JPH10318920A - Method and apparatus for measuring fluid concentration - Google Patents

Method and apparatus for measuring fluid concentration

Info

Publication number
JPH10318920A
JPH10318920A JP14302897A JP14302897A JPH10318920A JP H10318920 A JPH10318920 A JP H10318920A JP 14302897 A JP14302897 A JP 14302897A JP 14302897 A JP14302897 A JP 14302897A JP H10318920 A JPH10318920 A JP H10318920A
Authority
JP
Japan
Prior art keywords
fluid
flux
measured
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14302897A
Other languages
Japanese (ja)
Inventor
Mikishige Yokoo
幹茂 横尾
Koichi Otsuka
浩一 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Electric Industry Co Ltd
Original Assignee
Toto Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Electric Industry Co Ltd filed Critical Toto Electric Industry Co Ltd
Priority to JP14302897A priority Critical patent/JPH10318920A/en
Publication of JPH10318920A publication Critical patent/JPH10318920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate measuring errors thereby enabling a more correct measurement, by setting measuring points of preliminarily set two different measuring distance, and obtaining a concentration of a fluid from an intensity of a penetration radiation flux at each measuring point and the measuring distance. SOLUTION: A passage 1 for a fluid 2 to be measured is branched to passages 61, 71 of different diameters. Transmission glass members 12, 22 sectioning the passages from the outside and passing measuring lights 11, 21 therethrough are provided at the passages, respectively. Light-emitting detecting systems 10, 20 comprising light- emitting sources 13, 23 and light-detecting sensors 14, 24 are set respectively at a first and a second measuring points where a thickness of a glass layer between the transmission glass members 12, 22 (measuring distance) is X1 , X2 . A concentration of the fluid at the first, second measuring point is obtained by an operation from an intensity I1 , I2 of a penetrating radiation flux measured by the light-detecting sensor 14, 24, and a concentration of the fluid per unit measuring distance is obtained from the above concentration and the measuring distance X1 , X2 . An attenuation, a change of the intensity of the penetrating radiation flux resulting from the other factor than the fluid to be measured is eliminated, whereby a correct transmission concentration can be measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、可視光線、紫外
線、赤外線、β線などの放射線、その他のエネルギー線
を線源とする線束が流体を透過したときの強度の変化か
ら流体の濃度を測定するようにした流体濃度測定方法お
よび装置に関するものである。さらに詳しくは、例え
ば、燃焼排ガス中のダスト濃度測定装置、ダム貯水・タ
ンク貯水・工業排水・生活排水などの液体濁度測定装
置、化学物質・生物生成物質などの生産工程における反
応液・培養液・発酵液などの線束透過濃度測定装置など
は、可視光線を使用して流体の濃度を測定する装置であ
る。また、可視光線以外の紫外線、赤外線、β線などの
放射線、その他のエネルギー線を線源とする線束を測定
媒体として流体の濃度分析や測定をする装置がある。本
発明は、これらの線源からの線束が流体を透過したとき
の強度の変化から流体の濃度を測定するための流体濃度
測定方法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the concentration of a fluid based on a change in the intensity of a light beam emitted from radiation such as visible light, ultraviolet light, infrared light, .beta. The present invention relates to a method and apparatus for measuring a fluid concentration. More specifically, for example, a device for measuring dust concentration in flue gas, a device for measuring liquid turbidity such as dam water, tank water, industrial effluent, domestic effluent, and a reaction solution or culture solution in the production process of chemical substances and biological products -A device for measuring a flux transmission concentration of a fermentation liquid or the like is a device that measures the concentration of a fluid using visible light. In addition, there is an apparatus for analyzing and measuring the concentration of a fluid using a radiation flux having a radiation source other than visible light, such as ultraviolet rays, infrared rays, β rays, and other energy rays as a measurement medium. The present invention relates to a method and an apparatus for measuring the concentration of a fluid for measuring the concentration of a fluid from a change in intensity when a flux from these sources permeates a fluid.

【0002】[0002]

【従来の技術】線束透過による流体濃度測定装置は、線
源と、線束強度センサと、これらの間に置かれ、被測定
流体を区画する透過区画部材とを必要とするが、透過区
画部材の汚れなどによる線束透過率変化が測定誤差とな
り、連続測定の障害となっている。ただし、流体の線束
(光)透過濃度を実験室にて非連続的に測定する場合に
は、測定線束(光)を透過させるシェル、カラムなどの
容器に、被測定流体を収容する前と後に透過率を測定す
ることにより、測定誤差を排除することができる。
2. Description of the Related Art An apparatus for measuring a fluid concentration based on flux transmission requires a radiation source, a flux intensity sensor, and a transmission partition member interposed therebetween for partitioning a fluid to be measured. A change in flux transmittance due to dirt or the like results in a measurement error, which is an obstacle to continuous measurement. However, when the flux (light) transmission density of a fluid is measured discontinuously in a laboratory, before and after housing the fluid to be measured in a container such as a shell or column that transmits the measurement flux (light). By measuring the transmittance, measurement errors can be eliminated.

【0003】例えば、従来の排ガスに光を透過させて濃
度を測定する装置においては、透過区画部材のガス側面
に清浄空気を供給し非測定ガスの接触を防止する方法が
採られている。
For example, in a conventional apparatus for measuring the concentration by transmitting light to exhaust gas, a method is employed in which clean air is supplied to a gas side surface of a permeation partition member to prevent contact with a non-measurement gas.

【0004】また、従来、排ガス光透過濃度測定装置に
置いて、流体を区画する部材として複数のビームスリッ
タを使用し、そのガス接触面に付着した汚れを演算補正
する原理の装置が提案されている。
Conventionally, there has been proposed an apparatus based on the principle of using a plurality of beam slitters as a member for partitioning a fluid in an exhaust gas light transmission concentration measuring apparatus and calculating and correcting dirt attached to a gas contact surface thereof. I have.

【0005】従来の光透過測定装置である濁度計にあっ
ては、区画透過部材である板ガラスに超音波振動を与え
てガラス面の汚れを落すようにした製品や汚れが付着し
ないようにした製品が市販された例がある。
In a conventional turbidimeter, which is a light transmission measuring device, a product in which ultrasonic vibration is applied to a plate glass, which is a partition transmission member, to remove dirt on the glass surface, and dirt is prevented from being attached. There are examples of products being marketed.

【0006】[0006]

【発明が解決しようとする課題】清浄空気を供給する方
法では、汚れを完全に防止することはできないので、頻
繁、かつ定期的な清浄が必要であり、また、温度変化な
どに依存する透過区画部材自体の透過率変化は排除でき
ない。
In the method of supplying clean air, dirt cannot be completely prevented, so frequent and regular cleaning is required. A change in the transmittance of the member itself cannot be excluded.

【0007】汚れを演算補正する原理の装置では、光学
系の構成、および演算式が複雑であり、光学部材の価格
が高価であり、演算誤差がより大きくなる難点は否めな
い。
In the device based on the principle of calculating and correcting dirt, the configuration of the optical system and the calculation formula are complicated, the price of the optical member is expensive, and the calculation error is unavoidable.

【0008】超音波振動を与えて汚れが付着しないよう
にした製品では、その効果は期待されたほどではなく、
頻繁、かつ定期的なガラス面の清浄を必要とするという
問題があった。
[0008] The effect of ultrasonic vibration applied to a product to prevent dirt from adhering is not as expected.
There has been a problem that frequent and regular cleaning of the glass surface is required.

【0009】流体の線束透過率濃度測定装置にあって、
透過区画部材の洗浄を行うためにはその間、測定を中断
しなければならず、さらに、連続運転設備におけるノン
サンプリング排ガス光透過濃度測定装置などにあって
は、透過区画部材を清掃した後の零点調整、スパン調整
は設備の運転を停止しなければできないという問題があ
った。
In the apparatus for measuring the flux transmittance concentration of a fluid,
In order to wash the permeate partition member, the measurement must be interrupted during that time, and in the case of a non-sampling flue gas light transmission concentration measurement device in continuous operation equipment, the zero point after cleaning the permeate partition member There is a problem that adjustment and span adjustment cannot be performed unless the operation of the equipment is stopped.

【0010】本発明の目的は、測定誤差を排除し、より
正確な測定を行うことができる流体濃度測定装置を提供
することである。
An object of the present invention is to provide a fluid concentration measuring device capable of eliminating measurement errors and performing more accurate measurement.

【0011】本発明の他の目的は、区画部材面の洗浄に
必要な頻度、測定を中断する頻度、対象設備の運転を中
断する頻度を、それぞれ可及的に少なくした流体濃度測
定装置を提供することである。
Another object of the present invention is to provide a fluid concentration measuring apparatus in which the frequency required for cleaning the surface of the partition member, the frequency for interrupting the measurement, and the frequency for interrupting the operation of the target equipment are reduced as much as possible. It is to be.

【0012】本発明のさらに他の目的は、区画部材面の
洗浄に要する労務を減じ、省力化を図る流体濃度測定装
置を提供することである。
Still another object of the present invention is to provide a fluid concentration measuring device which reduces labor required for cleaning the surface of a partition member and saves labor.

【0013】[0013]

【課題を解決するための手段】本発明は、被測定流体
に、線源からの線束を透過させて透過線束強度I1、I2
を線束強度センサで感知し、線束強度が被測定流体の線
束透過率に応じて減衰する度合いを測定する流体濃度測
定方法において、前記被測定流体2の同一または互いに
近傍の測定位置における第1、第2測定点を、予め設定
された2つの互いに異なる測定距離X1、X2をもって設
定し、これら第1、第2測定点におけるそれぞれの透過
線束強度I1、I2を測定する工程と、これらの透過線束
強度I1、I2のいずれか一方を他方で除算し、この除算
した値を対数演算して、第1、第2測定点の流体濃度を
得る工程と、前記測定距離X1、X2のいずれか一方から
他方を減算し、この減算値の逆数を演算する工程と、前
記第1、第2測定点の流体濃度値と前記測定距離X1
2の減算値の逆数値とを乗算して第1、第2測定点に
おける単位測定距離の流体濃度を求める工程とからな
り、被測定流体以外の原因による透過線束強度の減衰お
よび/または変化を除去して流体の濃度を測定するよう
にしたことを特徴とする流体濃度測定方法である。
SUMMARY OF THE INVENTION According to the present invention, a flux from a radiation source is transmitted through a fluid to be measured, and the transmitted flux intensity I 1 , I 2
Is detected by a flux intensity sensor, and the flux intensity is attenuated in accordance with the flux transmittance of the fluid to be measured. Setting a second measurement point with two different measurement distances X 1 and X 2 set in advance, and measuring the respective transmission flux intensities I 1 and I 2 at the first and second measurement points, one of these transmitted flux intensity I 1, I 2 is divided by the other hand, the division value by logarithmic arithmetic, to obtain a first, fluid concentration in the second measurement point, the measured distance X 1 , X 2 , and the other is subtracted from the other, and the reciprocal of the subtraction value is calculated. The fluid concentration values at the first and second measurement points and the measurement distance X 1 ,
First by multiplying the reciprocal value of the subtraction value of X 2, consists of a step of determining a fluid density of the unit measurement distance in the second measurement point, the transmission line bundle strength due to causes other than the fluid to be measured attenuation and / or change The fluid concentration measuring method is characterized in that the concentration of the fluid is measured by removing the fluid concentration.

