JPH1032168A - Method of forming protective film on surface of silicon substrate - Google Patents

Method of forming protective film on surface of silicon substrate

Info

Publication number
JPH1032168A
JPH1032168A JP18443396A JP18443396A JPH1032168A JP H1032168 A JPH1032168 A JP H1032168A JP 18443396 A JP18443396 A JP 18443396A JP 18443396 A JP18443396 A JP 18443396A JP H1032168 A JPH1032168 A JP H1032168A
Authority
JP
Japan
Prior art keywords
substrate
silicon substrate
film
germanium film
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18443396A
Other languages
Japanese (ja)
Inventor
Fumihiko Hirose
文彦 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18443396A priority Critical patent/JPH1032168A/en
Publication of JPH1032168A publication Critical patent/JPH1032168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate cleaning of a silicon substrate subsequent to a carrying-out of the substrate in the atmosphere and to reduce adverse effects to the substrate pertaining to the cleaning by a method, wherein a germanium film is deposited on the surface of the substrate to coat the surface of the substrate and the thickness of the germanium film is formed preferably with a thickness of a specified value or lower. SOLUTION: A germanium film 1 is applied on the surface of a silicon substrate 2. In the application of the film 1, the substrate 2 is heated for one minute at about 1100 deg.C in an ultrahigh vacuum container at a pressure of about 1×10<-8> Torr or lower to clean the surface of the substrate 2. Then, the germanium film is deposited on the substrate 2 with a film thickness of 100Å or thinner, such as a film thickness of 50Å. The deposition is conducted by evaporating the solid germanium film from a heating crucible. This substrate 2 is carried out in the atmosphere, is exposed to the atmosphere for 5 hours or thereabouts and is again returned to the ultrahigh vacuum container. In this a way, when the germanium film 1 is kept being applied on the substrate 2, the clean surface of the substrate 2 can be easily reproduced by a heating treatment at a comparatively low temperature, even if the substrate is exposed to the atmosphere.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン基板表面
の保護膜形成方法に関する。詳しくは、半導体電子デバ
イスの形成に用いられるシリコン基板の大気中での保存
或いは搬送に際し、基板の酸化や不純物吸着による汚染
を防ぐ技術に関する。
The present invention relates to a method for forming a protective film on a silicon substrate surface. More specifically, the present invention relates to a technique for preventing contamination of a silicon substrate used for forming a semiconductor electronic device when the silicon substrate is stored or transported in the air, due to oxidation of the substrate or adsorption of impurities.

【0002】[0002]

【従来の技術】トランジスタや集積回路等の半導体電子
部品は、通常シリコン基板上に様々な種類の膜を積層さ
せたり、リソグラフィでエッチングする等して表面加工
を行うことで形成される。
2. Description of the Related Art Semiconductor electronic components such as transistors and integrated circuits are usually formed by laminating various types of films on a silicon substrate or by performing surface processing such as etching by lithography.

【0003】シリコン基板は、これらの加工を行う前に
必ず表面の不純物、例えば、シリコン酸化物(Si
2)、炭化水素(C26、CH4)等を除去する清浄化
処理を行い、表面がシリコン原子のみの清浄な状態を作
り出さなければならない。
[0003] Before the silicon substrate is processed, impurities on the surface, for example, silicon oxide (Si)
A cleaning process for removing O 2 ), hydrocarbons (C 2 H 6 , CH 4 ), etc., must be performed to create a clean surface with only silicon atoms.

【0004】斯かる不純物が存在すると、その後、半導
体電子部品を形成した場合、部品の特性が劣化し歩留り
が悪化してしまうのである。また、シリコン基板は、一
旦、清浄な表面を作り出しても、一度大気にさらすと瞬
時に酸化や不純物の吸着が発生し、斯かる不純物で汚染
されてしまう。
[0004] When such impurities are present, when semiconductor electronic components are subsequently formed, the characteristics of the components are degraded and the yield is degraded. Further, even if the silicon substrate once produces a clean surface, once it is exposed to the atmosphere, it is instantaneously oxidized and adsorbs impurities, and is contaminated with such impurities.

