JPH10322106A - Packaging structure for coplanar transmission line - Google Patents

Packaging structure for coplanar transmission line

Info

Publication number
JPH10322106A
JPH10322106A JP9125389A JP12538997A JPH10322106A JP H10322106 A JPH10322106 A JP H10322106A JP 9125389 A JP9125389 A JP 9125389A JP 12538997 A JP12538997 A JP 12538997A JP H10322106 A JPH10322106 A JP H10322106A
Authority
JP
Japan
Prior art keywords
photoconductor
coplanar
line
mounting structure
microstrip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9125389A
Other languages
Japanese (ja)
Inventor
Takeshi Konno
猛 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP9125389A priority Critical patent/JPH10322106A/en
Publication of JPH10322106A publication Critical patent/JPH10322106A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires

Landscapes

  • Light Receiving Elements (AREA)
  • Waveguides (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain the transmission characteristic in a wider range of bands by securing an opposite placement with spaces of each prescribed distance between the end faces of coplanar lines of a photoconductor and the corresponding end faces of strip lines of microstrip lines and ensuring the ground reinforcement between the ground conductors of a metallic container, placed immediately under the said spaces and the ground conductors placed on a half-insulated substrate of the photoconductor. SOLUTION: For the placement of microstrips 200, the end faces of strip lines 211 to 213 of the microstrips 200 are set opposite to the end faces of coplanar lines 111 and 112 of a photoconductor via the grounding metallic parts respectively, so as to secure spaces 71 to 73 of each prescribed distance. The ground conductors 250 of a metallic container placed immediately under the spaces 71 to 73 are connected to the ground conductors 121 to 123, which are placed on a half-insulated substrate of the photoconductor via bonding wires 350b to 370b. With such a constitution, a flat region extends even to a band region higher compared with a conventional case, and accordingly the transmission characteristic is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、コプレーナ伝送
路の広帯域化を実現するコプレーナ伝送路の実装構造に
関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a mounting structure of a coplanar transmission line for realizing a wider band of the coplanar transmission line.

【0002】[0002]

【従来の技術】従来技術例について図4のフォトコンダ
クタ(光伝導素子)を使用した伝送路の正面実装図とそ
の拡大図と、図5の通過帯域特性図を示して説明する。
尚、フォトコンダクタを使用した構成例としては、特願
平7−35172の「反射点測定装置」がある。
2. Description of the Related Art A prior art example will be described with reference to a front mounting diagram of a transmission line using a photoconductor (photoconductive element) shown in FIG. 4, an enlarged view thereof, and a pass band characteristic diagram of FIG.
As a configuration example using a photoconductor, there is a “reflection point measuring device” of Japanese Patent Application No. 7-35172.

【0003】図4(a)の実装構造例は、金属容器と、
3個の同軸コネクタと、フォトコンダクタ100と、マ
イクロストリップ200と、各線路間やグランド間を接
続する多数のボンディング・ワイヤ350〜370と、
接地用金具とで成る。代表的なフォトコンダクタ100
は、例えばFe(鉄)をドープしたInP(インジュー
ム・リン)の半絶縁基板上に、図4(b)に示すよう
に、T型の金属膜の線路であるコプレーナ線路111〜
112と、接地導体121〜123と、このT型コプレ
ーナ線路のT分岐点に極微細間隔のギャップによる1対
のギャップ電極130とを形成した光伝導素子である。
このギャップ電極130上へサブピコ秒〜数ピコ秒の極
超短パルスの光ビームを照射すると、これに追従した超
高速の光スイッチ作用を示し、その検出信号がマイクロ
ストリップのストリップ線路213を伝送して外部へ伝
送出力される。
[0003] An example of a mounting structure shown in FIG.
Three coaxial connectors, a photoconductor 100, a microstrip 200, and a number of bonding wires 350 to 370 connecting between lines and between grounds;
It consists of grounding hardware. Representative photoconductor 100
Are formed on a semi-insulating substrate of InP (indium phosphorus) doped with Fe (iron), for example, as shown in FIG.
112, a ground conductor 121 to 123, and a pair of gap electrodes 130 formed by an extremely fine gap at the T branch point of the T-shaped coplanar line.
When an ultra-short pulse light beam of sub-picoseconds to several picoseconds is irradiated onto the gap electrode 130, an ultra-high-speed optical switching action follows the light beam, and the detection signal is transmitted through the microstrip strip line 213. Transmitted to the outside.