【0014】線束透過濃度を測定するに際し、異なる2
つの測定距離X1、X2において線束透過強度を求め、併
せて双方の測定距離を与え、補正演算式に基づいて補正
することにより、透過区画部材の汚れなどによる透過率
変化を解消し、被測定流体の正確な線束透過濃度を得る
ことができる。
In measuring the flux transmission density, two different
The flux transmission intensity is obtained at the two measurement distances X 1 and X 2 , the both measurement distances are given, and the correction is performed based on the correction operation formula, thereby eliminating the transmittance change due to the contamination of the transmission partition member and the like. An accurate flux transmission density of the measurement fluid can be obtained.

【0015】同一流体の線束透過濃度を測定するに際
し、線源および線束強度センサからなる2組の線束透過
濃度測定系を設け、両者の線束が透過する被測定流体の
厚さを任意に規定した異なる寸法に配することにより、
異なる2つの測定距離における線束透過濃度を求める。
In measuring the flux transmission density of the same fluid, two sets of flux transmission density measuring systems comprising a source and a flux intensity sensor are provided, and the thickness of the fluid to be measured through which both fluxes are transmitted is arbitrarily defined. By arranging in different dimensions,
The flux transmission density at two different measurement distances is determined.

【0016】また、流体の線束透過濃度を測定するに際
し、線源と線束強度センサからなる1組の線束透過濃度
測定系を設け、線源と線束強度センサ間の距離または被
測定流体の線束透過部の厚さを任意に規定した寸法に機
械的に交互2段階に変更することにより異なる2つの測
定距離における線束透過濃度を求めることもできる。
When measuring the flux transmission density of the fluid, a set of flux transmission density measuring systems comprising a source and a flux intensity sensor is provided, and the distance between the source and the flux intensity sensor or the flux transmission of the fluid to be measured is provided. It is also possible to determine the flux transmission density at two different measurement distances by mechanically changing the thickness of the portion to two dimensions that are arbitrarily defined.

【0017】測定媒体である線源は可視光線に限定され
るものでなく、被測定流体の透過特性に応じて紫外線、
赤外線などの光線、β線などの放射線、その他のエネル
ギー線を線源とすることも可能である。
The radiation source as the measurement medium is not limited to visible light, but may be ultraviolet light,
Light sources such as infrared rays, radiation such as β-rays, and other energy rays can be used as the radiation source.

【0018】[0018]

【発明の実施の形態】本発明による流体濃度測定装置の
一実施例を図面に基づき説明する。以下、被測定流体が
ガスで、測定媒体である線源が可視光線の場合を例とし
て説明する。図1は、本発明の補正演算原理を説明する
図であり、被測定流体(以下、被測定ガスとする)2の
流路1は、途中から径の異なる流路61、71となって
おり、それぞれの流路61、71の位置に、線束(以
下、測定光とする)11、21を透過させ、かつ各流路
61、71を外部と区画する区画部材としての透過ガラ
ス部材12、22が設けられ、これらの透過ガラス部材
12、22の位置に、それぞれ線束透過濃度測定系(以
下、第1、第2の投・受光系統とする)10、20が設
けられている。前記第1の投・受光系統10は、第1線
源(以下、第1投光源とする)13と第1線束強度セン
サ(以下、第1受光センサとする)14からなり、ま
た、対応する両側の透過ガラス部材12間の被測定ガス
2層の厚さをX1とする。前記第2の投・受光系統20
は、第2線源(以下、第2投光源とする)23と第2線
束強度センサ(以下、第2受光センサとする)24から
なり、また、対応する両側の透過ガラス部材22間の被
測定ガス2層の厚さをX2とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a fluid concentration measuring device according to the present invention will be described with reference to the drawings. Hereinafter, a case where the fluid to be measured is a gas and the radiation source as the measurement medium is visible light will be described as an example. FIG. 1 is a view for explaining the principle of the correction operation of the present invention. A flow path 1 of a fluid to be measured (hereinafter, referred to as a gas to be measured) 2 has flow paths 61 and 71 having different diameters in the middle. The transparent glass members 12 and 22 as the partition members that allow the light fluxes (hereinafter, referred to as measurement light) 11 and 21 to pass through the positions of the flow paths 61 and 71 and partition the flow paths 61 and 71 from the outside. Are provided at the positions of the transmission glass members 12 and 22, respectively, and a flux transmission density measurement system (hereinafter, referred to as first and second projection / reception systems) 10 and 20 are provided. The first light emitting / receiving system 10 includes a first light source (hereinafter, referred to as a first light emitting source) 13 and a first flux intensity sensor (hereinafter, referred to as a first light receiving sensor) 14 and corresponds thereto. Let X 1 be the thickness of the two layers of the gas to be measured between the transmission glass members 12 on both sides. The second light emitting / receiving system 20
Is composed of a second radiation source (hereinafter, referred to as a second light source) 23 and a second flux intensity sensor (hereinafter, referred to as a second light receiving sensor) 24. the thickness of the measurement gas 2 layers and X 2.

【0019】以後、第1の投・受光系統10の位置を第
1測定点、また、第2の投・受光系統20の位置を第2
測定点とし、それぞれの測定光11、21が透過する被
測定ガス2の厚さX1、X2を測定距離と称する。なお、
測定距離X1である第1測定点と、測定距離X2である第
2測定点は、正確には異なる位置であるが、同一流路1
の相互に近傍であって径の異なる流路61、71の位置
に設定され、それぞれの測定光11、21は、同一濃度
のガス2を透過しており、また、被測定ガス2を区画す
る透過ガラス部材12、22の汚れ度合い、光透過率の
変化度合いも同一であるとする。
Hereinafter, the position of the first light emitting / receiving system 10 will be referred to as a first measurement point, and the position of the second light emitting / receiving system 20 will be referred to as a second position.
As measurement points, the thicknesses X 1 and X 2 of the measured gas 2 through which the respective measurement lights 11 and 21 pass are referred to as measurement distances. In addition,
A first measurement point is measured distance X 1, second measurement point is measured distance X 2 is a position different from precisely, the flow channel 1
Are set at the positions of flow paths 61 and 71 having different diameters, which are close to each other, and the respective measurement lights 11 and 21 transmit the gas 2 having the same concentration and partition the gas 2 to be measured. It is assumed that the degree of contamination and the degree of change in light transmittance of the transmission glass members 12 and 22 are also the same.

【0020】図1において、 X1:第1測定点における測定距離 X2:第2測定点における測定距離 α1:第1測定点におけるガスの光透過率(流体の線束
透過率) α2:第2測定点におけるガスの光透過率(流体の線束
透過率) I01:第1測定点の投光強度(発射線束強度) I02:第2測定点の投光強度(発射線束強度) I1:第1測定点の受光強度(透過線束強度) I2:第2測定点の受光強度(透過線束強度) β :汚れを含む透過ガラス部材の透過率
In FIG. 1, X 1 : measurement distance at the first measurement point X 2 : measurement distance at the second measurement point α 1 : light transmittance of gas at the first measurement point (fluid flux transmittance) α 2 : Gas light transmittance (fluid flux transmittance) of gas at the second measurement point I 01 : Light projection intensity (radiation flux intensity) at the first measurement point I 02 : Light projection intensity (radiation flux intensity) of the second measurement point I 1: the first light reception intensity (transmittance flux intensity) of the measurement point I 2: received light intensity (transmittance flux intensity) of the second measurement point beta: the transmittance of the transmission glass member containing dirt

【0021】第1、第2両測定点におけるガス2の光透
過率をα1、α2、両側の透過ガラス部材12、22の汚
れを含む透過率をβ、測定光11、21の投光強度をI
01、I02、受光強度をI1、I2とすると、それらの関係
は次式(1)(2)の通りである。 I1=α1・β・β・I01=α1・β2・I01 ……(1) I2=α2・β・β・I02=α2・β2・I02 ……(2) これら(1)(2)式から第1、第2両測定点における
被測定ガス2の光透過率の逆数をとれば、次式(3)
(4)式となる。 1/α1=(I01/I1)・β2 ……(3) 1/α2=(I02/I2)・β2 ……(4)
The light transmittance of the gas 2 at both the first and second measurement points is α 1 , α 2 , the transmittance of the transmission glass members 12, 22 on both sides including dirt is β, and the measurement beams 11, 21 are projected. Strength I
Assuming that 01 , I 02 , and the received light intensity are I 1 , I 2 , the relationship between them is as follows: I 1 = α 1 · β · β · I 01 = α 1 · β 2 · I 01 ··· (1) I 2 = α 2 · β · β · I 02 = α 2 · β 2 · I 02 ··· 2) By taking the reciprocal of the light transmittance of the measured gas 2 at the first and second measurement points from the equations (1) and (2), the following equation (3) is obtained.
Equation (4) is obtained. 1 / α 1 = (I 01 / I 1 ) · β 2 (3) 1 / α 2 = (I 02 / I 2 ) · β 2 (4)

【0022】ここでガス透過率の逆数のlog10をとれ
ば、定義により第1測定点、第2測定点における光学濃
度(Optical Density)となる。 log10(1/α1)=log10{(I01/I1)・β2} ……(5) log10(1/α2)=log10{(I02/I2)・β2} ……(6) これら(5)(6)両式を変形して、一方の式から他方
の式を減算すると、汚れを含む透過ガラス部材12、2
2の透過率βは、以下のように消滅する。
[0022] Taking the log 10 of the reciprocal of where the gas permeability, the first measurement point by definition, the optical density (Optical Density) at the second measurement point. log 10 (1 / α 1 ) = log 10 {(I 01 / I 1 ) · β 2 } (5) log 10 (1 / α 2 ) = log 10 {(I 02 / I 2 ) · β 2 } (6) By transforming both formulas (5) and (6) and subtracting the other formula from one formula, the translucent glass members 12, 2
2 disappears as follows.

