極室とが形成される。なお、アルカリイオン水生成モード時においては電極板10が陽極となり、電極板9が陰極となる。また酸性イオン水生成モード時においては電極板9が陽極となり、電極板10が陰極となる。
【0025】
さて、通水後、制御部19は流量センサ5の信号を読み取り、流量レベルが一定量を超えると、この状態を通水中と判断する。このとき、操作表示部18の生成モード選択ボタンの押圧によりすでに電気分解条件が設定されているので、制御部19は電解槽7にて電気分解を行うため電極板9および10に所定の電圧が印加されるように、所定の数値コードを電解制御部21に出力し、電解出力部15に電解出力指令を行い、電解槽7の電極板9および10への電圧印加を開始する。これにより、アルカリイオン水生成モード時においては電極板9が陰極、電極板10が陽極となり、吐水管12よりアルカリイオン水が吐水され、酸性イオン水生成モード時においては電極板9が陽極、電極板10が陰極となり、吐水管12より酸性イオン水が吐水される。水栓2により原水が止水されると、流量センサ5の信号により制御部19は止水と判断し、電解出力部15より電解槽7の電極板9および10への電圧印加を停止する。
【0026】
ここで、アルカリイオン水生成モード時および酸性イオン水生成モード時に、制御部19は電解出力部15で発生する直流電圧を電解槽7の電極板9および10に供給する。一定の直流電圧を電極板9および10に供給した場合、原水の水質および通水流量によって、電極板9および10との間に流れる電解電流は変化し、生成されるpH値も変化する。そのような状態で、pH値を一定に保つために、その電解電流および通水流量の変化を電解電流検出回路16および流量センサ5により検出し、流量センサ5で検出した信号レベルに応じた電解電流を印加する必要がある。
【0027】
そこで、制御部19は電解槽7にて設定されたpH値レンジに合わせで電気分解をおこなうため電極板9および10に所定の電圧が印加されるように電解出力部15に電解出力指令をおこなうとき、電解電圧設定の数値コード信号を更新して電解制御部21に出力する。
【0028】
電解制御部21では制御部19からの更新された数値コード信号をD/A変換回路で電圧信号に変換し、信号増幅回路を介して電源部20に伝達する。電源部20では電解制御部21からの信号に応じた電力を出力するように電源出力調節回路で制御を行い、電解電流検出回路16で検出された電解電流値が利用者の必要とするpH値を生成する電解電流値に到達していなければ、電解制御部への数値コードを1ランクアップさせ電解電圧を上げることで電解電流を増加させ、あるいは、電解電流検出回路16で検出された電解電流値が利用者の必要とするpH値を生成する電解電流値を超えていれば、電解制御回路への数値コードを1ランクダウンさせ電解電圧を下げることで電解電流を減少させて利用者の必要とするpH値レンジに合わせるように制御部19の指示で制御する。その後、電解制御部21からの信号に合わせて、それに応じた電力を出力するように電源部20で制御するので、電解出力部15に供給される電力は安定したものになる。
【0029】
なお、電解電圧検出回路17で検知した電圧は、従来の技術と同じく原水の電気導電率が低く電流が流れにくい場合、各アルカリイオン水生成モード、または酸性イオン水生成モード設定電圧の上限値を予め決めておき、それ以上の電圧を印加しないように制御するためのものである。
【0030】
また、電解制御部21内のD/A変換回路の分解能より細やかな電圧制御が必要な場合は、制御部19からの数値コード出力を一定周期毎に変化させることにより、目的の電圧値を超えた電圧に成る数値コードと目的の電圧値以下の電圧に成る数値コード間の電圧出力を擬似的につくり出し制御することができる。
【0031】
たとえば、数値コードが3ビットで0から7の8段階で数値コードが0の時電解電圧は5V、数値コードが1のとき電解電圧は10V、数値コードが2のとき電解電圧は15V、数値コードが3のとき電解電圧は20V、数値コードが4のとき電解電圧は25V、数値コードが5のとき電解電圧は30V、数値コードが6のとき電解電圧は35V、数値コードが7のとき電解電圧は40Vとした場合、目的のpHのレンジを確保する電解電流値を出力するのに12Vの電解電圧が必要な時、数値コードを1msの10個をひとつの単位とし10ms周期で、前半の8つを数値コードが1で電解電圧は10V、後半の2つを数値コードが2で電解電圧は15Vの出力を繰り返すことで12V電解電圧を擬似的につくり出すことができる。
【0032】
つぎに、図2の電解出力部15内の電解電流検出回路16および電解電圧検出回路17の電解電流値および電解電圧値について説明する。
【0033】
前記数値コード出力制御にすることで、直流電源電圧(40V)を一定周期でオン、オフ制御する場合は0Vから40Vのオン/オフ波形となり、電解電流の変化量も大きいが、数値コードで分割制御とした場合は直前に出力した数値コードで決定される電圧レベルと次の数値コードで決定される電圧レベルとの差となり、電解電流の変化量が少ない。それにより、コンデンサ等を用いて電解電流値および電解電圧値信号を鈍らせて検出する回路においてはサンプリング回路のコンデンサの容量を小さくでき、かつ、制限抵抗の抵抗値も小さくすることができ、検出する信号波形の変化が速くなり、電解出力制御の応答も速くなる。
【0034】
【発明の効果】
以上の説明より明らかなように本発明のアルカリイオン整水器によれば、通水開始時と通水時の通水流量または水質の変化に迅速に対応し、必要とするpH値のアルカリイオン水または酸性イオン水を安定して供給することができるものであり、その効果は大きい。
【図面の簡単な説明】
【図1】本発明の実施の形態1におけるアルカリイオン整水器の概略構造図
【図2】同アルカリイオン整水器における電解制御回路ブロック図
【図3】従来のアルカリイオン整水器の概略構造図
【符号の説明】
1 原水管
2 水栓
3 整水器本体
4 浄水部
5 流量センサ
6 カルシウム供給部
7 電解槽
8 隔膜
9,10 電極板
11 通水管
12 吐水管
13 電源投入用プラグ
14 電源部
15 電解出力部
16 電解電流検出回路