【0004】マイクロストリップ200の配置は、図4
(b)に示すように、マイクロストリップ200のスト
リップ線路211〜213の端面をフォトコンダクタ1
00のコプレーナ線路111、112の端面へ各々隙間
71〜73が無いように当接して対向配置する。このス
トリップ線路211〜213他方の端面は、外部コネク
タの中心導体に接続する。この外部コネクタを介して信
号の入出力をする。このストリップ線路211〜213
両側の接地導体は金属容器の接地導体250に各々接地
用金具を用いて接地固定する。これら伝送線路の特性イ
ンピーダンスは信号の反射や振幅変動を与えないように
精密に50Ωにマッチングするように形成されて使用に
供される。
The arrangement of the microstrip 200 is shown in FIG.
As shown in (b), the end faces of the strip lines 211 to 213 of the microstrip 200 are
The end faces of the 00 coplanar lines 111 and 112 are arranged so as to be in contact with each other so that there are no gaps 71 to 73. The other end surfaces of the strip lines 211 to 213 are connected to the center conductor of the external connector. Signals are input / output via this external connector. These strip lines 211 to 213
The ground conductors on both sides are grounded and fixed to the ground conductor 250 of the metal container using grounding hardware. The characteristic impedance of these transmission lines is formed so as to accurately match 50Ω so as not to cause signal reflection and amplitude fluctuation, and is used for use.

【0005】ボンディング・ワイヤには、フォトコンダ
クタ100とマイクロストリップ200間の信号線路を
電気的接続用のワイヤと、高周波的に全伝送線路に渡っ
て所定の特性インピーダンスとなるように接地する接地
用ワイヤとがある。まずフォトコンダクタ100のコプ
レーナ線路111〜112が対応するマイクロストリッ
プ200のストリップ線路211〜213に接続され
る。また高周波的に接地電位と等価となるように多数の
ボンディング・ワイヤ350、360、370で直近の
金属容器の接地導体250へ接地接続する。前述のよう
に、従来においては、フォトコンダクタ100とマイク
ロストリップ200とが最短距離に当接配置されて電気
的に接続している。
[0005] The bonding wire includes a wire for electrically connecting a signal line between the photoconductor 100 and the microstrip 200 and a grounding wire for grounding so as to have a predetermined characteristic impedance over the entire transmission line at high frequencies. There is a wire. First, the coplanar lines 111 to 112 of the photoconductor 100 are connected to the corresponding strip lines 211 to 213 of the microstrip 200. In addition, a large number of bonding wires 350, 360, 370 are connected to the ground conductor 250 of the nearest metal container so as to be equivalent to the ground potential in high frequency. As described above, in the related art, the photoconductor 100 and the microstrip 200 are arranged in contact with the shortest distance and are electrically connected.

【0006】[0006]

【発明が解決しようとする課題】ところで、高周波信号
の伝播に伴い、信号線路と接地間には電界が生じるが、
この電界は当然ながらフォトコンダクタ100のコプレ
ーナ線路111〜112及びマイクロストリップのスト
リップ線路211〜213に沿った近傍に集中してい
る。ところが図4(b)に示す実装構造において、フォ
トコンダクタ100上の接地導体121〜123の位置
90で強い電界が生じるが、金属容器の接地導体250
から距離が離れている為、高周波信号の伝送特性に好ま
しくない影響を及ぼしてくる。この実装構造における通
過帯域特性を図5に示す。この特性図に示すように周波
数15GHz付近でディップ82する不具合が見られ
る。フォトコンダクタ100自体は数百GHz以上の超
高速スイッチ動作が可能であるが、これを実装した構造
体において、このディップ82の周波数帯で伝送特性に
非平坦部分を生じる難点である。
By the way, an electric field is generated between the signal line and the ground with the propagation of the high frequency signal.
This electric field is naturally concentrated near the coplanar lines 111 to 112 of the photoconductor 100 and the strip lines 211 to 213 of the microstrip. However, in the mounting structure shown in FIG. 4B, a strong electric field is generated at the position 90 of the ground conductors 121 to 123 on the photoconductor 100, but the ground conductor 250 of the metal container is formed.
, Which has an undesirable effect on the transmission characteristics of high-frequency signals. FIG. 5 shows the pass band characteristics in this mounting structure. As shown in this characteristic diagram, there is a problem that the dip 82 occurs at a frequency of about 15 GHz. Although the photoconductor 100 itself can operate as an ultra-high-speed switch of several hundred GHz or more, there is a problem in that a structure in which the photoconductor 100 is mounted has a non-flat portion in transmission characteristics in the frequency band of the dip 82.