【0005】従って、電子部品形成の際、装置間移動或
いは一時貯蔵等を目的に装置から大気に搬出した場合に
は、その後加工する前に必ず清浄化の処理を行ってい
た。
Therefore, when an electronic component is formed, if it is carried out of the apparatus to the atmosphere for the purpose of moving between the apparatuses or temporarily storing the same, a cleaning process is always performed before the subsequent processing.

【0006】清浄化をするには、1000℃以上での高
温加熱か、プラズマ照射などの処理が必要であるが、斯
かる処理は基板の品質を劣化させるため可能な限り少な
い回数で抑えることが望まれている。
[0006] Cleaning requires high-temperature heating at a temperature of 1000 ° C or higher, plasma irradiation, or the like. However, such processing is suppressed as few times as possible because it degrades the quality of the substrate. Is desired.

【0007】[0007]

【発明が解決しようとする課題】本発明は、大気搬出後
のシリコン基板の清浄化を容易なものとし、清浄化に係
る基板への悪影響を低減させることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to facilitate the cleaning of a silicon substrate after being carried out to the atmosphere and to reduce the adverse effect of the cleaning on the substrate.

【0008】[0008]

【課題を解決するための手段】斯かる目的を達成する本
発明の請求項1に係るシリコン基板表面の保護膜形成方
法は、シリコン基板表面にゲルマニウム膜を堆積させ被
覆することを特徴とする。上記目的を達成する本発明の
請求項2に係るシリコン基板表面の保護膜形成方法は、
請求項1において、前記ゲルマニウム膜の厚さは、10
0Å以下であることを特徴とする。
According to a first aspect of the present invention, there is provided a method of forming a protective film on a surface of a silicon substrate, wherein a germanium film is deposited and coated on the surface of the silicon substrate. To achieve the above object, a method for forming a protective film on a silicon substrate surface according to claim 2 of the present invention comprises:
In claim 1, the thickness of the germanium film is 10
0 ° or less.

【0009】[0009]

【発明の実施の形態】先ず、図2(1)に示すように、
清浄化されたシリコン基板2に気相成長若しくは蒸着等
によってゲルマニウム膜1を薄く、具体的には、100
Å以下、好ましくは、20〜50Å程度堆積させ、表面
を被覆する。ゲルマニウム膜の膜厚は、厚過ぎると昇華
除去に時間がかかりシリコン基板2の劣化を招く虞があ
り、逆に薄すぎると基板表面の保護効果が薄れるためで
ある。ゲルマニウム膜厚100Å以下とすると、実用上
保護膜としての効果があって短い時間で処理が済むこと
が経験上から判った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, as shown in FIG.
The germanium film 1 is thinned on the cleaned silicon substrate 2 by vapor phase growth or vapor deposition.
Å or less, preferably about 20 to 50Å is deposited to cover the surface. If the thickness of the germanium film is too large, it takes a long time to remove sublimation, which may cause deterioration of the silicon substrate 2, whereas if it is too thin, the protective effect on the substrate surface is weakened. Experience has shown that a germanium film thickness of 100 ° or less has a practical effect as a protective film and can be processed in a short time.

【0010】次に、図2(2)に示すように、ゲルマニ
ウム膜1で被覆されたシリコン基板2を大気中に出した
場合、ゲルマニウム膜1の表層のみが薄く酸化されてゲ
ルマニウム酸化層(GeO2、GeO)ができる。また、
その不純物もその表層のみに吸着する。
Next, as shown in FIG. 2 (2), when the silicon substrate 2 covered with the germanium film 1 is exposed to the air, only the surface layer of the germanium film 1 is thinly oxidized to form a germanium oxide layer (GeO). 2 , GeO). Also,
The impurities are also adsorbed only on the surface layer.