【0023】第1、第2両測定点における光学濃度は、
同一ガスであるから、ランバート・ベールの法則に基づ
き、単位測定距離における光学濃度に変換すれば両者は
同一値であり以下の(8)式が成り立つ。 (1/X1)・log10(1/α1)=(1/X2)・log10(1/α2) ……(8) 移項して第2測定点の光学濃度を求めると log10(1/α2)=(X2/X1)・log10(1/α1) ……(9) 得られた第2測定点の光学濃度{log10(1/α2)}を上記
の(7)式に代入し、 log10(1/α2)−log10(1/α1) =(X2/X1)・log10(1/α1)−log10(1/α1) =(X2/X1−1)・log10(1/α1) =(X2−X1)・{(1/X1)・log10(1/α1)} ……(10) この(10)式における右辺の{(1/X1)・log10(1/
α1)}項は、第1測定点における単位測定距離の光学濃
度であり、 (1/X1)・log10(1/α1) ={1/(X2−X1)}・{log10(1/α2)−log10(1/α1)} ={1/(X2−X1)}・{log10(1/α2)/(1/α1)} ={1/(X2−X1)}・log10{(I02/I2)/(I01/I1)} ……(11) すなわち、第1、第2両測定点における投・受光量(I
02、I2、I01、I1)と、それぞれの測定距離X1、X2
が与えられれば、(11)式から透過ガラス部材12、
22の透過率βの項を抹消した被測定ガス2の単位測定
距離の光学濃度 {(1/X1)・log10(1/α1)} が得られる。
The optical density at both the first and second measurement points is
Since they are the same gas, if they are converted into optical densities at a unit measurement distance based on Lambert-Beer's law, they have the same value, and the following equation (8) holds. (1 / X 1 ) · log 10 (1 / α 1 ) = (1 / X 2 ) · log 10 (1 / α 2 ) (8) When the optical density at the second measurement point is obtained by shifting the terms, log 10 (1 / α 2 ) = (X 2 / X 1 ) · log 10 (1 / α 1 ) (9) Obtain the obtained optical density {log 10 (1 / α 2 )} of the second measurement point. Substituting into the above equation (7), log 10 (1 / α 2 ) −log 10 (1 / α 1 ) = (X 2 / X 1 ) · log 10 (1 / α 1 ) −log 10 (1 / α 1 ) = (X 2 / X 1 −1) · log 10 (1 / α 1 ) = (X 2 −X 1 ) · {(1 / X 1 ) · log 10 (1 / α 1 )} (10) {(1 / X 1 ) · log 10 (1 /
The term α 1 )} is the optical density of the unit measurement distance at the first measurement point, and is (1 / X 1 ) · log 10 (1 / α 1 ) = {1 / (X 2 −X 1 )} · { log 10 (1 / α 2 ) −log 10 (1 / α 1 )} = {1 / (X 2 −X 1 )} · {log 10 (1 / α 2 ) / (1 / α 1 )} = { 1 / (X 2 −X 1 )} · log 10 {(I 02 / I 2 ) / (I 01 / I 1 )} (11) That is, the projected and received light amounts at both the first and second measurement points. (I
02 , I 2 , I 01 , I 1 ) and the respective measurement distances X 1 , X 2
Is given, the transmission glass member 12,
The optical density {(1 / X 1 ) · log 10 (1 / α 1 )} at the unit measurement distance of the measured gas 2 from which the term of the transmittance β of 22 is deleted is obtained.

【0024】前記(11)式において、2つの投光強度
01、I02が同一であれば、これらが除去され、つぎの
(11’)式のように簡略化される。 (1/X1)・log10(1/α1) ={1/(X2−X1)}・log10(I1/I2)} ……(11’) なお、(8)式から明らかなように、第1、第2両測定
点における単位測定距離の光学濃度は、同一である。
In the above equation (11), if the two light emitting intensities I 01 and I 02 are the same, they are removed and simplified as in the following equation (11 ′). (1 / X 1 ) · log 10 (1 / α 1 ) = {1 / (X 2 −X 1 )} · log 10 (I 1 / I 2 )} (11 ′) Equation (8) As is clear from FIG. 7, the optical densities of the unit measurement distances at the first and second measurement points are the same.

【0025】前述の演算式においては、光学濃度の定義
から常用対数を採用しているが、これを自然対数に代え
ても結果は同一である。
In the above equation, the common logarithm is adopted from the definition of the optical density, but the result is the same even if this is replaced with a natural logarithm.

【0026】また、(3)式から(7)式までの演算の
手順を、例えば、つぎの(12)式から(14)式のよ
うに変えても同じ結果が得られ、等価となる。 α1/α2=(I02/I2)・{1/(I01/I1)} ……(13) その後、対数を採ると、 log10(1/α2)−log10(1/α1) =log10(I02/I2)−log10(I01/I1) ……(14) となり、(14)式は、前述の(7)式の演算と同じ結
果が得られる。
Further, the same result can be obtained even if the procedure of the calculation from the equations (3) to (7) is changed, for example, from the following equations (12) to (14). α 1 / α 2 = (I 02 / I 2 ) · {1 / (I 01 / I 1 )} (13) Thereafter, when a logarithm is taken, log 10 (1 / α 2 ) −log 10 (1 / Α 1 ) = log 10 (I 02 / I 2 ) −log 10 (I 01 / I 1 ) (14), and the expression (14) gives the same result as the operation of the expression (7). Can be

【0027】さらにまた、他の演算について説明する
と、ランバート・ベールの法則によれば、 (1/α1)(1/X1)=(1/α2)(1/X2) ……(15) であるから、この(15)式を変形し、つぎの(16)
式を得る。 1/α2=(1/α1)(X2/X1)=1/α1 (X2/X1) ……(16) この(16)式を、基本式の左辺と右辺を除算してβ項
を消去した前記(12)式に代入してα2を消去する
と、 α1/α2=(I1/I2)・(I02/I01) =(I02/I2)・{1/(I01/I1)} =α1・(1/α1(X2/X1)=α1・(1/α1 (X2/X1)) =α1 (X1/X2)・α1 -(X2/X1))=α1 (X1-X2)/X1 =(1/α1(X2-X1)/X1={(1/α11/X1X2-X1 ……(17) 移項して (1/α11/X1={(I02/I01)/(I01/I1)}1/(X2-X1) …(18) 対数をとり (1/X1)・log10(1/α1) ={1/(X2−X1)}・log10{(I02/I2)/(I01/I1)} ……(19) このように、異なる演算手順によっても前記と同一とな
る。
Further, other operations will be described. According to Lambert-Beer's law, (1 / α 1 ) (1 / X 1) = (1 / α 2 ) (1 / X 2) (15) Therefore, this equation (15) is transformed into the following equation (16).
Get the expression. 1 / α 2 = (1 / α 1 ) (X2 / X1) = 1 / α 1 (X2 / X1) (16) This equation (16) is divided by the left side and the right side of the basic equation to obtain a β term. Clearing the (12) alpha 2 is substituted into the equation to erase, α 1 / α 2 = ( I 1 / I 2) · (I 02 / I 01) = (I 02 / I 2) · {1 / (I 01 / I 1 )} = α 1 · (1 / α 1 ) (X2 / X1) = α 1 · (1 / α 1 (X2 / X1) ) = α 1 (X1 / X2) · α 1 - (X2 / X1)) = α 1 (X1-X2) / X1 = (1 / α 1 ) (X2-X1) / X1 = {(1 / α 1 ) 1 / X1X2-X1 (17) By transposing, (1 / α 1 ) 1 / X1 = {(I 02 / I 01 ) / (I 01 / I 1 )} 1 / (X2-X1) ... (18) Take the logarithm (1 / X 1 ) · log 10 (1 / α 1 ) = {1/1 / X 2 −X 1 )} · log 10 {(I 02 / I 2 ) / (I 01 / I 1 )} (19) As described above, the same operation is performed by a different calculation procedure.

【0028】その他にも結果が等価になる演算式表現お
よび手順はあるが、「2つの異なる測定距離によって得
られたそれぞれの線束透過率と、2つの測定距離とを入
力として与え、被測定ガス以外の原因による透過結束強
度の減衰および/または変化を除去した線束透過濃度が
得られる演算はすべて等価である。
There are other arithmetic expressions and procedures that make the results equivalent, but "the respective flux transmittances obtained at two different measurement distances and the two measurement distances are given as inputs, and the gas to be measured is given. The calculations for obtaining the flux transmission density from which the attenuation and / or change in the transmission binding strength due to other factors are removed are all equivalent.

【0029】図2は、流路1(61、71)の一方の側
(図中左側)に、第1、第2投光源13、23、第1、第
2ビームスプリッター16、26および第1、第2受光
センサ14、24を併せて設け、対向する側(図中右側)
に、第1、第2反射器15、25を設けることにより、
測定光11、21を被測定ガス2中で往復させる、いわ
ゆるダブルビーム方式の2系統の第1、第2投・受光系
統10、20の場合について補正演算を説明するための
図である。図中の前記第1、第2ビームスリッター1
6、26は、第1、第2投光源13、23からの全光束
を、第1、第2反射器15、25側に透過させ、戻りの
反射光を第1、第2受光センサ14、24へ全反射させ
る光学部材である。
FIG. 2 shows one side of the flow path 1 (61, 71).
On the left side in the figure, first and second light sources 13 and 23, first and second beam splitters 16 and 26, and first and second light receiving sensors 14 and 24 are provided together. (Right side)
By providing the first and second reflectors 15, 25,
FIG. 7 is a diagram for explaining correction calculation in the case of two first and second light projecting / receiving systems 10 and 20 of a so-called double beam system in which measurement beams 11 and 21 reciprocate in a gas 2 to be measured. The first and second beam slitters 1 in the figure
6 and 26 transmit the total luminous flux from the first and second light projecting light sources 13 and 23 to the first and second reflectors 15 and 25, and return the reflected light to the first and second light receiving sensors 14 and 24 is an optical member that totally reflects light to the light.

【0030】第1測定点および第2測定点における被測
定ガス2の光透過率をα1、α2、測定光路中に配されて
いる第1、第2透過ガラス部材12、22の汚れを含む
透過率をβ、第1、第2反射器15、25の反射率をγ
11、γ21、第1、第2ビームスリッタ16、26の透過
・反射率をγ12、γ22、測定光の投光強度をI01
02、受光強度をI1、I2とすると、それらの関係は次
式(20)(21)の通りである。 I1=α1 2・β4・γ11・γ12・I01 ……(20) I2=α2 2・β4・γ21・γ22・I02 ……(21) 第1、第2両測定点において測定光が往復したときの被
測定ガス2の光透過率の逆数をとれば、 1/α1 2=(I01/I1)・β4・γ11・γ12 ……(22) 1/α2 2=(I02/I2)・β4・γ21・γ22 ……(23)
The light transmittance of the gas to be measured 2 at the first measurement point and the second measurement point is represented by α 1 and α 2 , and the first and second transmission glass members 12 and 22 disposed in the measurement optical path are cleaned. Is the transmittance including β, and the reflectance of the first and second reflectors 15 and 25 is γ.
11 , γ 21 , the transmission and reflectance of the first and second beam slitters 16 and 26 are γ 12 and γ 22 , the projection intensity of the measurement light is I 01 ,
Assuming that I 02 and the received light intensity are I 1 and I 2 , the relationship between them is given by the following equations (20) and (21). I 1 = α 1 2 · β 4 · γ 11 · γ 12 · I 01 ...... (20) I 2 = α 2 2 · β 4 · γ 21 · γ 22 · I 02 ...... (21) first, Taking the reciprocal of the light transmittance of the measurement gas 2 when the measuring light travels back and forth in the two-car measuring points, 1 / α 1 2 = ( I 01 / I 1) · β 4 · γ 11 · γ 12 ...... (22) 1 / α 2 2 = (I 02 / I 2 ) · β 4 · γ 21 · γ 22 (23)

【0031】ここでガス透過率の逆数のlog10をとれ
ば、定義により第1測定点、第2測定点における光学濃
度(Optical Density)となる。 log10(1/α1 2)=log10{(I01/I1)・β4・γ11・γ12} ……(24) log10(1/α2 2)=log10{(I02/I2)・β4・γ21・γ22} ……(25) γ11=γ21、γ12=γ22として、(24)(25)両式
を変形し、減算すると、透過ガラス部材12、22の汚
れを含む透過率βおよび第1、第2反射器15、25と
第1、第2ビームスリッタ16、26の反射率γ11・γ
21・γ12・γ22は、以下の(26)式のように消滅す
る。
[0031] Taking the log 10 of the reciprocal of where the gas permeability, the first measurement point by definition, the optical density (Optical Density) at the second measurement point. log 10 (1 / α 1 2 ) = log 10 {(I 01 / I 1 ) · β 4 · γ 11 · γ 12 } (24) log 10 (1 / α 2 2 ) = log 10 {(I 02 / I 2) · β 4 · γ 21 · γ 22} ...... (25) γ 11 = γ 21, as gamma 12 = gamma 22, by modifying the (24) (25) both equations, is subtracted, transmitting glass The transmittance β including contamination of the members 12 and 22 and the reflectance γ 11 · γ of the first and second reflectors 15 and 25 and the first and second beam slitters 16 and 26.
21 · γ 12 · γ 22 vanishes as in the following equation (26).

【0032】第1、第2両測定点における光学濃度は、
同一ガスであるから、単位測定距離の光学濃度に変換す
れば、両者は同一値となり、以下の(27)式が成り立
つ。 {1/(2・X1)}・log10(1/α1 2)={1/(2・X2)}・log10(1/α2 2) ……(27) 移項して第2測定点における被測定ガス2の光学濃度を
もとめると、 log10(1/α2 2)=(X2/X1)・log10(1/α1 2) ……(28) 第2測定点の光学濃度{log10(1/α2 2)}を上記(2
8)式に代入すれば log10(1/α2 2)−log10(1/α1 2) =(X2/X1)・log10(1/α1 2)−log10(1/α1 2) =(X2/X1−1)・log10(1/α1 2) =2・(X2−X1)・{1/(2・X1)}・log10(1/α1 2) ……(29)
The optical density at both the first and second measurement points is:
Since they are the same gas, if they are converted into optical densities at a unit measurement distance, they both have the same value, and the following equation (27) holds. {1 / (2 · X 1 )} · log 10 (1 / α 1 2 ) = {1 / (2 · X 2 )} · log 10 (1 / α 2 2 ) (27) When obtaining the optical density of the measurement gas 2 at the second measurement point, log 10 (1 / α 2 2) = (X 2 / X 1) · log 10 (1 / α 1 2) ...... (28) the second measurement The optical density of the point {log 10 (1 / α 2 2 )} is
By substituting into the equation (8), log 10 (1 / α 2 2 ) −log 10 (1 / α 1 2 ) = (X 2 / X 1 ) · log 10 (1 / α 1 2 ) −log 10 (1 / α 1 2 ) = (X 2 / X 1 −1) · log 10 (1 / α 1 2 ) = 2 · (X 2 −X 1 ) · {1 / (2 · X 1 )} · log 10 (1 / Α 1 2 ) …… (29)

【0033】この(29)式中の右辺の{(1/(2・
1)}・log10(1/α1 2)}は、第1測定点における単位
測定距離の光学濃度であり、移項すると {1/(2・X1)}・log10(1/α1 2) =[1/{2・(X2−X1)}]・{log10(1/α2 2)−log10(1/α1 2)} =[1/{2・(X2−X1)}]・log10{(1/α2 2)/(1/α1 2)} =[1/{2・(X2−X1)}]・log10{(I02/I2)2/(I01/I1)2} =[1/{2・(X2−X1)}]・log10{(I02/I2)/(I01/I1)}2 =[1/{2・(X2−X1)}]・2・log10{(I02/I2)/(I01/I1)} ={1/(X2−X1)}・log10{(I02/I2)/(I01/I1)} ……(30) となり、この(30)式は、前記(11)式と全く同一
となる。この(30)式において、第1、第2両測定点
における投・受光量(I02、I2、I01、I1)と、それぞ
れの測定距離X2、X1を与えれば、第1、第2透過ガラ
ス部材12、22の汚れを含む透過率βおよび第1、第
2反射器15、25と第1、第2ビームスリッタ16、
26の反射率(γ11、γ21、γ12、γ22)の項を抹消した
被測定ガス2の単位測定距離における光学濃度[{1/
(2・X1)}・log10(1/α1 2)]が得られる。
In the equation (29), {(1 / (2 ·
X 1 )} · log 10 (1 / α 1 2 )} is the optical density of the unit measurement distance at the first measurement point, and is expressed as {1 / (2 · X 1 )} · log 10 (1 / α) 1 2 ) = [1 / {2 · (X 2 −X 1 )}] · {log 10 (1 / α 2 2 ) −log 10 (1 / α 1 2 )} = [1 / {2 · (X 2 −X 1 )}] · log 10 {(1 / α 2 2 ) / (1 / α 1 2 )} = [1 / {2 · (X 2 −X 1 )}] · log 10 {(I 02 / I 2 ) 2 / (I 01 / I 1 ) 2 } = [1 / {2 · (X 2 −X 1 )}] · log 10 {(I 02 / I 2 ) / (I 01 / I 1 ) } 2 = [1 / {2 · (X 2 −X 1 )}] · 2 · log 10 {(I 02 / I 2 ) / (I 01 / I 1 )} = {1 / (X 2 −X 1 )} Log 10 {(I 02 / I 2 ) / (I 01 / I 1 )} (30), and the expression (30) is completely the same as the expression (11). In this equation (30), if the projected and received light amounts (I 02 , I 2 , I 01 , I 1 ) at the first and second measurement points and the respective measurement distances X 2 , X 1 are given, the first , The transmittance β of the second transmission glass members 12 and 22 including dirt, the first and second reflectors 15 and 25, and the first and second beam slitters 16,
The optical density [{1/1/2] of the measured gas 2 at the unit measurement distance from which the terms of the reflectivity (γ 11 , γ 21 , γ 12 , γ 22 ) of 26 are deleted
(2 · X 1 )} · log 10 (1 / α 1 2 )].

【0034】図3は、図2にて説明したダブルビーム方
式の流体透過率測定において、第1、第2反射器15、
25側の第1、第2透過ガラス部材12、22を省略
し、第1、第2反射器15、25に被測定ガス2を区画
する機能を与え、直接被測定ガスに接触させるようにし
た場合の補正演算式を説明する図である。第1、第2反
射器15、25は、被測定ガス2に接して汚れが付着す
るので、それぞれの反射率(γ11)、(γ21)は変化する
が、相互に近傍に配置されており、反射率変化度合い
は、同じであるとしてよい。
FIG. 3 shows the first and second reflectors 15 and 15 in the fluid transmittance measurement of the double beam system described in FIG.
The first and second transmission glass members 12 and 22 on the 25 side are omitted, and the first and second reflectors 15 and 25 are provided with a function of partitioning the gas to be measured 2 so as to directly contact the gas to be measured. FIG. 9 is a diagram for explaining a correction operation expression in the case. Since the first and second reflectors 15 and 25 come into contact with the gas to be measured 2 and become contaminated, their reflectivities (γ 11 ) and (γ 21 ) change, but they are arranged close to each other. Therefore, the degree of change in reflectance may be the same.

【0035】第1、第2両測定点における被測定ガス2
の光透過率をα1、α2、投・受光器両側の汚れによる透
過率をβ、第1、第2反射器15、25の反射率を
γ11、γ21、第1、第2ビームスリッター16、26の
透過・反射率をγ12、γ22、第1、第2測定光11、2
1の投光強度をI01、I02、受光強度をI1、I2とする
と、それらの関係は次(31)(32)式の通りであ
る。 I1=α1 2・β2・γ11・γ12・I01 ……(31) I2=α2 2・β2・γ21・γ22・I02 ……(32) すなわち、図2における(12)式と(13)式による
補正式を求める過程における第1、第2透過ガラス部材
12、22による光透過率が4乗から2乗に変わっただ
けであり、同じ手順でβ項、γ項は、いずれも消去され
るので、この場合にも同じ補正演算式が適用できる。
The gas 2 to be measured at both the first and second measurement points
Are the light transmittances α 1 and α 2 , the transmittance due to dirt on both sides of the light emitting and receiving devices is β, and the reflectance of the first and second reflectors 15 and 25 is γ 11 , γ 21 , the first and second beams. The transmission and reflectance of the liters 16 and 26 are γ 12 , γ 22 , the first and second measurement
Assuming that the light-emitting intensity of 1 is I 01 and I 02 and the light-receiving intensity is I 1 and I 2 , the relationship between them is as shown in the following equations (31) and (32). I 1 = α 1 2 · β 2 · γ 11 · γ 12 · I 01 ...... (31) I 2 = α 2 2 · β 2 · γ 21 · γ 22 · I 02 ...... (32) That is, FIG. 2 The light transmittance of the first and second transmission glass members 12 and 22 in the process of obtaining the correction expression by the expressions (12) and (13) in the above is only changed from the fourth power to the second power. , And γ terms are all deleted, so that the same correction equation can be applied in this case as well.

【0036】ここでは説明を簡単にするため、測定媒体
として、可視光線を採用した場合について説明したが、
前述のように、、紫外線、赤外線などの光、β線などの
放射線、その他のエネルギー線源、線束を採用しても同
じである。
Here, for the sake of simplicity, the case where visible light is used as the measurement medium has been described.
As described above, the same applies to the case where light such as ultraviolet rays and infrared rays, radiation such as β-rays, and other energy ray sources and fluxes are employed.

【0037】以上に説明したように、同一流体2の線束
透過率を2つの測定距離X1、X2において測定して、第
1、第2両測定点における発射線束強度(I01、I02)お
よび被測定流体2を透過した透過線束強度(I1、I2)
と、それぞれの測定距離(X1、X2)が得られれば、透
過区画部材の汚れを含む透過率βなどの光学系の誤差要
因を抹消した被測定流体2の単位距離における濃度 [{1/(2・X1)}・log10(1/α1 2)] が本発明の補正演算式によってもとめることができる。
As described above, the flux transmittance of the same fluid 2 is measured at two measurement distances X 1 and X 2 , and the emission flux intensity (I 01 , I 02) at both the first and second measurement points is measured. ) And the intensity of transmitted flux transmitted through the fluid 2 to be measured (I 1 , I 2 )
If the measured distances (X 1 , X 2 ) are obtained, the concentration [単 位 1 of the fluid 2 to be measured at a unit distance from which error factors of the optical system such as the transmittance β including the contamination of the transmission partition member are eliminated. / (2 · X 1 )} · log 10 (1 / α 1 2 )] can be obtained by the correction operation expression of the present invention.

【0038】本発明の具体的実施例を、図4以下の図面
に基づき説明する。図4は、燃焼排ガスなどのガス体の
光透過濃度を測定する装置における第1、第2投・受光
系統10、20のうちの1つを具体的に説明する図であ
り、煙道などのガスの流路1に対応した位置の両側に、
それぞれ導光管5、6が連通して設けられ、一方の導光
管5側に投光器18、他方の導光管6側に受光器19が
取付けられる。前記投光器18の内部には、投光ランプ
などの投光源13、コンデンサレンズ17および流路1
の内外を気密に区画して測定光11を透過させるための
透過ガラス部材12が設けられ、また、前記受光器19
の内部には、受光センサ14、コンデンサレンズ17お
よび透過ガラス部材12が設けられている。
A specific embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a diagram specifically illustrating one of the first and second light projecting / receiving systems 10 and 20 in an apparatus for measuring the light transmission concentration of a gas such as flue gas. On both sides of the position corresponding to the gas flow path 1,
Light guide tubes 5 and 6 are provided in communication with each other, and a light projector 18 is mounted on one light guide tube 5 side and a light receiver 19 is mounted on the other light guide tube 6 side. Inside the projector 18, a projection light source 13, such as a projection lamp, a condenser lens 17, and a flow path 1 are provided.
A transmission glass member 12 for airtightly partitioning the inside and outside of the device and transmitting the measurement light 11 is provided.
The light receiving sensor 14, the condenser lens 17, and the transmission glass member 12 are provided in the inside.

【0039】前記投光器18と受光器19には、それぞ
れ清浄空気3が供給され、導光管5、6内に被測定ガス
2が流入することを防止するためのパージ接続口52、
53が設けられている。これらのパージ接続口52、5
3からそれぞれ供給された清浄空気3は、導光管5、6
に充満し、流路1内に吹き込まれるが、その供給流量が
少ないため被測定ガスの流れに応じて流路1の内壁に沿
うように流れ、排出されるようになっている。
The projector 18 and the receiver 19 are supplied with clean air 3 respectively, and purge connection ports 52 for preventing the gas to be measured 2 from flowing into the light guide tubes 5 and 6.
53 are provided. These purge connection ports 52, 5
The clean air 3 supplied from each of the light guide tubes 3 and
And is blown into the flow channel 1, but flows along the inner wall of the flow channel 1 and is discharged according to the flow of the gas to be measured due to the small supply flow rate.

【0040】前記投光器18から発射される測定光11
は、流路1内を流れる被測定ガス2の流れに直交して透
過し、受光器19に至るが、導光管5、6の内部は、清
浄空気3で満たされており、測定光11が減衰すること
はない。この場合の測定距離は、流路1の内径Xとして
よく、流量を最小限に制限したパージ用清浄空気3の流
路1内への吹き出しは、測定距離Xに影響を与えること
はない。ガス体を測定対象とする投・受光系統にあって
は、以後の説明において図示が省かれていたり、説明文
中の記載が省かれていても、特に断わりのない限り導光
管5、6内に清浄空気3が供給されているものとする。
The measuring beam 11 emitted from the projector 18
Is transmitted perpendicular to the flow of the gas to be measured 2 flowing in the flow path 1 and reaches the light receiver 19, but the inside of the light guide tubes 5 and 6 is filled with clean air 3 and the measurement light 11 Does not decay. In this case, the measurement distance may be the inner diameter X of the flow path 1, and the blowing of the purged clean air 3 into the flow path 1 with the flow rate restricted to a minimum does not affect the measurement distance X. In the light emitting / receiving system in which a gas body is measured, even if the illustration is omitted in the following description, or the description in the description is omitted, the light guide tubes 5 and 6 are used unless otherwise specified. Is supplied with clean air 3.

【0041】図5は、ガス体の光透過濃度測定におい
て、被測定ガス流路1の径を変更せずに、測定距離
1、X2の第1、第2の異なる2つの投・受光系統1
0、20に設置する方法を説明する図である。途中で径
の変わらない同一径の流路(1)に、被測定ガス2の流れ
に略直交して測定光11を投射するように第1の投・受
光系統10を配置し、また、第2の投・受光系統20
を、被測定ガスの流れ2に傾斜した角度、例えば45度
の傾斜で測定光21を投射するように、かつ、第1の投
・受光系統10と交差するように配置する。すると、そ
れぞれの測定光11、21が被測定ガス中を透過する距
離がX1、X2の異なる2つの測定距離を与えることがで
きる。この第1、第2の投・受光系統10、20が互い
に交差する方式は、流路径が異なる場合についても可能
であるが、図1、図2および図3と略同様であるから、
説明を省略する。
FIG. 5 shows two different first and second different projecting and receiving distances X 1 and X 2 without changing the diameter of the gas flow path 1 to be measured in the light transmission density measurement of the gas body. Line 1
It is a figure explaining the method of installing in 0, 20. A first projecting / light receiving system 10 is arranged so as to project the measuring light 11 substantially orthogonally to the flow of the gas to be measured 2 in the flow path (1) having the same diameter whose diameter does not change on the way. 2 Emitter / receiver system 20
Are arranged so as to project the measuring light 21 at an angle inclined to the flow 2 of the gas to be measured, for example, at an inclination of 45 degrees, and to intersect with the first light projecting / receiving system 10. Then, it is possible to provide two measurement distances X 1 and X 2 where the distances at which the measurement light beams 11 and 21 pass through the gas to be measured are different. The method in which the first and second light-projecting / light-receiving systems 10 and 20 intersect with each other is possible even when the flow path diameters are different, but is substantially the same as in FIGS. 1, 2 and 3.
Description is omitted.

【0042】このような第1、第2の投・受光系統1
0、20が交差する方式を採用する場合、ダストの性状
によっては、第1、第2の2系統の投・受光系統10、
20のいずれか一方の測定光による散乱光成分の他方の
測定光への影響が無視できないこともある。その場合に
は、相互の測定光11、21が互いに交差せず、しか
も、できるだけ近い位置に第1、第2のそれぞれの投・
受光系統10、20を配置すればよい。
The first and second light projecting / receiving systems 1
In the case of adopting a method in which 0 and 20 intersect, depending on the properties of the dust, the first and second two light emitting / receiving systems 10,
In some cases, the influence of the scattered light component of any one of the measurement lights 20 on the other measurement light cannot be ignored. In this case, the first and second projection light beams 21 and 21 do not cross each other and are located as close as possible.
The light receiving systems 10 and 20 may be arranged.

【0043】図6は、ガス体の光透過濃度測定におい
て、同一径の被測定ガス流路1に、測定距離の異なる第
1、第2の2つの投・受光系統10、20を設置する他
の実施例を説明する図である。この図6において、第
1、第2の2つの投・受光系統10、20のうちの一
方、例えば第1の投・受光系統10における投光器側導
光管5と受光器側導光管6のいずれか一方、または両方
を流路1内まで伸長して取付け、測定光11が透過する
被測定ガス2層の厚さX1を短くする。また、第2の投
・受光系統20は、流路1の内径をそのまま測定距離X
2とする。その結果、第1、第2の2つの投・受光系統
10、20は、2つの異なる測定距離X1、X2における
透過率を得ることができる。
FIG. 6 shows that, in measuring the light transmission density of a gaseous body, first and second two light emitting / receiving systems 10 and 20 having different measuring distances are installed in a gas flow path 1 having the same diameter. FIG. 4 is a diagram for explaining an example of FIG. In FIG. 6, one of the first and second two light projecting and receiving systems 10 and 20, for example, the light projecting side light guiding tube 5 and the light receiving side light guiding tube 6 in the first projecting and light receiving system 10. either one, or mounting extends both to inside the flow channel 1, the measuring light 11 to shorten the thickness X 1 of the measurement gas 2 layer which transmits. Further, the second projecting / receiving system 20 determines the inner diameter of the flow path 1 as it is as the measurement distance X
Assume 2 . As a result, the first and second two light emitting / receiving systems 10 and 20 can obtain the transmittance at two different measurement distances X 1 and X 2 .