17 電解電圧検出回路
18 操作表示部
19 制御部
20 電源部
21 電解制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alkali ion water conditioner that electrolyzes raw water such as tap water to produce alkaline ionized water used for beverages and medical purposes, and acidic ionized water used as skin lotion, sterilization washing water, etc. It is.
[0002]
[Prior art]
In recent years, alkali ion water conditioners have become widespread as continuous electrolysis type ion water generators. This alkaline ion adjuster electrolyzes tap water or the like in an electrolytic cell to generate acidic ion water on the anode side and alkaline ion water on the cathode side.
[0003]
A conventional continuous electrolysis type alkaline ion water conditioner will be described below.
[0004]
FIG. 3 is a schematic configuration diagram of a conventional alkaline ionized water device.
[0005]
As shown in FIG. 3, a conventional continuous electrolysis type alkaline ion water purifier includes a raw water pipe 1 such as tap water, a faucet 2, and an alkali ion water conditioned connected to the raw water pipe 1 via the faucet 2. A water purifier 4 for purifying the raw water, a flow rate sensor 5 for informing a control unit (to be described later) of the water flow rate, a calcium supply unit 6 for imparting calcium ions such as calcium to the raw water to increase conductivity, and a flow rate Electrolyzer 7 that electrolyzes water that has passed through sensor 5 and calcium supply unit 6, diaphragm 8 that divides electrolyzer 7 into two to form an electrode chamber, and each electrode chamber that is divided into two by diaphragm 8 A power supply for supplying electricity from a commercial power source, comprising electrode plates 9 and 10 disposed on the surface, a water flow pipe 11 for passing water on the electrode plate 10 side, and a water discharge pipe 12 for discharging water on the electrode plate 9 side. The plug 13 for charging and the commercial power supply are rectified for electrolysis and control A power source unit 14 for making a necessary DC power source, an electrolysis output unit 15 for outputting power to the electrolytic cell 7, an electrolysis current detection circuit 16 and an electrolysis voltage detection circuit 17 for detecting a current value and a voltage value at the time of electrolysis output, While monitoring the values of the electrolysis current detection circuit 16 and the electrolysis voltage detection circuit 17 based on the setting of the operation display unit 18 in which the user selects the strength of electrolysis and acidic water or alkaline ion water, and the operation display unit 18. The control unit 19 is configured to control the electrolytic output.