【0007】そこで、本発明が解決しようとする課題
は、フォトコンダクタの実装構造体において、伝送特性
が更に広帯域となるコプレーナ伝送路の実装構造を提供
することである。
An object of the present invention is to provide a mounting structure of a coplanar transmission line having a wider transmission characteristic in a photoconductor mounting structure.

【0008】[0008]

【課題を解決するための手段】第1図は、本発明に係る
解決手段を示している。第1に、上記課題を解決するた
めに、本発明の構成では、フォトコンダクタ100のコ
プレーナ線路111、112の端面とマイクロストリッ
プ200のストリップ線路211〜213の対応する端
面とを所定間隔の隙間71〜73を付与して対向配置
し、所定間隔の隙間71〜73の直下にある金属容器の
接地導体250とフォトコンダクタ100の半絶縁基板
上の接地導体121〜123間を複数本のボンディング
・ワイヤ350b〜370bで接続して接地補強する手
段を具備し、マイクロストリップ200のストリップ線
路211〜213の端部と対応するフォトコンダクタ1
00の半絶縁基板上のコプレーナ線路111、112の
端部間を複数本のボンディング・ワイヤ310〜330
で接続する手段を具備する構成手段である。これによ
り、半絶縁基板上に金属膜の線路を形成したフォトコン
ダクタ100と入出力用の同軸コネクタ間をマイクロス
トリップ200で接続して金属容器に収容するコプレー
ナ伝送路の実装構造において、伝送特性が更に広帯域と
なるコプレーナ伝送路の実装構造を実現できる。
FIG. 1 shows a solution according to the present invention. First, in order to solve the above-described problem, in the configuration of the present invention, a gap 71 with a predetermined interval is provided between the end faces of the coplanar lines 111 and 112 of the photoconductor 100 and the corresponding end faces of the strip lines 211 to 213 of the microstrip 200. And a plurality of bonding wires between the ground conductor 250 of the metal container immediately below the gaps 71 to 73 at predetermined intervals and the ground conductors 121 to 123 on the semi-insulating substrate of the photoconductor 100. The photoconductor 1 includes means for connecting at 350b to 370b to reinforce the ground, and the photoconductor 1 corresponding to the ends of the strip lines 211 to 213 of the microstrip 200.
A plurality of bonding wires 310 to 330 are provided between the ends of the coplanar lines 111 and 112 on the semi-insulating substrate 00.
It is a configuration means provided with a means for connecting with. Thereby, the transmission characteristics are improved in the mounting structure of the coplanar transmission path in which the photoconductor 100 having the metal film line formed on the semi-insulating substrate and the input / output coaxial connector are connected by the microstrip 200 and housed in the metal container. Further, a mounting structure of a coplanar transmission line having a wider band can be realized.

【0009】第3図は、本発明に係る解決手段を示して
いる。また、フォトコンダクタ100の半絶縁基板上の
光スイッチ信号出力端のコプレーナ線路112上におい
て、コプレーナ線路両側の接地導体122〜123間を
複数のボンディング・ワイヤ410で渡り接続する補強
手段を上述のコプレーナ伝送路に追加具備した実装構造
がある。この場合は更なる広帯域なコプレーナ伝送路の
実装構造を実現できる。
FIG. 3 shows a solution according to the present invention. Further, on the coplanar line 112 at the optical switch signal output end on the semi-insulating substrate of the photoconductor 100, the reinforcing means for connecting the ground conductors 122 to 123 on both sides of the coplanar line with a plurality of bonding wires 410 is provided. There is a mounting structure additionally provided in the transmission path. In this case, a mounting structure of a coplanar transmission path with a wider band can be realized.

【0010】また、半絶縁基板上にT型に形成したコプ
レーナ線路及びこのT分岐点に極微細間隔のギャップ電
極130を形成したフォトコンダクタ100と、コプレ
ーナ線路の端部に対向して配置したマイクロストリップ
200としたT型電極構造の広帯域なコプレーナ伝送路
の実装構造がある。
Further, a photoconductor 100 having a T-shaped coplanar line formed on a semi-insulating substrate and a gap electrode 130 at an extremely fine interval formed at the T branch point, and a micro-conductor arranged opposite to an end of the coplanar line. There is a mounting structure of a broadband coplanar transmission line having a T-shaped electrode structure as the strip 200.