【0044】この図6に示した方法において、流路1内
に伸長するのは、第1、第2の投・受光系統10、20
の一方の導光管5、6に限定するものではなく、第1、
第2の両系統の導光管5、6を伸長してもよく、要する
に、伸長寸法に相違があり、2つの異なる測定距離
1、X2が得られるならば差し支えない。
In the method shown in FIG. 6, the first and second light projecting / receiving systems 10, 20 extend into the flow path 1.
Is not limited to one of the light guide tubes 5 and 6,
The light guide tubes 5 and 6 of the second two systems may be extended. In short, there is no problem if the extension dimensions are different and two different measurement distances X 1 and X 2 can be obtained.

【0045】図7は、いずれか一方の、例えば第1の投
・受光系統10の測定光軸方向に、2位置に進退可動す
るレジューシング管8を設け、被測定ガス流路1内に測
定光11の軸中心を移動軸としてシーケンシャルに自動
往復運転させて異なる2つの測定距離X1、X2における
光透過強度値を得るための原理を説明する図である。前
記レジューシング管8は、投光器18側と受光器19側
のいずれに設けてもよく、レジューシング管8を排ガス
流路1内に前進端まで挿入した時の測定距離をX1
し、後退端まで戻した時の測定距離をX2とする。
FIG. 7 shows a case in which a reducing tube 8 which can move forward and backward at two positions is provided in one of, for example, the direction of the measuring optical axis of the first projecting / receiving system 10, and the measuring light is provided in the gas flow path 1 to be measured. FIG. 11 is a diagram illustrating a principle for obtaining a light transmission intensity value at two different measurement distances X 1 and X 2 by sequentially and automatically performing reciprocating operation with an axis center of 11 as a movement axis. The Rejushingu tube 8 may be provided in any of the projector 18 side and receiver 19 side, the measured distance when the Rejushingu tube 8 is inserted until the forward end to the exhaust gas flow path 1 and X 1, back to the retracted end the measurement distance at the time was the X 2.

【0046】この方法は、レジューシング管8内を往復
する運動位置に拘らず、常に清浄空気3で充満させ、レ
ジューシング管8の内部に被測定ガス2が侵入すること
を防止するが、レジューシング管8を挿入する時間およ
び導光管5、6内を清浄空気3で満たすための時間を待
って受光強度を得なければならず、補正演算部に透過強
度値を間欠的に与えることになり、補正結果を連続した
瞬時値として得ることはできない、という若干の問題が
ある。レジューシング管8を自動往復運動させる構造、
機構、およびその制御方法については公知の技術の応用
により実現可能である。
In this method, the gas to be measured 2 is always filled with clean air 3 to prevent the gas to be measured 2 from entering the inside of the reducing tube 8 irrespective of the reciprocating position in the reducing tube 8. It is necessary to wait for the time for inserting the light guide and the time for filling the inside of the light guide tubes 5 and 6 with the clean air 3 to obtain the received light intensity. There is a slight problem that the result cannot be obtained as a continuous instantaneous value. A structure for automatically reciprocating the reducing tube 8;
The mechanism and its control method can be realized by applying a known technique.

【0047】また、図3をもって説明したダブルビーム
方式においては、異なる2つの測定距離X1、X2の第
1、第2の2つの投・受光系統10、20でそれぞれ光
透過強度値を測定したが、これに限られるものではな
く、いずれか一方、例えば第1の投・受光系統10の反
射器15を流路1内で測定光軸方向に沿って往復運動さ
せて2位置を得ることによっても同じく、1つの投・受
光系統で異なる2つの測定距離X1、X2における光透過
強度値を間欠的に測定することができる。
In the double beam system described with reference to FIG. 3, the light transmission intensity values are measured at the first and second two light projecting / receiving systems 10 and 20 at two different measuring distances X 1 and X 2 . However, the present invention is not limited to this, and it is possible to obtain two positions by reciprocating one of the reflectors 15 of the first light emitting / receiving system 10 along the measurement optical axis direction in the flow path 1. Similarly, light transmission intensity values at two different measurement distances X 1 and X 2 can be intermittently measured by one projection / light reception system.

【0048】図8は、河川、貯水層、貯水ダム、反応槽
など液体の光透過濃度を測定するために、第1、第2の
投・受光系統10、20の要部を防水ハウジング9に収
納した構造を示した図である。この図8において、第
1、第2の投・受光系統10、20を1つのユニットに
構成し、連結したケーブルで垂下して被測定液体2内に
直接投入するなどにより、投光部13、23、受光部1
4、24の気密を保ち、測定光路の透過ガラス部材1
2、22の間に被測定液体2を侵入、充満させて2つの
異なる測定距離X1、X2における光透過率の測定が可能
となる。
FIG. 8 shows the essential parts of the first and second light projecting / receiving systems 10 and 20 mounted on the waterproof housing 9 in order to measure the light transmission density of liquids such as rivers, reservoirs, water dams and reaction tanks. It is the figure which showed the structure stored. In FIG. 8, the first and second light projecting / receiving systems 10 and 20 are formed into one unit, and the light projecting unit 13 and the light projecting unit 13 are dropped by a connected cable and directly injected into the liquid 2 to be measured. 23, light receiving section 1
4 and 24 are kept airtight and the transmission glass member 1 in the measurement optical path
The liquid 2 to be measured intrudes and fills between 2 and 22 so that the light transmittance can be measured at two different measuring distances X 1 and X 2 .

【0049】図9は、本発明の演算方法を説明するブロ
ックダイヤグラムである。2つの測定距離は、固定値で
あるから測定距離設定器31、32により測定距離
1、X2が固定値として与えられる。測定距離X1に対
応する受光強度I1の電気信号は、第1端子41に与え
られ、また、測定距離X2に対応する受光強度I2の電気
信号は、第2端子42に与えられる。測定距離演算系統
において、減算器33は、測定距離設定器31、32か
ら入力した測定距離X1、X2を減算し、その演算出力3
4である(X2−X1)を次段の除算器35に与える。こ
の除算器35は、逆数{1/(X2−X1)}を求め、その演
算出力36を乗算器50に与える。
FIG. 9 is a block diagram illustrating the calculation method of the present invention. Since the two measurement distances are fixed values, the measurement distances X 1 and X 2 are given as fixed values by the measurement distance setting units 31 and 32. The electric signal of the received light intensity I 1 corresponding to the measurement distance X 1 is given to the first terminal 41, and the electric signal of the received light intensity I 2 corresponding to the measurement distance X 2 is given to the second terminal 42. In the measurement distance calculation system, the subtracter 33 subtracts the measurement distances X 1 and X 2 input from the measurement distance setting devices 31 and 32, and outputs a calculation output 3 thereof.
4 (X 2 −X 1 ) is given to the divider 35 at the next stage. The divider 35 finds the reciprocal {1 / (X 2 −X 1 )} and supplies the operation output 36 to the multiplier 50.

【0050】一方、受光量演算系統において、除算器4
3は、2つの投・受光量I01、I02、I1、I2または受
光量I1、I2の信号を受けて、その出力に受光量の除算
値44として{(I02/I2)/(I01/I1)}または(I1
/I2)を得る。ここで、2つの受光量I1、I2のみの
信号を受ける場合とは、2つの投光量I01、I02が同じ
であれば、前記(11’)式で説明したように、その投
光量I01、I02は消去され、不要であるからである。対
数演算器45は、受光量の除算値44を入力し、対数演
算出力46を乗算器50に与える。乗算器(50)は、単
位測定距離における被測定流体2の光学濃度値である補
正演算出力51として前記(11)(30)式で表わし
た {1/(X2−X1)}・log10{(I02/I2)/(I01/I1)} を出力するので、これにより求める補正演算値が得られ
る。
On the other hand, in the received light amount calculation system, the divider 4
3 receives two signals I 01 , I 02 , I 1 , I 2 or received light amounts I 1 , I 2 , and outputs a divided value 44 of the received light amount as {(I 02 / I 2 ) / (I 01 / I 1 )} or (I 1
/ I 2 ). Here, the case where the signals of only the two received light amounts I 1 and I 2 are received means that if the two projected light amounts I 01 and I 02 are the same, as described in the above equation (11 ′), This is because the light amounts I 01 and I 02 are erased and are unnecessary. The logarithmic calculator 45 receives the division value 44 of the received light amount and provides a logarithmic calculation output 46 to the multiplier 50. The multiplier (50) outputs {1 / (X 2 −X 1 )} · log as the correction operation output 51 which is the optical density value of the fluid 2 to be measured at the unit measurement distance, as expressed by the above equations (11) and (30). 10 {(I 02 / I 2 ) / (I 01 / I 1 )} is output, so that the correction operation value to be obtained is obtained.

【0051】この例では、演算過程の説明を容易にする
ため、図9のブロックダイヤグラムについて説明した
が、演算手段は、アナログ方式、デジタル方式を問わ
ず、この原理に基づいた演算プログラムを組み込んでコ
ンピュータにより演算結果を求めることも任意であり、
いずれも公知の技術を応用して実現可能である。演算手
段として、デジタル手段またはコンピュータを採用する
場合には、2つの測定距離X1、X2は固定値であり、一
旦設定すれば、同一測定場所においては変更する必要が
ないので、設定操作をプログラムに含み、測定距離の値
1、X2または測定距離演算系統の演算結果値{1/(X
2−X1)}を決められたレジスタに書込み、必要な度に読
み出す方法が有利である。さらに、演算式、演算手段に
ついては、前述の説明に基づく複数の入力が与えられ、
等価の結果が得られるものであれば、前記例に限られる
ものではない。
In this example, the block diagram of FIG. 9 has been described to facilitate the description of the operation process. However, the operation means may incorporate an operation program based on this principle regardless of the analog system or the digital system. It is optional to obtain the calculation result by computer,
Any of them can be realized by applying a known technique. When digital means or a computer is used as the arithmetic means, the two measurement distances X 1 and X 2 are fixed values, and once set, there is no need to change them at the same measurement place. Included in the program, the measurement distance values X 1 and X 2 or the calculation result value {1 / (X
2- X 1 )} is written in a predetermined register and read out whenever necessary. Further, a plurality of inputs based on the above description are given for the arithmetic expression and the arithmetic means,
The present invention is not limited to the above example as long as equivalent results can be obtained.

【0052】[0052]

【発明の効果】本発明によれば、上記に説明したよう
に、流体の線束透過濃度を測定する場合に、流体と線
源、線束強度センサとを区画する透過部材の汚れなどに
よる線束透過率変動を、さらには温度変化などに起因す
る透過部材自体の透過率変動をも容易に、安価な手段で
補正し、正確な流体の線束透過濃度を得ることができる
ものである。また、本発明を適用するにあたり、採用で
きる線源は可視光線に限らず、赤外線、紫外線、または
他のエネルギー線を使用しても同じ効果が得られる利点
があり、その用途範囲も広いものである。
According to the present invention, as described above, when measuring the luminous flux transmission density of a fluid, the luminous flux transmittance due to contamination of a permeable member that separates the fluid from the source and the luminous flux intensity sensor is measured. Fluctuations, and furthermore, fluctuations in the transmittance of the transmission member itself due to temperature changes and the like can be easily corrected by inexpensive means, and an accurate flux transmission density of the fluid can be obtained. Further, in applying the present invention, the radiation source that can be employed is not limited to visible light, and there is an advantage that the same effect can be obtained even if infrared rays, ultraviolet rays, or other energy rays are used, and its application range is wide. is there.

【0053】線束透過濃度を測定するに際し、異なる少
なくとも2つの測定距離において線束透過強度を求め、
併せてそれらの測定距離を与え、補正演算式に基づいて
補正することにより、透過区画部材の汚れなどによる透
過率変化を解消し、被測定流体の正確な線束透過濃度を
得ることができる。
In measuring the flux transmission density, the flux transmission intensity is obtained at at least two different measurement distances,
In addition, by giving these measurement distances and performing correction based on the correction calculation formula, it is possible to eliminate a change in transmittance due to contamination of the transmission partition member and to obtain an accurate flux transmission density of the fluid to be measured.

【0054」同一流体の線束透過濃
度を測定するに際し、線源および線束強度センサからな
る2組の線束透過濃度測定系を設け、両者の線束が透過
する被測定流体の厚さを任意に規定した異なる寸法に設
定することにより、異なる2つの測定距離における線束
透過濃度を求めることができる。 【0055】また、線源および線束強度センサからなる
1組の線束透過濃度測定系を設け、線源と線束強度セン
サ間の距離を、または、被測定流体の測定距離の厚さを
任意に規定した寸法に機械的に交互2段階に変更するこ
とにより異なる2つの測定距離における線束透過濃度を
求めることもできる。
In measuring the flux transmission density of the same fluid, two sets of flux transmission density measuring systems comprising a source and a flux intensity sensor were provided, and the thickness of the fluid to be measured through which both fluxes were transmitted was arbitrarily defined. By setting different dimensions, the flux transmission density at two different measurement distances can be obtained. Further, a set of a flux transmission density measuring system comprising a radiation source and a flux intensity sensor is provided, and the distance between the radiation source and the flux intensity sensor or the thickness of the measurement distance of the fluid to be measured is arbitrarily defined. It is also possible to obtain the flux transmission density at two different measurement distances by mechanically changing the dimensions to the two steps described above.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図は、本発明による流体濃度測定装置の原理的
な説明図で、同一流路における径の異なる近傍2個所に
第1、第2の投・受光系統10、20を設けて、異なる
測定距離X1、X2における透過率を得て補正演算する原
理的な説明図である。
FIG. 1 is a principle explanatory view of a fluid concentration measuring device according to the present invention, in which first and second light projecting / receiving systems 10 and 20 are provided at two locations near the same flow path having different diameters, FIG. 9 is a principle explanatory diagram for obtaining and calculating transmittances at different measurement distances X 1 and X 2 .

【図2】図は、ダビルビーム方式を採用した本発明によ
る流体濃度測定装置の原理的な説明図で、第1、第2の
投・受光系統10、20に、それぞれ第1、第2反射器
15、25を設け、第1、第2ビームスリッタ16、2
6によって受光光束を分離する原理的な説明図である。
FIG. 2 is a principle explanatory view of a fluid concentration measuring apparatus according to the present invention which employs a Davil beam system. First and second reflectors 10 and 20 are respectively provided with first and second reflectors. 15 and 25, and the first and second beam slitters 16 and 2 are provided.
FIG. 6 is a principle explanatory diagram for separating a received light beam by 6;

【図3】図は、図2におけるダブルビーム方式を変形し
た本発明による流体濃度測定装置の原理的な説明図で、
受光側の透過ガラス部材12、22の代わりに、第1、
第2反射器15、25を流路1に臨ませて配置した原理
的な説明図である。
FIG. 3 is a principle explanatory diagram of a fluid concentration measuring device according to the present invention, which is a modification of the double beam system in FIG. 2,
Instead of the transmitting glass members 12 and 22 on the light receiving side, first,
FIG. 4 is a principle explanatory view in which second reflectors 15 and 25 are arranged facing a flow path 1.

【図4】図は、本発明による流体濃度測定装置の具体的
な第1実施例を示す断面図である。
FIG. 4 is a sectional view showing a first specific example of the fluid concentration measuring device according to the present invention.

【図5】図は、本発明による流体濃度測定装置の具体的
な第2実施例を示す断面図で、同一径の流路1におい
て、測定光11、21の透過路を交差させて異なる2つ
の測定距離X1、X2を得るようにした例を示す断面図で
ある。
FIG. 5 is a cross-sectional view showing a second specific example of the fluid concentration measuring apparatus according to the present invention. In the flow path 1 having the same diameter, two different transmission paths of the measuring lights 11 and 21 are crossed. FIG. 5 is a cross-sectional view showing an example in which two measurement distances X 1 and X 2 are obtained.

【図6】図は、本発明による流体濃度測定装置の具体的
な第3実施例を示す断面図で、第1、第2の投・受光系
統10、20のいずれか一方における導光管5、6を流
路1内まで伸ばして2つの異なる測定距離X1、X2を得
るようにした例を示す断面図である。
FIG. 6 is a cross-sectional view showing a third specific example of the fluid concentration measuring device according to the present invention, and the light guide tube 5 in one of the first and second light projecting / receiving systems 10 and 20; 6 is a sectional view showing an example in which two different measurement distances X 1 and X 2 are obtained by extending the inside of the flow channel 1.

【図7】図は、本発明による流体濃度測定装置の具体的
な第4実施例を示す断面図で、第1、第2の線束透過濃
度測定系10、20のいずれか一方における導光管5、
6のいずれか一方に、進退自在にレジューシング管8を
設けて、2つの異なる測定距離X1、X2を得るようにし
た例を示す断面図である。
FIG. 7 is a sectional view showing a fourth specific example of the fluid concentration measuring device according to the present invention, and the light guide tube in one of the first and second flux transmission density measuring systems 10 and 20; 5,
6 is a cross-sectional view showing an example in which a reducing tube 8 is provided in any one of 6 so as to be able to move forward and backward to obtain two different measurement distances X 1 and X 2 .

【図8】図は、本発明による流体濃度測定装置の具体的
な第5実施例を示す断面図で、防水ハウジング9内に、
第1、第2の線束透過濃度測定系10、20を収容し
て、被測定流体2中に浸漬し、光透過濃度を測定するよ
うにした例を示す断面図である。
FIG. 8 is a cross-sectional view showing a specific fifth embodiment of the fluid concentration measuring device according to the present invention.
FIG. 3 is a cross-sectional view showing an example in which first and second flux transmission density measuring systems 10 and 20 are accommodated, immersed in a fluid 2 to be measured, and a light transmission density is measured.

【図9】図は、本発明による流体濃度測定装置の演算原
理および演算手順を説明するためのブロックダイヤグラ
ムである。
FIG. 9 is a block diagram for explaining the operation principle and operation procedure of the fluid concentration measuring device according to the present invention.

【符号の説明】[Explanation of symbols]