[0006]
Next, the operation | movement at the time of producing | generating alkali ion water is demonstrated about the conventional continuous electrolysis type alkali ion water adjuster comprised as mentioned above.
[0007]
The user presses the mode selection button of the operation display unit 18 to select the alkali ion water generation mode or the acidic ion water generation mode and the required pH value range, and opens the faucet 2. The raw water passed through the faucet 2 is purified by the water purification unit 4, passed through the flow rate sensor 5, calcium and the like are dissolved in the calcium supply unit 6, processed into water that is easily electrolyzed, and then passed through the electrolytic cell 7. Watered.
[0008]
On the other hand, AC100V, which is a commercial power supply, is supplied from the power-on plug 13 to generate a DC voltage / current required for electrolysis by a transformer and a rectifier circuit in the power supply unit 14, and in accordance with instructions from the control unit 19, an electrolytic output unit 15, electric power necessary for electrolysis is supplied to the electrode plates 9 and 10 of the electrolytic cell 7. At this time, if an electrode plate to which a positive voltage is applied relatively is an anode and an electrode plate to which a negative voltage is applied is a cathode, an anode chamber and a cathode chamber partitioned by a diaphragm 8 are formed in the electrolytic cell 7. In the alkaline ion water generation mode, the electrode 10 serves as an anode and the electrode plate 9 serves as a cathode. In the acidic ion water generation mode, the electrode plate 9 serves as an anode and the electrode plate 10 serves as a cathode.
[0009]
Now, after passing water, the control part 19 will read the signal of the flow sensor 5, and will judge that this state is underwater if the level of a signal exceeds a fixed amount. At this time, since the electrolysis conditions are already set by the generation mode of the operation display unit 18 and the pressing of the pH value range selection button, the control unit 19 applies the electrolysis in the electrolytic cell 7 to the electrode plates 9 and 10. An operation command is output to the electrolysis output unit 15 so that a predetermined voltage is applied. Thus, in the alkaline ion water generation mode, the electrode plate 9 serves as a cathode and the electrode plate 10 serves as an anode, and alkaline ion water is discharged from the water discharge pipe 12, and in the acidic ion water generation mode, the electrode plate 9 serves as an anode and an electrode. The plate 10 serves as a cathode, and acidic ion water is discharged from the water discharge pipe 12. When the raw water is stopped by the faucet 2, the signal level of the flow sensor 5 falls below a certain amount, the control unit 19 determines that the water is stopped, and the electrolysis output unit 15 transfers the electrode plates 9 and 10 of the electrolytic cell 7. Stop the voltage application.
[0010]
Here, in the alkaline ionic water generation mode and the acidic ionic water generation mode, the control unit 19 supplies the DC voltage generated in the electrolysis output unit 15 to the electrode plates 9 and 10 of the electrolytic cell 7. When a constant DC voltage is supplied to the electrode plates 9 and 10, the current flowing between the electrode plates 9 and 10 changes depending on the quality of raw water and the flow rate of water, and the generated pH value also changes. Therefore, in order to keep the pH value constant, it is necessary to detect changes in the current and the amount of water by the electrolytic current detection circuit 17 and the flow sensor 5 and apply an electrolytic current corresponding to the signal level detected by the flow sensor 5. . For this purpose, there is a method of controlling the supply time of the DC voltage supplied to the electrode plates 9 and 10 of the electrolytic cell 7 at a constant cycle, that is, controlling the electrolysis by varying the so-called duty, which is detected by the electrolytic current detection circuit 17. If the electrolysis current value does not reach the electrolysis current value in the pH value range required by the user, the electrolysis current is increased by increasing the duty or the electrolysis current detected by the electrolysis current detection circuit 16. If the value exceeds the electrolysis current value of the pH value range required by the user, the electrolysis current is decreased by lowering the duty and the control unit 19 adjusts the pH value range required by the user. Control with instructions. The voltage detected by the voltage detection circuit 17 is determined in advance as a voltage upper limit value for approaching the pH target value in each range when the electrical conductivity of the raw water is low and current does not easily flow. It is for controlling not to apply.