【0011】[0011]

【発明の実施の形態】以下に本発明の実施の形態を実施
例と共に図面を参照して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings together with embodiments.

【0012】本発明実施例について図1のフォトコンダ
クタを使用した伝送路の正面実装拡大図と、図2の通過
帯域特性図を示して説明する。尚、従来構成に対応する
要素は同一符号を付す。本発明の構成は従来と同様であ
るが、マイクロストリップ200の配置とボンディング
・ワイヤの接続が異なる。
An embodiment of the present invention will be described with reference to an enlarged front view of a transmission line using the photoconductor of FIG. 1 and a passband characteristic diagram of FIG. Elements corresponding to the conventional configuration are denoted by the same reference numerals. The configuration of the present invention is the same as the conventional one, except for the arrangement of the microstrip 200 and the connection of the bonding wires.

【0013】マイクロストリップ200の配置は、図1
に示すように、所定間隔の隙間71〜73を付与するよ
うに、マイクロストリップ200のストリップ線路21
1〜213の端面をフォトコンダクタ100のコプレー
ナ線路111、112の端面へ対向配置して各々接地用
金具で接地固定する。前記配置による所定間隔の隙間7
1〜73の直下にある金属容器の接地導体250とフォ
トコンダクタ100の半絶縁基板上の接地導体121〜
123間を複数本のボンディング・ワイヤ350b〜3
70bで接続接地する。これにより従来の難点であった
ストリップ線路211〜213に沿った近傍の接地を補
強強化する効果が得られる。この実装構造における通過
帯域特性を図2(a)に示す。この特性図に示すように
従来に比較して一層高域まで平坦域が延び伝送特性の向
上利点が得られていることが判る。
The arrangement of the microstrip 200 is shown in FIG.
As shown in FIG. 3, the strip lines 21 of the microstrip 200 are provided so as to provide gaps 71 to 73 at predetermined intervals.
The end faces 1 to 213 are opposed to the end faces of the coplanar lines 111 and 112 of the photoconductor 100, and are fixed to the ground by metal grounding fittings. Predetermined gap 7 due to the above arrangement
1 to 73 and the ground conductors 121 to 121 on the semi-insulating substrate of the photoconductor 100.
A plurality of bonding wires 350b to 350b-3
The connection is grounded at 70b. As a result, the effect of reinforcing and strengthening the nearby ground along the strip lines 211 to 213, which is a conventional difficulty, can be obtained. FIG. 2A shows the pass band characteristics in this mounting structure. As shown in the characteristic diagram, it can be seen that the flat region extends to a higher region as compared with the related art, and the advantage of improving the transmission characteristics is obtained.

【0014】しかし図2(a)に示すように高い周波数
20GHz付近において好ましくないディップ84が見
られる。そこで改善した実装構造を図3のフォトコンダ
クタを使用した他の伝送路の正面実装拡大図に示す。本
実装構造では、上述実装構造に加えて、エヤーブリッジ
配線を追加した実装構造である。即ち、フォトコンダク
タ100の半絶縁基板上のコプレーナ線路112上にお
いて、コプレーナ線路両側の接地導体122〜123間
に複数のボンディング・ワイヤ410でエヤーブリッジ
配線(渡り接続)する。この構造によれば、図2(b)
の伝送特性図に示すようにディップが解消されて更に高
域まで平坦化される効果が得られる。この結果、更なる
高域まで使用可能なコプレーナ伝送路の実装構造が実現
される利点が得られる。
However, as shown in FIG. 2A, an undesired dip 84 is observed around a high frequency of 20 GHz. Therefore, an improved mounting structure is shown in an enlarged front mounting view of another transmission line using the photoconductor of FIG. This mounting structure is a mounting structure in which an air bridge wiring is added in addition to the mounting structure described above. That is, on the coplanar line 112 on the semi-insulating substrate of the photoconductor 100, an air bridge wiring (crossover connection) is made between the ground conductors 122 to 123 on both sides of the coplanar line by a plurality of bonding wires 410. According to this structure, FIG.
As shown in the transmission characteristic diagram, the effect of eliminating the dip and flattening to a higher frequency range can be obtained. As a result, there is obtained an advantage that a mounting structure of a coplanar transmission line that can be used up to a higher frequency band is realized.