【0011】その後、図2(3)に示すように、ゲルマ
ニウム膜1で被覆されたシリコン基板2を、真空中若し
くは不活性ガス雰囲気中で800℃程度に加熱すること
で、被覆していたゲルマニウム膜1は容易に揮発してし
まう。同時に、ゲルマニウム酸化物及び吸着不純物も残
らず揮発する。
Thereafter, as shown in FIG. 2 (3), the silicon substrate 2 covered with the germanium film 1 is heated to about 800 ° C. in a vacuum or an inert gas atmosphere, so that the coated germanium film is The film 1 is easily volatilized. At the same time, all of the germanium oxide and the adsorbed impurities are volatilized.

【0012】従って、最終的には、図2(4)に示すよ
うに清浄なシリコン表面が露出することとなる。
Therefore, a clean silicon surface is finally exposed as shown in FIG.

【0013】このように、ゲルマニウム膜1をシリコン
基板2の表面に被覆しておくことで、吸着不純物や酸化
物の発生がゲルマニウム膜1の表層だけで起こり、シリ
コン基板2は汚染されない。
As described above, by covering the surface of the silicon substrate 2 with the germanium film 1, generation of adsorbed impurities and oxides occurs only on the surface layer of the germanium film 1, and the silicon substrate 2 is not contaminated.

【0014】ゲルマニウム膜1はそれ自体比較的低温の
800℃で昇華除去でき、同時に酸化物、不純物も除去
できる。つまり、被覆されたゲルマニウム膜1は、除去
容易なシリコン基板2の保護膜として働くことになるの
である。
The germanium film 1 itself can be removed by sublimation at a relatively low temperature of 800 ° C., and at the same time, oxides and impurities can be removed. That is, the coated germanium film 1 functions as a protective film for the silicon substrate 2 which can be easily removed.

【0015】〔作用〕これまで大気に搬出したシリコン
基板は、不純物の付着や酸化層の発生で清浄化処理を要
していたが、本発明を適用すれば、ゲルマニウム膜が保
護膜として機能することにより、シリコン基板そのもの
は汚染されることがなくなる。
[Action] Conventionally, a silicon substrate carried out to the atmosphere requires a cleaning treatment due to the attachment of impurities or the formation of an oxide layer. However, according to the present invention, the germanium film functions as a protective film. This prevents the silicon substrate itself from being contaminated.

【0016】従って、清浄化処理に代わり、ゲルマニウ
ム膜の除去を行えば良いことになる。ゲルマニウムの除
去は、比較的低温の800℃程度の加熱処理で良く、シ
リコン基板への悪影響が少なくて済む。
Therefore, the germanium film may be removed instead of the cleaning process. The removal of germanium may be performed by a relatively low-temperature heat treatment at about 800 ° C., and the adverse effect on the silicon substrate can be reduced.

【0017】[0017]

【実施例】以下、本発明について、図面に示す実施例を
参照して詳細に説明する。本発明の一実施例を適用して
作製したゲルマニウム膜で被覆したシリコン基板を図1
に示す。同図に示すように、シリコン基板2の表面に
は、ゲルマニウム膜1が被覆されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. FIG. 1 shows a silicon substrate covered with a germanium film manufactured by applying one embodiment of the present invention.
Shown in As shown in the figure, the surface of a silicon substrate 2 is covered with a germanium film 1.

【0018】ゲルマニウム膜1の被覆は、次のようにし
て行う。先ず、シリコン基板2を1×10-8Torr以
下の超高真空容器中で1100℃で1分間加熱して表面
の清浄化を行う。
The coating of the germanium film 1 is performed as follows. First, the surface of the silicon substrate 2 is cleaned by heating it at 1100 ° C. for 1 minute in an ultrahigh vacuum vessel of 1 × 10 −8 Torr or less.

【0019】次に、そのシリコン基板2にゲルマニウム
を50Å程度堆積させる。堆積は、固体ゲルマニウムを
加熱るつぼから蒸着させる方法で行った。尚、蒸着時の
基板温度は室温であり、基板表面にアモルファスのゲル
マニウムが積層した。
Next, germanium is deposited on the silicon substrate 2 by about 50 °. The deposition was performed by a method of depositing solid germanium from a heating crucible. In addition, the substrate temperature at the time of vapor deposition was room temperature, and amorphous germanium was laminated on the substrate surface.