[0011]
[Problems to be solved by the invention]
In the above-described conventional continuous electrolysis type alkaline ion water conditioner, the electrolysis output control is such that the DC power supply voltage is turned on and off at a constant cycle. In order to accurately detect the electrolysis current in such a state, the electrolysis current is converted into a voltage signal, and the converted voltage waveform is averaged by slowing the on and off signals using a capacitor or the like in the electrolysis current detection circuit section. Detected. However, in order to perform averaging so as to obtain a smooth waveform, it is necessary to increase the capacitance of the capacitor of the sampling circuit in the electrolytic current detection circuit 17 to some extent or increase the resistance value of the limiting resistor. By increasing the resistance value of the capacitor and the limiting resistor, the change in the detected signal waveform is delayed, and the response of the electrolytic output control tends to be delayed.
[0012]
The present invention solves the above-mentioned conventional problems, can respond quickly to changes in the water flow rate or water quality at the start of water flow and water flow, and can stably supply ionic water having a required pH value. An object of the present invention is to provide a continuous electrolysis type alkaline ion water conditioner.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention is an alkaline ion water conditioner that electrolyzes raw water to generate alkaline ionized water and acidic ionized water, and according to an operation command from an operation display unit, A configuration in which an electrolytic current and a voltage value that change depending on the detected water flow rate and raw water quality are detected by the electrolytic current detection circuit and the electrolytic voltage detection circuit, and a discontinuous numerical code from the control unit is output to the electrolytic control circuit; It is a thing.
[0014]
According to the present invention, the feedback control of the electrolysis current and the electrolysis voltage necessary for producing ionic water having the target pH is made accurate and quick, and a more stable pH even when the quality of the raw water or the flow rate of water changes. Value ionic water can be produced.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The invention described in claim 1 of the present invention is connected to a flow rate sensor capable of detecting a flow rate of water in a water passage, an electrolytic cell for electrolyzing raw water to generate alkali ion water or acidic ion water, and a commercial power source. A power supply unit with an output adjustment circuit inside for energization and output to the electrolytic cell, an electrolysis current detection circuit and an electrolysis voltage detection circuit for detecting current and voltage values in the energization output state, and current and voltage values in the energization output state A control unit that outputs a numerical code for controlling the power supply unit, a numerical code from the control unit is converted into a voltage output, and a D / A conversion circuit and a signal amplification circuit are provided therein. In an alkaline ionized water apparatus comprising an electrolysis control unit for determining a voltage output, an operation unit for giving an operation command to the control unit, and an operation display unit having a display unit for displaying an operation state, an operation command from the operation display unit West The electrolysis current value and the electrolysis voltage value, which vary depending on the flow rate detected by the flow sensor and the quality of the raw water, are detected by the electrolysis current detection circuit and the electrolysis voltage detection circuit, and according to the detected electrolysis current value and electrolysis voltage value. A numerical code from the control unit is output to the electrolysis control unit as an energization output to the electrolytic cell, converted into a voltage level corresponding to the numerical code by a D / A conversion circuit in the electrolysis control unit, and output adjustment in the power supply unit through a signal amplification circuit This is an alkaline ionized water regulator that outputs to the circuit and controls the energization output state to the electrolytic cell, and quickly changes the threshold value of the output voltage of the power supply circuit to change the energization output state to the electrolyzer. Thus, it has the effect of performing quick feedback control of the electrolysis current during electrolysis in the production of ionic water.
[0016]
According to a second aspect of the present invention, in the alkaline ionized water device according to the first aspect, the numerical code output from the control unit is changed at regular intervals, and is discontinuous. This has the effect of artificially creating a voltage output between the numerical code and the next numerical code.