【0015】尚、上述実施例の説明では、半絶縁基板上
にT型に形成したコプレーナ線路としたフォトコンダク
タ100の具体例で説明していたが、半絶縁基板上に複
数の光伝導素子を形成する素子がある。これに対応した
入出力用同軸コネクタの配置に対応して、上述実施例と
同様の所定間隔の隙間を設け、この直下にある金属容器
の接地導体250と半絶縁基板上の接地導体間を複数本
のボンディング・ワイヤで接続して接地補強する他の実
装構造があり、これも上述同様に伝送特性の向上効果が
得られることは明らかである。
In the description of the above embodiment, a specific example of the photoconductor 100 having a coplanar line formed in a T-shape on a semi-insulating substrate has been described. However, a plurality of photoconductive elements are provided on the semi-insulating substrate. There are elements to be formed. Corresponding to the arrangement of the coaxial connector for input / output corresponding to this, a predetermined gap is provided as in the above-mentioned embodiment, and a plurality of ground conductors 250 of the metal container immediately below this and the ground conductor on the semi-insulating substrate are provided. There is another mounting structure that is connected by a bonding wire to reinforce grounding, and it is clear that the effect of improving the transmission characteristics can be obtained in the same manner as described above.

【0016】[0016]

【発明の効果】本発明は、上述の説明内容から、下記に
記載される効果を奏する。上述発明の構成によれば、マ
イクロストリップ200のストリップ線路211〜21
3とフォトコンダクタ100のコプレーナ線路111、
112間に所定間隔の隙間71〜73を設け、この直下
の金属容器の接地導体250とフォトコンダクタ100
の接地導体121〜123間を複数本のボンディング・
ワイヤ350b〜370bで接地することにより、コプ
レーナ線路111、112端部の接地を補強強化が可能
となるので、従来に比較して一層高域まで伝送特性の向
上利点が得られる。
According to the present invention, the following effects can be obtained from the above description. According to the configuration of the above-described invention, the strip lines 211 to 21 of the microstrip 200
3, the coplanar line 111 of the photoconductor 100,
A predetermined gap 71-73 is provided between the metal conductors 112 and the ground conductor 250 and the photoconductor 100 of the metal container immediately below the gaps.
Between the grounding conductors 121 to 123
By grounding with the wires 350b to 370b, the grounding at the ends of the coplanar lines 111 and 112 can be reinforced and strengthened, so that the advantage of improving the transmission characteristics up to a higher frequency range than before can be obtained.

【0017】また、フォトコンダクタ100のコプレー
ナ線路両側の接地導体122〜123間に複数のボンデ
ィング・ワイヤ410でエヤーブリッジ配線(渡り接
続)する場合には、更なる高域まで伝送特性の向上利点
が得られる。
When a plurality of bonding wires 410 are used to connect (crossover) the plurality of bonding wires 410 between the ground conductors 122 to 123 on both sides of the coplanar line of the photoconductor 100, there is an advantage of improving the transmission characteristics up to a higher frequency range. can get.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の、フォトコンダクタを使用した伝送
路の正面実装拡大図である。
FIG. 1 is an enlarged front view of a transmission path using a photoconductor according to the present invention.

【図2】 本発明の、通過帯域特性図である。FIG. 2 is a diagram showing pass band characteristics of the present invention.

【図3】 本発明の、フォトコンダクタを使用した伝送
路の他の正面実装拡大図である。
FIG. 3 is another enlarged front view of a transmission path using a photoconductor of the present invention.

【図4】 従来の、フォトコンダクタを使用した伝送路
の正面実装図とその拡大図である。
FIG. 4 is a front mounting view of a conventional transmission line using a photoconductor and an enlarged view thereof.

【図5】 従来の、通過帯域特性図である。FIG. 5 is a conventional passband characteristic diagram.

【符号の説明】[Explanation of symbols]

71〜73 隙間 100 フォトコンダクタ 111,112 コプレーナ線路 121〜123 接地導体 130 ギャップ電極 200 マイクロストリップ 211〜213 ストリップ線路 250 金属容器の接地導体 310,320,330,350,360,370,3
50b〜370b,410 ボンディング・ワイヤ
71 to 73 Gap 100 Photoconductor 111, 112 Coplanar line 121 to 123 Ground conductor 130 Gap electrode 200 Microstrip 211 to 213 Strip line 250 Ground conductor of metal container 310, 320, 330, 350, 360, 370, 3
50b-370b, 410 Bonding wire