【0020】このシリコン基板2を大気に搬出し、5時
間程度大気に暴露し、再度超高真空容器内に戻した。そ
の表面をオージェ電子分光法を用いて観察したところ、
表面には1014atm/cc以上の酸素と炭素が存在し
ており、ゲルマニウム膜1が酸化し、また、炭素系不純
物が吸着していることが判った。
The silicon substrate 2 was carried out to the atmosphere, exposed to the air for about 5 hours, and returned to the ultrahigh vacuum vessel again. When the surface was observed using Auger electron spectroscopy,
It was found that oxygen and carbon of 10 14 atm / cc or more were present on the surface, the germanium film 1 was oxidized, and carbon-based impurities were adsorbed.

【0021】この基板を1×10-8Torr以下の超高
真空容器中で800℃で30分程度加熱して表面のゲル
マニウム被覆を昇華させた後に再度オージェ電子分光法
で表面を観察したところ、表面の酸素及び炭素濃度が1
13atm/cc以下になっていることが判った。
This substrate was heated at 800 ° C. for about 30 minutes in an ultra-high vacuum vessel of 1 × 10 −8 Torr or less to sublimate the germanium coating on the surface, and the surface was observed again by Auger electron spectroscopy. Surface oxygen and carbon concentration of 1
0 13 atm / cc or less was found.

【0022】このことは、表面の不純物が実用上問題な
い程度まで除去されていることを示している。表面のゲ
ルマニウムの濃度は、測定限界以下であり、ほぼ完全に
除去されていることが判った。このように、本実施例で
は、シリコン基板2にゲルマニウム膜1を被覆しておく
と、大気に暴露しても比較的低温である800℃程度の
加熱処理で容易に清浄表面を再現することができる。
This indicates that impurities on the surface have been removed to the extent that there is no practical problem. It was found that the concentration of germanium on the surface was below the measurement limit and was almost completely removed. As described above, in the present embodiment, if the silicon substrate 2 is covered with the germanium film 1, the clean surface can be easily reproduced by the heat treatment at a relatively low temperature of about 800 ° C. even when exposed to the atmosphere. it can.

【0023】ここで、上述した実施例においては、表面
の再清浄化の為に800℃程度の加熱処理を行ってい
る。これは、従来の1000℃に比較して、僅か200
℃程度との低減効果しかないとも思われるが、半導体プ
ロセスの世界では以下のような問題を回避するた
め、多くの研究が費されている。
Here, in the above-described embodiment, a heat treatment at about 800 ° C. is performed to re-clean the surface. This is only 200 times less than the conventional 1000 ° C.
Although it seems that the effect is only as low as about ° C, much research has been done in the world of semiconductor processes to avoid the following problems.

【0024】固溶拡散の低減 Siの半導体デバイスの多くは、p型化された半導体膜
とn型化された半導体膜とを接合させて作られるが、p
型膜はドーピング材としてホウ素BをSi中に入れるこ
とによって形成される。このSi中のホウ素は1000
℃以上に加熱されると拡散してしまう。例えば、100
0℃で1時間程度の加熱で1ミクロン程度拡散する。半
導体デバイスでは、1ミクロン以下の厚みの膜を層状に
重ねて作ることから、1000℃の加熱でホウ素ドーピ
ング膜からホウ素が他の膜へ拡散してしまい、他のn型
膜がホウ素混入でp型化してしまい、デバイス動作不良
の原因となる。これが、800℃程度の加熱では、数百
Å程度に拡散が抑えられるのでかかる不良を解消するこ
とができる。
Reduction of Solid Solution Diffusion Many Si semiconductor devices are made by joining a p-type semiconductor film and an n-type semiconductor film.
The mold film is formed by introducing boron B into Si as a doping material. The boron in this Si is 1000
If heated above ℃, it will diffuse. For example, 100
Diffusion about 1 micron by heating at 0 ° C. for about 1 hour. In a semiconductor device, since a film having a thickness of 1 micron or less is formed by laminating layers, boron is diffused from a boron-doped film to another film by heating at 1000 ° C. It becomes a mold and causes a device operation failure. However, when the heating is performed at about 800 ° C., the diffusion can be suppressed to about several hundreds of square meters, so that such a defect can be solved.