[0017]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0018]
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of an alkaline ionized water device according to Embodiment 1 of the present invention, and FIG. 2 is a control block diagram of the alkaline ionized water device.
[0019]
In FIG. 1, the same reference numerals as those used in the description of the conventional technique are basically the same in the first embodiment, and the detailed description thereof will be omitted to the conventional technique. .
[0020]
In FIG. 1, 1 is a raw water pipe such as tap water, 2 is a faucet, 3 is an alkali ion water conditioner body of the present embodiment, 4 is a water purification unit, 5 is a flow sensor, 6 is a calcium supply unit, 7 is An electrolytic cell, 8 is a diaphragm, 9 and 10 are electrode plates, 11 is a water pipe, 12 is a water discharge pipe, and 13 is a power-on plug.
[0021]
1 and 2, reference numeral 20 denotes a power supply unit according to the first embodiment, which is a switching power supply circuit having an output adjustment circuit therein. 15 is an electrolysis output unit, 16 is an electrolysis current detection circuit, 17 is an electrolysis voltage detection circuit, 18 is an operation display unit, 19 is detected by the electrolysis current detection circuit 16 and the electrolysis voltage detection circuit 17 based on the setting of the operation display unit 18 The control unit controls the electrolysis output while monitoring the electrolysis current and the voltage value. The electrolysis voltage is controlled by a numerical code in the electrolysis control unit described later. An electrolysis control unit 21 converts a numerical code from the control unit into a voltage signal, and includes a D / A conversion circuit and a signal amplification circuit.
[0022]
The operation | movement at the time of producing | generating alkali ion water is demonstrated about the alkali ion water adjuster 3 of this Embodiment 1 comprised as mentioned above.
[0023]
The user presses the mode selection button of the operation display unit 18 to select the alkali ion water generation mode or the acidic ion water generation mode and the required pH value range, and opens the faucet 2. The raw water passed through the faucet 2 is purified by the water purification unit 4, passed through the flow rate sensor 5, calcium and the like are dissolved in the calcium supply unit 6, processed into water that is easily electrolyzed, and then passed through the electrolytic cell 7. Watered.
[0024]
On the other hand, AC 100 V, which is a commercial power supply, is supplied from the power-on plug 13, DC voltage is converted by a transformer and a rectifier circuit in the power supply unit 20, and a DC voltage current necessary for electrolysis is generated by an output adjustment circuit. At that time, the control unit 19 outputs a predetermined numerical code to the electrolysis control unit 21, converts it to a voltage level corresponding to the numerical code by the D / A conversion circuit in the electrolysis control unit 21, and converts the voltage level into the power supply unit 20 through the signal amplification circuit. The electrolytic voltage signal is output to the output adjustment circuit. The DC voltage and current necessary for electrolysis in the output adjustment circuit in the power supply unit 20 is supplied with electric power necessary for electrolysis to the electrode plates 9 and 10 of the electrolytic cell 7 through the electrolysis output unit 15. At this time, if an electrode plate to which a positive voltage is applied relatively is an anode and an electrode plate to which a negative voltage is applied is a cathode, an anode chamber and a cathode chamber partitioned by a diaphragm 8 are formed in the electrolytic cell 7. In the alkaline ion water generation mode, the electrode plate 10 serves as an anode and the electrode plate 9 serves as a cathode. In the acidic ion water generation mode, the electrode plate 9 serves as an anode and the electrode plate 10 serves as a cathode.