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半絶縁基板上に金属膜の線路を形成した
フォトコンダクタと入出力用の同軸コネクタ間をマイク
ロストリップ線路で接続して金属容器に収容するコプレ
ーナ伝送路の実装構造において、 該フォトコンダクタのコプレーナ線路の端面と該マイク
ロストリップのストリップ線路の対応する端面とを所定
間隔の隙間を付与して対向配置し、該所定間隔の隙間の
直下にある金属容器の接地導体と該フォトコンダクタの
半絶縁基板上の接地導体間を接地補強する手段と、 該マイクロストリップのストリップ線路の端部と対応す
る該フォトコンダクタの半絶縁基板上のコプレーナ線路
の端部間を接続する手段と、 以上を具備していることを特徴としたコプレーナ伝送路
の実装構造。
1. A mounting structure for a coplanar transmission line in which a photoconductor having a metal film line formed on a semi-insulating substrate and an input / output coaxial connector are connected by a microstrip line and housed in a metal container. The end face of the coplanar line of the conductor and the corresponding end face of the strip line of the microstrip are arranged facing each other with a predetermined gap therebetween, and the ground conductor of the metal container immediately below the predetermined gap and the photoconductor Means for reinforcing the ground between the ground conductors on the semi-insulating substrate, and means for connecting the ends of the strip lines of the microstrip and the corresponding ends of the coplanar lines on the semi-insulating substrate of the photoconductor. A mounting structure of a coplanar transmission line, comprising:
【請求項2】 フォトコンダクタの半絶縁基板上のコプ
レーナ線路上において、該コプレーナ線路両側の接地導
体間を渡り接続する手段と、 以上を具備していることを特徴とした請求項1記載のコ
プレーナ伝送路の実装構造。
2. The coplanar device according to claim 1, further comprising: means for connecting the ground conductors on both sides of the coplanar line on the coplanar line on the semi-insulating substrate of the photoconductor. Transmission path mounting structure.
【請求項3】 半絶縁基板上にT型に形成したコプレー
ナ線路及びこれに対応したマイクロストリップ構造のT
型実装構造としたことを特徴とした請求項1または2記
載のコプレーナ伝送路の実装構造。
3. A T-shaped coplanar line formed on a semi-insulating substrate and a T-shaped microstrip structure corresponding thereto.
3. The mounting structure for a coplanar transmission line according to claim 1, wherein the mounting structure is a die mounting structure.
JP9125389A 1997-05-15 1997-05-15 Packaging structure for coplanar transmission line Withdrawn JPH10322106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9125389A JPH10322106A (en) 1997-05-15 1997-05-15 Packaging structure for coplanar transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9125389A JPH10322106A (en) 1997-05-15 1997-05-15 Packaging structure for coplanar transmission line

Publications (1)

Publication Number Publication Date
JPH10322106A true JPH10322106A (en) 1998-12-04

Family

ID=14908935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9125389A Withdrawn JPH10322106A (en) 1997-05-15 1997-05-15 Packaging structure for coplanar transmission line

Country Status (1)

Country Link
JP (1) JPH10322106A (en)

Similar Documents

Publication Publication Date Title
JP2007013809A (en) High-frequency balun
JPH10200311A (en) Coplanar waveguide line with back ground conductor
US4135170A (en) Junction between two microwave transmission lines of different field structures
JPH06130338A (en) Optical waveguide device
US2749519A (en) Directional couplers for microwave transmission systems
JPH06303010A (en) High frequency transmission line and integrated circuit device using the same, and connceting method for high frequency plane circuit
US3560887A (en) Directional filter comprising a resonant loop coupled to a transmission line pair
JPH10322106A (en) Packaging structure for coplanar transmission line
CN110320681B (en) Light modulator
JPH0767042B2 (en) Branch circuit
JPH08250911A (en) High frequency air-tight module
US20220334415A1 (en) Optical modulator and optical transmission apparatus using same
JPH0373163B2 (en)
JPH07202524A (en) Micro strip waveguide conversion circuit
JP3027779B2 (en) Microwave circuit
JPH11186458A (en) Connecting structure for transmission path for high frequency and wiring board
JP2828009B2 (en) Microwave / millimeter-wave integrated circuit substrate connection method and connection line
JP3399771B2 (en) Microwave circuit
JPH05199019A (en) High frequency circuit package
US20220342241A1 (en) Optical modulator and optical transmission apparatus using same
US20230384623A1 (en) Travelling wave electro-optic modulator
JP6907916B2 (en) High frequency circuit
US20220357605A1 (en) Optical modulator and optical transmission device using same
US5347247A (en) Electro-optic component mounting device
JPH0964602A (en) Transmission line

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803