1、61、71…被測定流体の流路、2…被測定流体、
3…清浄空気、5、6…導光管、8…レジューシング
管、10、20…線束透過濃度測定系(投・受光系
統)、13、23…線源(投光源)、14、24…線束
強度センサ(受光センサ)、15、25…反射器、1
6、26…ビームスリッタ、17…コンデンサレンズ、
18…投光器、19…受光器、31、32…測定距離設
定器、33…減算器、35…除算器、41…受光入力端
子、42…受光入力端子、43…除算器、44…除算
値、45…対数演算器、46…対数演算出力、50…乗
算器、51…補正演算出力、52、53…パージ接続
口。
1, 61, 71 ... flow path of the fluid to be measured, 2 ... fluid to be measured,
3: Clean air, 5, 6: Light guide tube, 8: Reducing tube, 10, 20: Radiation flux transmission density measurement system (projection / light reception system), 13, 23: Radiation source (illumination light source), 14, 24: Radiation bundle Intensity sensor (light receiving sensor), 15, 25 ... reflector, 1
6, 26: beam slitter, 17: condenser lens,
18: light emitter, 19: light receiver, 31, 32: measurement distance setting device, 33: subtractor, 35: divider, 41: light reception input terminal, 42: light reception input terminal, 43: divider, 44: division value, 45: Logarithmic operation unit, 46: Logarithmic operation output, 50: Multiplier, 51: Correction operation output, 52, 53 ... Purge connection port.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被測定流体に、線源からの線束を透過さ
せて透過線束強度を線束強度センサで感知し、この透過
線束強度が被測定流体の線束透過率に応じて減衰する度
合いを測定する流体濃度測定方法において、 前記被測定流体2の測定位置における第1、第2測定点
を、予め設定された2つの互いに異なる測定距離X1
2をもって設定し、これら第1、第2測定点における
それぞれの透過線束強度I1、I2を測定する工程と、 これらの透過線束強度I1、I2と測定距離X1、X2から
被測定流体以外の原因による透過線束強度の減衰および
/または変化を除去して流体の濃度を測定する工程とか
らなることを特徴とする流体濃度測定方法。
1. A flux from a radiation source is transmitted through a fluid to be measured, a transmitted flux intensity is sensed by a flux intensity sensor, and a degree of attenuation of the transmitted flux intensity in accordance with a flux transmittance of the fluid to be measured is measured. In the fluid concentration measurement method, the first and second measurement points at the measurement position of the fluid 2 to be measured are set to two different measurement distances X 1 set in advance,
X 2, a step of measuring the transmission flux intensity I 1 , I 2 at each of the first and second measurement points, and a step of measuring the transmission flux intensity I 1 , I 2 and the measurement distances X 1 , X 2 Removing the attenuation and / or change in the intensity of the transmitted light flux due to a cause other than the fluid to be measured, and measuring the fluid concentration.
【請求項2】 被測定流体に、線源からの線束を透過さ
せて透過線束強度I1、I2を線束強度センサで感知し、
線束強度が被測定流体の線束透過率に応じて減衰する度
合いを測定する流体濃度測定方法において、 前記被測定流体2の同一または互いに近傍の測定位置に
おける第1、第2測定点を、予め設定された2つの互い
に異なる測定距離X1、X2をもって設定し、これら第
1、第2測定点におけるそれぞれの透過線束強度I1
2を測定する工程と、 これらの透過線束強度I1、I2のいずれか一方を他方で
除算し、この除算した値を対数演算して、第1、第2測
定点の流体濃度を得る工程と、 前記測定距離X1、X2のいずれか一方から他方を減算
し、この減算値の逆数を演算する工程と、 前記第1、第2測定点の流体濃度値と前記測定距離
1、X2の減算値の逆数値とを乗算して第1、第2測定
点における単位測定距離の流体濃度を求める工程とから
なり、 被測定流体以外の原因による透過線束強度の減衰および
/または変化を除去して流体の濃度を測定するようにし
たことを特徴とする流体濃度測定方法。
2. A flux from a radiation source is transmitted through a fluid to be measured, and transmitted flux intensities I 1 and I 2 are detected by a flux intensity sensor.
In a fluid concentration measuring method for measuring the degree to which the flux intensity is attenuated in accordance with the flux transmittance of a fluid to be measured, first and second measurement points at the same or adjacent measurement positions of the fluid to be measured 2 are preset. The two different measurement distances X 1 and X 2 are set, and the respective transmission flux intensities I 1 and I 1 at these first and second measurement points are set.
Measuring I 2 , dividing one of the transmission flux intensities I 1 and I 2 by the other, and performing a logarithmic operation on the divided value to obtain the fluid concentration at the first and second measurement points. A step of subtracting the other from one of the measurement distances X 1 and X 2 and calculating the reciprocal of the subtraction value; and a fluid concentration value at the first and second measurement points and the measurement distance X 1 , first by multiplying the reciprocal value of the subtraction value of X 2, it consists of a step of determining a fluid density of the unit measurement distance in the second measurement point, the attenuation and / or transmitted flux intensity due to causes other than the fluid to be measured A fluid concentration measuring method, wherein a change is removed and the concentration of the fluid is measured.
【請求項3】 被測定流体の一方側の線源からの線束
を、被測定流体の他方側の線束強度センサで感知して透
過線束強度を測定し、被測定流体以外の原因による透過
線束強度の減衰および/または変化を除去して流体の濃
度を測定するようにしたことを特徴とする請求項1また
は2記載の流体濃度測定方法。
3. A flux from a source on one side of a fluid to be measured is sensed by a flux intensity sensor on the other side of the fluid to be measured, and a transmitted flux intensity is measured. 3. The method according to claim 1, wherein the concentration of the fluid is measured by removing attenuation and / or change of the fluid concentration.
【請求項4】 被測定流体の一方側の線源からの線束
を、被測定流体の他方側の反射器で反射し、測定距離X
1、X2間で線束を少なくとも1往復して線束強度センサ
で感知して透過線束強度を測定し、被測定流体以外の原
因による透過線束強度の減衰および/または変化を除去
して流体の濃度を測定するようにしたことを特徴とする
請求項1または2記載の流体濃度測定方法。
4. A flux from a source on one side of the fluid to be measured is reflected by a reflector on the other side of the fluid to be measured, and a measurement distance X is obtained.
1, at least one round trip the flux between X 2 are sensed by flux intensity sensor measures the permeation flux intensity, the concentration of the fluid to remove the decay and / or change in the transmitted flux intensity due to causes other than the fluid to be measured 3. The method according to claim 1, wherein the fluid concentration is measured.
【請求項5】 線束を発射する線源と被測定流体を通過
した透過線束強度を感知する線束強度センサとからなる
線束透過濃度測定系と、前記線源と線束強度センサの間
における異なる測定距離X1、X2を設定する測定距離設
定手段と、予め設定された測定距離X1、X2のデータと
前記線束強度センサで検出した透過線束強度データとか
ら被測定流体以外の原因による透過線束強度の減衰およ
び/または変化を除去して流体の濃度を演算する演算手
段とを具備したことを特徴とする流体濃度測定装置。
5. A flux transmission density measuring system comprising a radiation source for emitting a flux and a flux intensity sensor for sensing the intensity of a transmitted flux passing through a fluid to be measured, and different measurement distances between the radiation source and the flux intensity sensor. X 1, measuring the distance setting means for setting a X 2 and a preset measured distance X 1, X 2 data and the transmission line flux by causes other than the fluid to be measured and a transmission flux intensity data detected by the flux intensity sensor A calculating means for calculating the concentration of the fluid by removing the attenuation and / or the change in the intensity;
【請求項6】 線束透過濃度測定系は、それぞれ独立し
た第1、第2の線束透過濃度測定系10、20からな
り、前記第1の線束透過濃度測定系10は、測定距離X
1をもって線源13と線束強度センサ14とを配置し、
前記第2の線束透過濃度測定系20は、測定距離X2
もって線源23と線束強度センサ24とを配置してなる
ことを特徴とする請求項5記載の流体濃度測定装置。
6. The flux transmission density measurement system includes first and second flux transmission density measurement systems 10 and 20 which are independent of each other.
1 , the source 13 and the flux intensity sensor 14 are arranged,
Said second flux transmission density measurement system 20, the fluid density measurement device according to claim 5, characterized in that with the measurement distance X 2 formed by arranging the radiation source 23 and the flux intensity sensor 24.
【請求項7】 線束透過濃度測定系は、所定距離をもっ
て配置した1組の線源と線束強度センサとからなり、測
定距離設定手段は、異なる測定距離X1、X2に対応する
ように、被測定流体の流路の間隔を調整自在に設けてな
ることを特徴とする請求項5記載の流体濃度測定装置。
7. A flux transmission density measurement system includes a set of radiation sources and a flux intensity sensor arranged at a predetermined distance, and the measurement distance setting means is adapted to correspond to different measurement distances X 1 and X 2 . 6. The fluid concentration measuring device according to claim 5, wherein an interval between flow paths of the fluid to be measured is provided so as to be adjustable.
JP14302897A 1997-05-16 1997-05-16 Method and apparatus for measuring fluid concentration Pending JPH10318920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14302897A JPH10318920A (en) 1997-05-16 1997-05-16 Method and apparatus for measuring fluid concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14302897A JPH10318920A (en) 1997-05-16 1997-05-16 Method and apparatus for measuring fluid concentration

Publications (1)

Publication Number Publication Date
JPH10318920A true JPH10318920A (en) 1998-12-04

Family

ID=15329237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14302897A Pending JPH10318920A (en) 1997-05-16 1997-05-16 Method and apparatus for measuring fluid concentration

Country Status (1)

Country Link
JP (1) JPH10318920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186382A (en) * 2003-12-25 2005-07-14 Fuji Photo Film Co Ltd Concentration detection method, concentration detector and inkjet recording device
JP2008512652A (en) * 2004-09-07 2008-04-24 トランソニック システムズ インク Non-intrusive test for materials between spaced walls
EP1983204A1 (en) * 2006-02-01 2008-10-22 Ntn Corporation Lubricant deterioration detector and bearing with detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186382A (en) * 2003-12-25 2005-07-14 Fuji Photo Film Co Ltd Concentration detection method, concentration detector and inkjet recording device
JP4482325B2 (en) * 2003-12-25 2010-06-16 富士フイルム株式会社 Density detection method, density detection apparatus, and inkjet recording apparatus
JP2008512652A (en) * 2004-09-07 2008-04-24 トランソニック システムズ インク Non-intrusive test for materials between spaced walls
JP4879179B2 (en) * 2004-09-07 2012-02-22 トランソニック システムズ インク Non-intrusive test for materials between spaced walls
US8214168B2 (en) 2004-09-07 2012-07-03 Transonic Systems, Inc. Noninvasive testing of a material intermediate spaced walls
EP1983204A1 (en) * 2006-02-01 2008-10-22 Ntn Corporation Lubricant deterioration detector and bearing with detector
EP1983204A4 (en) * 2006-02-01 2010-06-02 Ntn Toyo Bearing Co Ltd Lubricant deterioration detector and bearing with detector
US8436292B2 (en) 2006-02-01 2013-05-07 Ntn Corporation Lubricant deterioration detection device with a plurality of light detectors, a plurality of light guide elements of different lengths and a linear light source

Similar Documents

Publication Publication Date Title
JP3306079B2 (en) Optical analyzer and calibration method thereof
JPH0445774B2 (en)
JP2007298492A (en) Flowmeter
US11630058B2 (en) Concentration measurement device
EP1229322A1 (en) Cell for analyzing fluid and analyzing apparatus using the same
WO2020097847A1 (en) Liquid level detection system and liquid level detection method
JPH07286957A (en) Refractometer
JPH10318920A (en) Method and apparatus for measuring fluid concentration
US4794266A (en) Method and apparatus for light transmission measurement by sending light, measuring received light and computing transmittance
CN109655406A (en) Spectral water quality detection device and detection method
JP2002350335A (en) Refractive index sensor, sensor system and optical fiber
US20050195392A1 (en) Fluid analyzer
JP2018526644A (en) Method and apparatus for determining substance concentration or substance in a liquid medium
JP2007113987A (en) Calibration method of orthogonal scattering turbidity meter and calibration container used therein
JP2002340787A (en) Apparatus for measuring absorbance
CN115552220A (en) Optical measurement device and water quality analysis system
CN109459361B (en) Dust measurement system
JPH02176543A (en) Method and apparatus for detecting interface between liquid and gas and bubble within liquid
JP3539112B2 (en) Haze transmittance measuring device
CN109883978A (en) Multiple light courcess light cone array gas sensor and detection method
JPH0652237B2 (en) Fluid refractometer and fluid density meter using the same
CN117783018A (en) Liquid absorbance detection device and method
JP2019056663A (en) Container for absorbance measurement, absorbance measuring device, and absorbance measuring method
JPS6385336A (en) Turbidity meter
US20240310275A1 (en) Spectroscopic analysis apparatus comprising a multi-chamber cuvette for fluid or gas analysis and corresponding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040512

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Effective date: 20060110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060530

Free format text: JAPANESE INTERMEDIATE CODE: A02