[0025]
Now, after passing water, the control part 19 reads the signal of the flow sensor 5, and will judge that this state is underwater if the flow level exceeds a fixed amount. At this time, since the electrolysis conditions have already been set by pressing the generation mode selection button of the operation display unit 18, the control unit 19 performs electrolysis in the electrolytic cell 7, so that a predetermined voltage is applied to the electrode plates 9 and 10. A predetermined numerical code is output to the electrolysis control unit 21 so as to be applied, an electrolysis output command is given to the electrolysis output unit 15, and voltage application to the electrode plates 9 and 10 of the electrolytic cell 7 is started. Thus, in the alkaline ion water generation mode, the electrode plate 9 serves as a cathode and the electrode plate 10 serves as an anode, and alkaline ion water is discharged from the water discharge pipe 12, and in the acidic ion water generation mode, the electrode plate 9 serves as an anode and an electrode. The plate 10 serves as a cathode, and acidic ion water is discharged from the water discharge pipe 12. When the raw water is stopped by the faucet 2, the control unit 19 determines that the water is stopped by a signal from the flow sensor 5, and stops the voltage application from the electrolytic output unit 15 to the electrode plates 9 and 10 of the electrolytic cell 7.
[0026]
Here, in the alkaline ionic water generation mode and the acidic ionic water generation mode, the control unit 19 supplies the DC voltage generated in the electrolysis output unit 15 to the electrode plates 9 and 10 of the electrolytic cell 7. When a constant DC voltage is supplied to the electrode plates 9 and 10, the electrolytic current flowing between the electrode plates 9 and 10 changes depending on the quality of raw water and the flow rate of water, and the generated pH value also changes. In such a state, in order to keep the pH value constant, changes in the electrolysis current and water flow rate are detected by the electrolysis current detection circuit 16 and the flow sensor 5, and electrolysis corresponding to the signal level detected by the flow sensor 5 is performed. It is necessary to apply a current.
[0027]
Therefore, the control unit 19 issues an electrolytic output command to the electrolytic output unit 15 so that a predetermined voltage is applied to the electrode plates 9 and 10 in order to perform electrolysis in accordance with the pH value range set in the electrolytic cell 7. At this time, the numerical code signal for setting the electrolysis voltage is updated and output to the electrolysis control unit 21.
[0028]
The electrolysis control unit 21 converts the updated numerical code signal from the control unit 19 into a voltage signal by the D / A conversion circuit, and transmits the voltage signal to the power supply unit 20 through the signal amplification circuit. The power supply unit 20 controls the power supply output adjustment circuit so as to output electric power according to the signal from the electrolysis control unit 21, and the electrolytic current value detected by the electrolytic current detection circuit 16 is the pH value required by the user. If the electrolysis current value for generating the electrolysis current is not reached, the numerical value code for the electrolysis control unit is increased by one rank to increase the electrolysis voltage, or the electrolysis current is increased, or the electrolysis current detected by the electrolysis current detection circuit 16 If the value exceeds the electrolysis current value that generates the pH value required by the user, the numerical value code to the electrolysis control circuit is lowered by one rank, and the electrolysis voltage is lowered to reduce the electrolysis current and the user needs Control is performed according to an instruction from the control unit 19 so as to match the pH value range. Thereafter, in accordance with the signal from the electrolysis control unit 21, the power supply unit 20 performs control so that power corresponding to the signal is output. Therefore, the power supplied to the electrolysis output unit 15 becomes stable.
[0029]
Note that the voltage detected by the electrolytic voltage detection circuit 17 is the same as that in the conventional technique, when the electric conductivity of raw water is low and it is difficult for current to flow, the upper limit value of each alkaline ion water generation mode or acidic ion water generation mode setting voltage is set. It is determined in advance and is controlled so as not to apply a voltage higher than that.
[0030]
Further, when voltage control finer than the resolution of the D / A converter circuit in the electrolysis control unit 21 is required, the target voltage value is exceeded by changing the numerical code output from the control unit 19 at regular intervals. A voltage output between a numerical code having a voltage and a numerical code having a voltage lower than the target voltage value can be created and controlled in a pseudo manner.