【0025】欠陥の低減 Siの基板は、通常1000℃程度の加熱で溶存酸素が
基板内を拡散し、内部で積層欠陥を形成する。この積層
欠陥は、デバイスの動作不良の原因となる。この積層欠
陥は加熱温度が800℃程度になると大幅に抑制するこ
とができる。
Reduction of Defects In a Si substrate, dissolved oxygen is diffused inside the substrate by heating at about 1000 ° C. to form stacking faults inside. This stacking fault causes a malfunction of the device. This stacking fault can be significantly suppressed when the heating temperature is about 800 ° C.

【0026】尚、上記実施例では、最初に基板表面を1
100℃程度の1分間加熱により清浄化を行うが、この
ような熱処理は不可避である。その理由は、通常Si基
板に電子デバイスを形成する場合には、先ず、購入した
基板を1100℃の加熱で表面の清浄化を行ってから、
その後に表面に膜をつけたりエッチング加工をしたりし
て電子デバイスを形成しているからである。
In the above embodiment, the substrate surface is first
Cleaning is performed by heating at about 100 ° C. for 1 minute, but such heat treatment is inevitable. The reason is that when an electronic device is usually formed on a Si substrate, the surface of the purchased substrate is first cleaned by heating at 1100 ° C.
After that, an electronic device is formed by forming a film on the surface or performing an etching process.

【0027】本発明は、このような最初の清浄化処理で
はなく、一度電子デバイスを形成した後の基板表面を再
度清浄化する際に適用されるものである。即ち、従来技
術にも記載したように、これまでは一度電子デバイスを
形成した基板を装置から外に出して大気に触れると、表
面が汚れてしまい、加熱による再清浄化が必要であっ
た。
The present invention is applied not to such an initial cleaning process but to a case where the substrate surface after the electronic device has been formed is cleaned again. That is, as described in the related art, if a substrate on which an electronic device is formed is once taken out of the apparatus and brought into contact with the atmosphere, the surface becomes dirty, and re-cleaning by heating is required.

【0028】本発明では、このような問題に対して、ゲ
ルマニウム膜を保護膜としてシリコン基板表面に付ける
ことにより、再清浄化に係る温度を低減することができ
るという効果を奏するものである。従って、実施例での
1100℃での最初の熱処理はやむをえず必要なもので
あり、その後大気に暴露しても低温で表面を再清浄化す
ることができるという効果を奏する。
According to the present invention, in order to solve such a problem, there is an effect that the temperature for re-cleaning can be reduced by attaching a germanium film as a protective film to the surface of the silicon substrate. Therefore, the first heat treatment at 1100 ° C. in the examples is inevitably necessary, and has an effect that the surface can be re-cleaned at a low temperature even when exposed to the atmosphere thereafter.

【0029】[0029]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明では、ゲルマニウム膜を被覆したた
め、シリコン基板の大気搬出後の清浄化処理が容易とな
り、しかも低い温度処理で行えるようになるため、これ
に係わるシリコン基板の劣化を抑えることができる。こ
れによって、作製された電子部品の性能が安定し、ま
た、歩留を向上させることができる。
As described above in detail with reference to the embodiments, in the present invention, the silicon substrate is covered with the germanium film, so that the cleaning process after the silicon substrate is carried out to the atmosphere is facilitated, and can be performed at a low temperature. Therefore, the deterioration of the silicon substrate related to this can be suppressed. Thus, the performance of the manufactured electronic component is stabilized, and the yield can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例により作製したゲルマニウム
膜の被覆されたシリコン基板の断面図である。
FIG. 1 is a cross-sectional view of a silicon substrate coated with a germanium film manufactured according to one embodiment of the present invention.

【図2】シリコン基板へのゲルマニウム膜の被覆、大気
暴露、加熱昇華及び昇華終了後の様子を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a state after a silicon substrate is coated with a germanium film, exposed to the air, heated and sublimated, and after sublimation.

【符号の説明】[Explanation of symbols]

1 ゲルマニウム膜 2 シリコン基板 1 germanium film 2 silicon substrate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板表面にゲルマニウム膜を堆
積させ被覆することを特徴とするシリコン基板表面の保
護膜形成方法。
1. A method for forming a protective film on a surface of a silicon substrate, comprising depositing and covering a germanium film on the surface of the silicon substrate.
【請求項2】 前記ゲルマニウム膜の厚さは、100Å
以下であることを特徴とする請求項1記載のシリコン基
板表面の保護膜形成方法。
2. The thickness of the germanium film is 100 °.
2. The method for forming a protective film on a silicon substrate surface according to claim 1, wherein:
JP18443396A 1996-07-15 1996-07-15 Method of forming protective film on surface of silicon substrate Pending JPH1032168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18443396A JPH1032168A (en) 1996-07-15 1996-07-15 Method of forming protective film on surface of silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18443396A JPH1032168A (en) 1996-07-15 1996-07-15 Method of forming protective film on surface of silicon substrate

Publications (1)

Publication Number Publication Date
JPH1032168A true JPH1032168A (en) 1998-02-03

Family

ID=16153075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18443396A Pending JPH1032168A (en) 1996-07-15 1996-07-15 Method of forming protective film on surface of silicon substrate

Country Status (1)

Country Link
JP (1) JPH1032168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006090645A1 (en) * 2005-02-24 2008-07-24 株式会社日立国際電気 Semiconductor device manufacturing method and substrate processing apparatus
WO2011033970A1 (en) * 2009-09-18 2011-03-24 昭和電工株式会社 Method for producing recycled substrate, recycled substrate, nitride semiconductor element, and lamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006090645A1 (en) * 2005-02-24 2008-07-24 株式会社日立国際電気 Semiconductor device manufacturing method and substrate processing apparatus
WO2011033970A1 (en) * 2009-09-18 2011-03-24 昭和電工株式会社 Method for producing recycled substrate, recycled substrate, nitride semiconductor element, and lamp
JP2011066355A (en) * 2009-09-18 2011-03-31 Showa Denko Kk Method of manufacturing recycled substrate, recycled substrate, nitride semiconductor element, and lamp

Similar Documents

Publication Publication Date Title
US6958286B2 (en) Method of preventing surface roughening during hydrogen prebake of SiGe substrates
JP3696119B2 (en) Semiconductor device and manufacturing method of semiconductor device
TWI364059B (en)
JP3070660B2 (en) Gas impurity capturing method and semiconductor manufacturing apparatus
US20050148162A1 (en) Method of preventing surface roughening during hydrogen pre-bake of SiGe substrates using chlorine containing gases
US6534412B1 (en) Method for removing native oxide
JP3143670B2 (en) Oxide thin film forming method
JPH1032168A (en) Method of forming protective film on surface of silicon substrate
US6589337B2 (en) Method of producing silicon carbide device by cleaning silicon carbide substrate with oxygen gas
JPH04336426A (en) Manufacture of semiconductor device
TWI345286B (en) Method of producing simox wafer
JP2007141946A (en) Method of manufacturing soi substrate, and soi substrate manufactured by same
US6806202B2 (en) Method of removing silicon oxide from a surface of a substrate
JP3718297B2 (en) Thin film manufacturing method and thin film manufacturing apparatus
JPH03208885A (en) Method for depositing oxide at atomic layer level by vapor growth method
JPH0758712B2 (en) Wiring formation method
JPH0669087A (en) Method for forming silicon substrate
JPH11176828A (en) Forming method for silicon oxide film
JP2737613B2 (en) Method of forming fine pattern
JP2875503B2 (en) Semiconductor processing method
JPH02166729A (en) Metal depositing method
JP2000332007A (en) Method and device for forming dielectric film
JP2772416B2 (en) Film formation method
JPH07142434A (en) Deposition of thin film
JPH0927457A (en) Thin film depositing method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030513