[0031]
For example, when the numerical code is 3 bits and the numerical code is 0 in 8 steps from 0 to 7, the electrolytic voltage is 5V, when the numerical code is 1, the electrolytic voltage is 10V, and when the numerical code is 2, the electrolytic voltage is 15V. When the value is 3, the electrolytic voltage is 20V, when the numerical code is 4, the electrolytic voltage is 25V, when the numerical code is 5, the electrolytic voltage is 30V, when the numerical code is 6, the electrolytic voltage is 35V, and when the numerical code is 7, the electrolytic voltage Is set to 40V, when an electrolysis voltage of 12V is required to output an electrolysis current value that secures the target pH range, the numerical code is set to 10 units of 1ms as one unit, and the first half 8 By repeating the output of the numerical code of 1 and the electrolytic voltage of 10V, and the latter two of the numerical code of 2 and the electrolytic voltage of 15V, a 12V electrolytic voltage can be created in a pseudo manner.
[0032]
Next, the electrolysis current value and electrolysis voltage value of the electrolysis current detection circuit 16 and the electrolysis voltage detection circuit 17 in the electrolysis output unit 15 of FIG. 2 will be described.
[0033]
By using the numerical code output control, when the DC power supply voltage (40V) is controlled to be turned on / off at a constant cycle, the on / off waveform is 0V to 40V, and the amount of change in the electrolytic current is large. In the case of control, the voltage level determined by the numerical code output immediately before is the difference between the voltage level determined by the next numerical code and the amount of change in the electrolytic current is small. As a result, in the circuit that detects the electrolytic current value and electrolytic voltage value signal by using a capacitor or the like, the capacitance of the sampling circuit capacitor can be reduced, and the resistance value of the limiting resistor can also be reduced. The change of the signal waveform to be performed becomes faster, and the response of the electrolytic output control becomes faster.
[0034]
【The invention's effect】
As is clear from the above description, according to the alkaline ionized water device of the present invention, it is possible to respond quickly to changes in water flow rate or water quality at the start of water flow and water flow, and alkali ions having a required pH value. Water or acidic ion water can be stably supplied, and the effect is great.
[Brief description of the drawings]
FIG. 1 is a schematic structural diagram of an alkaline ionized water device according to Embodiment 1 of the present invention. FIG. 2 is a block diagram of an electrolysis control circuit in the alkaline ionized water device. Structure [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water pipe 2 Water faucet 3 Water purifier main body 4 Water purifier 5 Flow sensor 6 Calcium supply part 7 Electrolysis tank 8 Diaphragm 9, 10 Electrode plate 11 Water pipe 12 Water discharge pipe 13 Power supply plug 14 Power supply part 15 Electrolytic output part 16 Electrolytic current detection circuit 17 Electrolytic voltage detection circuit 18 Operation display unit 19 Control unit 20 Power supply unit 21 Electrolysis control unit

Claims (2)

通水路に通水流量を検出できる流量センサと、原水を電気分解してアルカリイオン水または酸性イオン水を生成する電解槽と、商用電源に接続されて電解槽へ通電出力する内部に出力調整回路を備えた電源部と、通電出力状態の電流および電圧値を検出する電解電流検出回路および電解電圧検出回路と、通電出力状態の電流および電圧値をもとに前記電源部を制御するための数値コードを出力する制御部と、制御部からの数値コードを電圧出力に変換し、内部にD/A変換回路と信号増幅回路とを備え電源部の電源電圧出力を決定する電解制御部と、前記制御部へ操作指令を行う操作部および動作状態を表示する表示部を有する操作表示部とを備えたアルカリイオン整水器において、操作表示部からの操作指令にしたがい、前記流量センサの検出した通水流量と原水の水質により変化する電解電流値および電解電圧値を前記電解電流検出回路および電解電圧検出回路で検出し、検出した電解電流値および電解電圧値に応じた電解槽への通電出力として制御部からの数値コードを電解制御部に出力し、電解制御部内のD/A変換回路により数値コードに応じた電圧レベルに変換し信号増幅回路を通して電源部内の出力調整回路へ出力し、電解槽への通電出力状態を制御することを特徴とするアルカリイオン整水器。A flow rate sensor that can detect the flow rate of water in the flow channel, an electrolytic cell that electrolyzes raw water to produce alkaline ionized water or acidic ionized water, and an internal output adjustment circuit that is connected to a commercial power source and supplies electricity to the electrolytic cell A power supply unit including: an electrolysis current detection circuit and an electrolysis voltage detection circuit for detecting a current and voltage value in an energization output state; and a numerical value for controlling the power supply unit based on the current and voltage value in the energization output state A control unit for outputting a code, an electrolytic control unit for converting a numerical code from the control unit into a voltage output, and having a D / A conversion circuit and a signal amplification circuit inside to determine a power supply voltage output of the power supply unit; In an alkaline ionized water apparatus having an operation display unit having an operation unit that issues an operation command to a control unit and a display unit that displays an operation state, the flow rate sensor of the flow rate sensor is configured according to the operation command from the operation display unit. The electrolysis current value and the electrolysis voltage value that change depending on the flow rate of the water flow and the quality of the raw water are detected by the electrolysis current detection circuit and the electrolysis voltage detection circuit, and applied to the electrolytic cell according to the detected electrolysis current value and electrolysis voltage value A numerical code from the control unit is output to the electrolysis control unit as an energization output, converted to a voltage level according to the numerical code by a D / A conversion circuit in the electrolysis control unit, and output to the output adjustment circuit in the power supply unit through the signal amplification circuit An alkaline ionized water device characterized by controlling the output state of electricity to the electrolytic cell. 前記制御部からの数値コード出力を一定周期毎に変化させることを特徴とする請求項1記載のアルカリイオン整水器。2. The alkaline ionized water device according to claim 1, wherein the numerical code output from the control unit is changed at regular intervals.
JP2002112992A 2002-04-16 2002-04-16 Alkaline ion water conditioner Expired - Fee Related JP3960107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112992A JP3960107B2 (en) 2002-04-16 2002-04-16 Alkaline ion water conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112992A JP3960107B2 (en) 2002-04-16 2002-04-16 Alkaline ion water conditioner

Publications (2)

Publication Number Publication Date
JP2003305468A JP2003305468A (en) 2003-10-28
JP3960107B2 true JP3960107B2 (en) 2007-08-15

Family

ID=29395301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112992A Expired - Fee Related JP3960107B2 (en) 2002-04-16 2002-04-16 Alkaline ion water conditioner

Country Status (1)

Country Link
JP (1) JP3960107B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008877A1 (en) * 2004-07-15 2006-01-26 Miura-Denshi Kabushiki-Kaisha Electrolytic water generating, diluting, and supplying apparatus and electrolytic water generating, diluting, and supplying method

Also Published As

Publication number Publication date
JP2003305468A (en) 2003-10-28

Similar Documents

Publication Publication Date Title
JP2810262B2 (en) Control device for continuous electrolytic ionized water generator
JPH06343959A (en) Alkaline ion water adjusting device
JP3960107B2 (en) Alkaline ion water conditioner
JP2000317451A (en) Alkaline ionized water producer
JPH07136653A (en) Electrolytic water maker
JPWO2009078278A1 (en) Electrolyzed water generator
JP2000202449A (en) Alkaline ionized water producer
JP3192182B2 (en) Control device for continuous electrolytic ionized water generator
JP3648867B2 (en) Alkaline ion water conditioner
JP4378803B2 (en) Alkaline ion water conditioner
JPH06335681A (en) Alkaline ion water regulator
JP3991484B2 (en) Control method of alkaline ionized water apparatus
JP3887882B2 (en) Alkaline ion water conditioner
JP2709326B2 (en) Electrolytic ionic water generator
JPH07124562A (en) Electrolytic water making machine
JPH07323281A (en) Alkali ion water regulator
JP4161885B2 (en) Alkaline ion water conditioner
JPH08155456A (en) Electrolytic water generator
JPH07323285A (en) Electrolyzed water producer
JPH11244857A (en) Electrolyzed ionic water producing implement
JPH07290059A (en) Ionized water producer
JP2970212B2 (en) Ion water supply device
JP2006187702A (en) Alkali ion water generator
KR20060060301A (en) Water ionizing apparatus
JPH0564785A (en) Method and apparatus for conditioning electrolytic ion water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees