JP2003329585A - Ozone concentration meter - Google Patents

Ozone concentration meter

Info

Publication number
JP2003329585A
JP2003329585A JP2002133725A JP2002133725A JP2003329585A JP 2003329585 A JP2003329585 A JP 2003329585A JP 2002133725 A JP2002133725 A JP 2002133725A JP 2002133725 A JP2002133725 A JP 2002133725A JP 2003329585 A JP2003329585 A JP 2003329585A
Authority
JP
Japan
Prior art keywords
ozone
concentration
ultraviolet
measuring
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002133725A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kawai
勝廣 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Auto Body Co Ltd
Original Assignee
Toyota Auto Body Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Auto Body Co Ltd filed Critical Toyota Auto Body Co Ltd
Priority to JP2002133725A priority Critical patent/JP2003329585A/en
Publication of JP2003329585A publication Critical patent/JP2003329585A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ozone concentration meter capable of achieving compactness even in the case that a low concentration of ozone is to be measured and measuring a wide range of ozone concentrations from a low concentration to a high concentration. <P>SOLUTION: In an ozone water concentration meter 31, ultraviolet rays are irradiated at an angle of incidence of 18° from an ultraviolet irradiation window 7 toward a side 4-3 of an ultraviolet reflecting surface 5 in the inner surface of a measuring cell 32. Ultraviolet rays similarly and sequentially multiply reflected at a side 4-5 and a side 4-2 and transmitted through an ultraviolet transmitting window 8 are received by an ultraviolet sensor 35 for measuring a low concentration of ozone. The attenuation ratio of the transmitted ultraviolet rays transmitted through ozone water is of a previously set upper limit value or less at the ultraviolet sensor 35 for measuring a low concentration of ozone, the concentration of ozone water is computed by Lambert-Beer's law and displayed on a concentration display 23. In the case that it is of the upper limit value or more, the concentration of ozone exceeds the measurement range of a low concentration of ozone, and the concentration of ozone water is computed on the basis of the results of light reception at an ultraviolet sensor 34 for measuring a high concentration of ozone and displayed on the concentration display 23. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、オゾン濃度計に関
するものである。
TECHNICAL FIELD The present invention relates to an ozone concentration meter.

【0002】[0002]

【従来の技術】紫外線吸収法に基づくオゾン水濃度計
は、オゾンが紫外線を吸収するという原理を利用したも
のであり、オゾンを含有するオゾン水とオゾンを含有し
ない基準水を交互に測定セルに通水してオゾン水のオゾ
ン濃度を求めている。従来のオゾン水濃度計の構成を図
8により説明すると、aは光源としての紫外線ランプで
あり、該紫外線ランプaに近接して測定セルbが配置さ
れている。測定セルbの後側で紫外線ランプaと対向す
る位置に受光器としての紫外線センサcが配置されてい
る。
2. Description of the Related Art An ozone water concentration meter based on the ultraviolet absorption method utilizes the principle that ozone absorbs ultraviolet rays. Ozone water containing ozone and reference water not containing ozone are alternately placed in a measuring cell. The ozone concentration of ozone water is obtained by passing water. The structure of a conventional ozone water concentration meter will be described with reference to FIG. 8. Reference numeral a is an ultraviolet lamp as a light source, and a measuring cell b is arranged in the vicinity of the ultraviolet lamp a. An ultraviolet sensor c as a light receiver is arranged at a position facing the ultraviolet lamp a on the rear side of the measuring cell b.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来のオゾン水濃度計によるオゾン濃度の測定範囲は、基
準水若しくはオゾン水を透過する紫外線の光路長を規定
する測定セルの長さ(L)により一義的に決定されてし
まう。すなわち、低濃度のオゾンを測定対象とする場合
には、紫外線の絶対吸収量を多くするため測定セルを長
くする必要があり大型化してしまう問題点がある。ま
た、測定セルの対面にミラーを設け、該ミラーで反射さ
れた光(紫外線)を前面のハーフミラーを介して受光す
るようにしたものもあるが、構造が複雑で部品点数が多
くなりコスト高となる問題点がある。本発明は上記問題
点を解決するためになされたもので、低濃度のオゾンを
測定対象とする場合でも小型化でき、また、低濃度から
高濃度の広い範囲のオゾン濃度が測定可能なオゾン濃度
計を提供することを目的とするものである。
However, the range of ozone concentration measured by the conventional ozone water densitometer is determined by the length (L) of the measuring cell that defines the optical path length of the ultraviolet ray passing through the reference water or the ozone water. It is decided uniquely. That is, when low-concentration ozone is to be measured, there is a problem that the measurement cell needs to be long in order to increase the absolute amount of absorption of ultraviolet rays, resulting in an increase in size. Further, there is also a device in which a mirror is provided on the opposite side of the measurement cell and the light (ultraviolet ray) reflected by the mirror is received through a front half mirror, but the structure is complicated and the number of parts is large, resulting in high cost. There is a problem that becomes. The present invention has been made to solve the above-mentioned problems, and can be downsized even when low-concentration ozone is measured, and the ozone concentration can measure a wide range of ozone concentrations from low to high. It is intended to provide a total.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めの請求項1に記載のオゾン濃度計は、オゾンを含有す
るオゾン含有流体とオゾンを含有しない基準流体を交互
に供給可能な供給管路と、供給されたオゾン含有流体又
は基準流体が送り込まれて光源からオゾン含有流体又は
基準流体中を通過した光を受光器で受光して紫外線吸光
度を測定する測定セルとを備え、オゾン含有流体と基準
流体を交互に測定セルに供給してオゾン含有流体のオゾ
ン濃度を求めるオゾン濃度計において、前記測定セルの
内面を5以上の奇数となる断面正多角形に形成するとと
もに、該正多角形の辺の何れか1つの辺に光源を設け、
該光源からの光を測定セル内面の複数の辺で測定セル内
を多重反射させて、他の辺に設けた第1の受光器により
受光するように構成したことを特徴とする。
The ozone concentration meter according to claim 1 for achieving the above object is a supply pipe capable of alternately supplying an ozone-containing fluid containing ozone and a reference fluid not containing ozone. An ozone-containing fluid, which is provided with a channel and a measuring cell for receiving the supplied ozone-containing fluid or the reference fluid and receiving from the light source the light that has passed through the ozone-containing fluid or the reference fluid by a light receiver to measure the ultraviolet absorbance. In an ozone densitometer for alternately supplying a reference fluid and a reference fluid to a measurement cell to determine the ozone concentration of an ozone-containing fluid, the inner surface of the measurement cell is formed into a regular polygonal cross section having an odd number of 5 or more, and the regular polygonal shape. Provide a light source on any one of the sides of
It is characterized in that the light from the light source is multiple-reflected in the measurement cell on a plurality of sides of the inner surface of the measurement cell and is received by the first light receiver provided on the other side.

【0005】また、請求項2に記載のオゾン濃度計は、
請求項1に記載の構成において、前記光源を設けた辺と
第1の受光器を設けた辺を除く他の反射面となる複数の
辺の何れか1つに第2の受光器を設けたことを特徴とす
る。
Further, the ozone concentration meter according to claim 2 is
The structure according to claim 1, wherein the second light receiver is provided on any one of a plurality of sides which are reflection surfaces other than the side provided with the light source and the side provided with the first light receiver. It is characterized by

【0006】請求項3に記載のオゾン濃度計は、請求項
2に記載の構成において、前記第1の受光器でのオゾン
含有流体の紫外線吸光度が予め設定した上限値以内の場
合には、該第1の受光器でのオゾン含有流体の紫外線吸
光度に基づいてオゾン濃度を算出し、一方、第1受光器
でのオゾン含有流体の紫外線吸光度が予め設定した上限
値以上の場合には、前記第2の受光器でのオゾン含有流
体の紫外線吸光度に基づいてオゾン濃度を算出するよう
にしたことを特徴とすることを特徴とする。
According to a third aspect of the present invention, in the ozone concentration meter according to the second aspect, when the ultraviolet absorption of the ozone-containing fluid in the first light receiver is within a preset upper limit, The ozone concentration is calculated on the basis of the ultraviolet absorption of the ozone-containing fluid in the first light receiver, while if the ultraviolet absorption of the ozone-containing fluid in the first light receiver is not less than the preset upper limit, The second feature is that the ozone concentration is calculated based on the ultraviolet absorbance of the ozone-containing fluid in the second light receiver.

【0007】[0007]

【作用及び発明の効果】請求項1に記載のオゾン濃度計
によれば、測定セル内面の正多角形の辺の何れか1つの
辺に設けた光源からの光(紫外線)を測定セル内面の複
数の辺で測定セル内を多重反射させて、他の辺に設けた
第1の受光器により受光するように構成したから、限ら
れたスペースで光路長を長く取れ、長い光路長が必要な
低濃度のオゾンを測定可能とするオゾン濃度計の小型化
を実現できる。
According to the ozone densitometer of claim 1, the light (ultraviolet ray) from the light source provided on any one of the sides of the regular polygon on the inner surface of the measuring cell is irradiated on the inner surface of the measuring cell. Since the inside of the measurement cell is multiple-reflected by a plurality of sides and the light is received by the first light receiver provided on the other side, the optical path length can be made long in a limited space, and a long optical path length is required. A compact ozone concentration meter that can measure low-concentration ozone can be realized.

【0008】請求項2に記載のオゾン濃度計によれば、
光源を設けた辺と第1の受光器を設けた辺を除く他の反
射面となる複数の辺の何れか1つに第2の受光器を設け
たから、1台のオゾン濃度計で光路長を複数設定するこ
とができる。すなわち、低濃度とこれより高濃度の広い
測定範囲を有するコストパフォーマンスの高いオゾン濃
度計を提供できる。
According to the ozone concentration meter of claim 2,
Since the second light receiver is provided on any one of a plurality of sides that are reflection surfaces other than the side on which the light source is provided and the side on which the first light receiver is provided, the optical path length is determined by one ozone concentration meter. You can set multiple. That is, it is possible to provide an ozone densitometer having a wide range of measurement of low concentration and higher concentration and having high cost performance.

【0009】請求項3に記載のオゾン濃度計によれば、
第1の受光器でのオゾン含有流体の紫外線吸光度が予め
設定した上限値以内の場合には、該第1の受光器でのオ
ゾン含有流体の紫外線吸光度に基づいてオゾン濃度を算
出し、一方、第1受光器でのオゾン含有流体の紫外線吸
光度が予め設定した上限値以上の場合には、第2の受光
器でのオゾン含有流体の紫外線吸光度に基づいてオゾン
濃度を算出するようにして、複数の受光器をオゾン濃度
に適合させて使い分けるようにしたから、分解能の高い
高精度のオゾン濃度計を提供できる。
According to the ozone concentration meter of claim 3,
When the ultraviolet absorption of the ozone-containing fluid in the first light receiver is within the preset upper limit value, the ozone concentration is calculated based on the ultraviolet absorption of the ozone-containing fluid in the first light receiver, When the ultraviolet absorption of the ozone-containing fluid in the first light receiver is equal to or higher than the preset upper limit value, the ozone concentration is calculated based on the ultraviolet absorption of the ozone-containing fluid in the second light receiver, and a plurality of ozone concentrations are calculated. Since the light receiving device is adapted to the ozone concentration and used properly, a highly accurate ozone concentration meter with high resolution can be provided.

【0010】[0010]

【発明の実施の形態】(第1実施形態)本発明をオゾン
水濃度計に適用した第1実施形態について添付図面を参
照して説明する。図1は第1実施形態に係るオゾン水濃
度計1の概略のブロック図、図2は測定セル2の横断面
図、図3は測定時のタイミングチャートである。円形の
測定セル2は、内面が断面正五角形に形成されている。
測定セル2の内面の正五角形の各辺4−1〜4−5は、
紫外線反射面5を有する。辺4−1には、紫外線透過ガ
ラス6を水密に嵌着した紫外線照射窓7が形成されてい
る。辺4−4には、紫外線透過ガラス6を水密に嵌着し
た紫外線透過窓8が形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) A first embodiment in which the present invention is applied to an ozone water concentration meter will be described with reference to the accompanying drawings. 1 is a schematic block diagram of an ozone water concentration meter 1 according to the first embodiment, FIG. 2 is a cross-sectional view of a measuring cell 2, and FIG. 3 is a timing chart at the time of measurement. The inner surface of the circular measuring cell 2 is formed into a regular pentagon.
Each of the regular pentagonal sides 4-1 to 4-5 on the inner surface of the measurement cell 2 is
It has an ultraviolet reflecting surface 5. An ultraviolet irradiation window 7 in which the ultraviolet transparent glass 6 is watertightly fitted is formed on the side 4-1. On the side 4-4, an ultraviolet transmitting window 8 in which the ultraviolet transmitting glass 6 is watertightly fitted is formed.

【0011】測定セル2の上面には、基準水又はオゾン
水の給水用の給水口9と下面に排水口10が形成されて
いる。該排水口10は、給水口9よりも口径が小さく形
成されている。さらに、測定セル2の上面には溢水口1
1が形成されている。
A water supply port 9 for supplying reference water or ozone water is formed on the upper surface of the measuring cell 2, and a drain port 10 is formed on the lower surface. The drainage port 10 is formed to have a smaller diameter than the water supply port 9. Furthermore, the overflow port 1 is provided on the upper surface of the measuring cell 2.
1 is formed.

【0012】上記給水口9には、オゾン水管路12と基
準水管路13を含む給水管路が接続されている。オゾン
水管路12及び基準水管路13には、それぞれ電磁開閉
弁14,15が介装され、オゾン水又は基準水のいずれ
かを給水口9から測定セル2内に給水できるようになっ
ている。また、排水口10には排水管路16が配管され
ている。溢水口11には溢水管路17が配管され、該溢
水管路17の先端は排水管路16に接続されている。さ
らに、溢水管路17の途中には電磁開閉弁18を介装し
た大気開放管路19が接続されている。
A water supply line including an ozone water line 12 and a reference water line 13 is connected to the water supply port 9. Electromagnetic on-off valves 14 and 15 are provided in the ozone water conduit 12 and the reference water conduit 13, respectively, so that either ozone water or reference water can be supplied from the water supply port 9 into the measurement cell 2. Further, a drainage pipe 16 is provided in the drainage port 10. An overflow pipe line 17 is piped to the overflow port 11, and the tip of the overflow pipe line 17 is connected to the drainage line 16. Further, an atmosphere open pipe line 19 having an electromagnetic opening / closing valve 18 is connected to the middle of the overflow pipe line 17.

【0013】上記測定セル2は、紫外線照射窓7に対向
して紫外線ランプ20が配置され、紫外線透過窓8に対
向して紫外線センサ21が配置されている。上記電磁開
閉弁14,15,18及び紫外線センサ21は、それぞ
れ制御回路22に接続されている。制御回路22は、記
憶した測定処理プログラムを実行して、電磁開閉弁1
4,15,18を所定のタイミングでオン・オフさせる
とともに、紫外線センサ21が測定する基準水とオゾン
水の透過光の強さに基づいて、オゾン水を透過する紫外
線透過光の減衰割合(紫外線吸光度)を計算し、これに
基づいてランバート・ベールの法則によりオゾン水濃度
を算出して濃度表示器23に表示する。
In the measuring cell 2, an ultraviolet lamp 20 is arranged facing the ultraviolet irradiation window 7, and an ultraviolet sensor 21 is arranged facing the ultraviolet transmission window 8. The electromagnetic on-off valves 14, 15, 18 and the ultraviolet sensor 21 are connected to a control circuit 22, respectively. The control circuit 22 executes the stored measurement processing program to cause the electromagnetic opening / closing valve 1 to
4, 15 and 18 are turned on and off at a predetermined timing, and the attenuation rate of the ultraviolet transmitted light that passes through the ozone water (ultraviolet light is determined based on the intensity of the transmitted light of the reference water and the ozone water measured by the ultraviolet sensor 21). Absorbance) is calculated, and the ozone water concentration is calculated based on the Lambert-Beer's law and displayed on the concentration display 23.

【0014】また、紫外線ランプ20からの紫外線は、
中心光路Rで示すように紫外線照射窓7から対向する辺
4−3の紫外線反射面5に向かって入射角を18度で照
射される。入射角=反射角の関係から、辺4−3の紫外
線反射面5で反射した紫外線は、辺4−5の紫外線反射
面5に入射角18度で入射する。以下同様にして、辺4
−5、辺4−2の順で測定セル2内を多重反射した紫外
線は、紫外線透過窓8を透過して紫外線センサ21で受
光される。
Further, the ultraviolet rays from the ultraviolet lamp 20 are
As shown by the central optical path R, the ultraviolet ray irradiation window 7 irradiates the ultraviolet ray reflecting surface 5 on the opposite side 4-3 at an incident angle of 18 degrees. From the relationship of incident angle = reflection angle, the ultraviolet rays reflected by the ultraviolet reflecting surface 5 on the side 4-3 are incident on the ultraviolet reflecting surface 5 on the side 4-5 at an incident angle of 18 degrees. Similarly, side 4
Ultraviolet rays that have been multiple-reflected in the measurement cell 2 in the order of -5 and side 4-2 are transmitted through the ultraviolet transmission window 8 and received by the ultraviolet sensor 21.

【0015】図3のタイミングチャートに基づいて、上
記構成のオゾン水濃度計1のオゾン水濃度測定手順を説
明する。先ず、紫外線ランプ20をオンし、続いて測定
スイッチをオンして測定を開始する。測定スイッチオン
により、電磁開閉弁15が開いて基準水管路13から基
準水が測定セル2に給水される。このとき、排水口10
からの排水量は給水量よりも少ない。従って、測定セル
2内では、次第に基準水の水位が上昇し溢水口11から
溢れて溢水管路17に流出する。このように水流が生じ
ている状態で、上記したように測定セル2内を多重反射
して基準水を透過する紫外線の透過光の強さを、紫外線
センサ21により測定して制御回路22へ出力する。
A procedure for measuring the concentration of ozone water by the ozone water concentration meter 1 having the above-mentioned configuration will be described with reference to the timing chart of FIG. First, the ultraviolet lamp 20 is turned on, and then the measurement switch is turned on to start the measurement. When the measurement switch is turned on, the electromagnetic on-off valve 15 is opened and the reference water is supplied from the reference water pipe line 13 to the measurement cell 2. At this time, the drainage port 10
The amount of drainage from the river is less than the amount of water supply. Therefore, in the measuring cell 2, the water level of the reference water gradually rises, overflows from the overflow port 11 and flows out to the overflow conduit 17. In the state where the water flow is generated as described above, the intensity of the transmitted light of the ultraviolet rays that are multiple-reflected in the measurement cell 2 and transmitted through the reference water as described above is measured by the ultraviolet sensor 21 and output to the control circuit 22. To do.

【0016】基準水に対する透過光の測定が終了する
と、電磁開閉弁15が閉じ基準水の給水を停止するとと
もに、大気開放管路19の電磁開閉弁18を開いて溢水
管路17すなわちこれが配管された溢水口11を大気に
開放させて、測定セル2内の基準水を全て排水する。排
水完了とともに電磁開閉弁18が閉じ、同時に電磁開閉
弁14が開いて、オゾン水管路12からオゾン水が測定
セル2に給水される。溢水口11からオゾン水が溢れ出
るようになった状態で、基準水の場合と同様にオゾン水
を透過する紫外線の透過光の強さを測定して、制御回路
22へ出力する。制御回路22では、基準水での透過光
の強さとオゾン水での透過光の強さに基づいて、オゾン
水を透過する紫外線透過光の減衰割合を計算し、これに
基づいてランバート・ベールの法則によりオゾン水濃度
を算出し濃度表示器23に表示させる。オゾン水に対す
る透過光の測定が終了した段階で、電磁開閉弁14を閉
じてオゾン水の給水を停止し、大気開放管路19の電磁
開閉弁18を開いて溢水口11を大気に開放させて、測
定セル2内のオゾン水を全て排水する。
When the measurement of the transmitted light with respect to the reference water is completed, the electromagnetic opening / closing valve 15 is closed to stop the supply of the reference water, and the electromagnetic opening / closing valve 18 of the atmosphere opening pipe line 19 is opened to connect the overflow pipe line 17, that is, this pipe. The overflow port 11 is opened to the atmosphere, and all the reference water in the measuring cell 2 is drained. When the drainage is completed, the electromagnetic opening / closing valve 18 is closed, and at the same time, the electromagnetic opening / closing valve 14 is opened, and ozone water is supplied to the measuring cell 2 from the ozone water pipe line 12. With the ozone water overflowing from the overflow port 11, the intensity of the transmitted light of the ultraviolet rays that pass through the ozone water is measured and output to the control circuit 22 as in the case of the reference water. The control circuit 22 calculates the attenuation rate of the ultraviolet transmitted light that passes through the ozone water based on the intensity of the transmitted light of the reference water and the intensity of the transmitted light of the ozone water, and based on this, the Lambert-Beer's The ozone water concentration is calculated according to the law and displayed on the concentration display 23. When the measurement of the transmitted light to the ozone water is completed, the electromagnetic opening / closing valve 14 is closed to stop the supply of ozone water, and the electromagnetic opening / closing valve 18 of the atmosphere opening conduit 19 is opened to open the overflow port 11 to the atmosphere. , All ozone water in the measuring cell 2 is drained.

【0017】上記オゾン水濃度計1は、紫外線ランプ2
0からの紫外線が紫外線照射窓7から測定セル2の内面
の辺4−3の紫外線反射面5に向かって入射角を18度
で照射され、以下同様にして辺4−5、辺4−2の順で
測定セル2内を多重反射した紫外線を、紫外線透過窓8
を透過させて紫外線センサ21で受光するもので、オゾ
ン水を透過する紫外線の光路長を長くできるから、低濃
度のオゾン濃度が測定可能な測定セル2が小型となっ
て、オゾン水濃度計1の小型化を実現できる。
The ozone water concentration meter 1 comprises an ultraviolet lamp 2
The ultraviolet ray from 0 is irradiated from the ultraviolet ray irradiation window 7 toward the ultraviolet ray reflecting surface 5 on the side 4-3 of the inner surface of the measuring cell 2 at an incident angle of 18 degrees, and thereafter, in the same manner, the side 4-5 and the side 4-2. The ultraviolet rays transmitted through the measurement cell 2 in the order of
Since the ultraviolet ray is transmitted through and received by the ultraviolet sensor 21, the optical path length of the ultraviolet ray passing through the ozone water can be lengthened, so that the measuring cell 2 capable of measuring the low ozone concentration becomes small, and the ozone water concentration meter 1 Can be made smaller.

【0018】(第2実施形態)図4は本発明の第2実施
形態に係るオゾン水濃度計31の概略のブロック図を示
したものである。第2実施形態に係るオゾン水濃度計3
1の基本構成は、上記第1実施形態と同一である。従っ
て、上記第1実施形態に係るオゾン水濃度計1の構成と
同一構成部分は、同一符号を付して詳細な説明を省略す
る。
(Second Embodiment) FIG. 4 is a schematic block diagram of an ozone water concentration meter 31 according to a second embodiment of the present invention. Ozone water concentration meter 3 according to the second embodiment
The basic configuration of No. 1 is the same as that of the first embodiment. Therefore, the same components as those of the ozone water concentration meter 1 according to the first embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted.

【0019】図5に示すように、第2実施形態に係るオ
ゾン水濃度計31の測定セル32は、測定セル32の内
面の辺4−3に紫外線透過ガラス6を水密に嵌着した紫
外線透過窓33を形成した点が、上記第1実施形態の測
定セル1の構成と相違する。そして、この紫外線透過窓
33に対向させて、高濃度オゾン測定用の紫外線センサ
34が配置され、紫外線透過窓8に対向させて低濃度オ
ゾン測定用の紫外線センサ35が配置されている。そし
て、紫外線センサ34,35は、センサ信号切替えスイ
ッチ36を介して制御回路22に接続されている。
As shown in FIG. 5, the measuring cell 32 of the ozone water concentration meter 31 according to the second embodiment has an ultraviolet transmitting glass 6 in which the ultraviolet transmitting glass 6 is watertightly fitted to the side 4-3 of the inner surface. The point that the window 33 is formed is different from the configuration of the measurement cell 1 of the first embodiment. An ultraviolet sensor 34 for measuring high-concentration ozone is arranged facing the ultraviolet transmission window 33, and an ultraviolet sensor 35 for measuring low-concentration ozone is arranged facing the ultraviolet transmission window 8. The ultraviolet sensors 34 and 35 are connected to the control circuit 22 via the sensor signal changeover switch 36.

【0020】図6のタイミングチャートに基づいて、上
記構成のオゾン水濃度計31のオゾン水濃度測定手順を
説明する。上記第1実施形態と同様にして、基準水を測
定セル32に給水して、基準水を透過する紫外線の透過
光の強さが測定される。このとき、センサ信号切替えス
イッチ36は、L接点の低濃度オゾン測定用の紫外線セ
ンサ35側に切替えられているため、該紫外線センサ3
5が測定した紫外線の透過光の強さが制御回路22へ出
力される。続いて、センサ信号切替えスイッチ36が、
H接点の高濃度オゾン測定用の紫外線センサ34側に切
替えられ、紫外線センサ34が測定した紫外線の透過光
の強さが制御回路22へ出力される。この測定後、セン
サ信号切替えスイッチ36は、再びL接点の低濃度オゾ
ン測定用の紫外線センサ35側に切替えられる。
A procedure for measuring the ozone water concentration of the ozone water concentration meter 31 having the above-mentioned configuration will be described with reference to the timing chart of FIG. Similarly to the first embodiment, the reference water is supplied to the measurement cell 32, and the intensity of the transmitted light of the ultraviolet light that passes through the reference water is measured. At this time, the sensor signal changeover switch 36 is switched to the UV sensor 35 side for measuring low-concentration ozone at the L contact, so that the UV sensor 3 is switched.
The intensity of the transmitted light of the ultraviolet ray measured by 5 is output to the control circuit 22. Then, the sensor signal changeover switch 36
The H contact is switched to the UV sensor 34 side for measuring high-concentration ozone, and the intensity of the UV transmitted light measured by the UV sensor 34 is output to the control circuit 22. After this measurement, the sensor signal changeover switch 36 is changed over again to the UV sensor 35 side for measuring the low concentration ozone at the L contact.

【0021】続いて、測定セル32から基準水の排水が
完了すると電磁開閉弁18が閉じ、同時に電磁開閉弁1
4が開いて、オゾン水管路12からオゾン水が測定セル
2に給水される。基準水の場合と同様に、オゾン水を透
過する紫外線の透過光の強さが測定される。このとき、
センサ信号切替えスイッチ36は、L接点の低濃度オゾ
ン測定用の紫外線センサ35側に切替えられているた
め、該紫外線センサ35が測定した紫外線の透過光の強
さが制御回路22へ出力される。続いて、センサ信号切
替えスイッチ36が、H接点の高濃度オゾン測定用の紫
外線センサ34側に切替えられ、紫外線センサ34が測
定した紫外線の透過光の強さが制御回路22へ出力され
る。この測定後、センサ信号切替えスイッチ36は、再
びL接点の低濃度オゾン測定用の紫外線センサ35側に
切替えられる。
Subsequently, when the drainage of the reference water from the measuring cell 32 is completed, the electromagnetic opening / closing valve 18 is closed, and at the same time, the electromagnetic opening / closing valve 1 is closed.
4 is opened, and ozone water is supplied from the ozone water conduit 12 to the measuring cell 2. Similar to the case of the reference water, the intensity of the transmitted light of the ultraviolet rays that pass through the ozone water is measured. At this time,
Since the sensor signal changeover switch 36 is switched to the UV sensor 35 side for measuring low-concentration ozone at the L contact, the intensity of the UV transmitted light measured by the UV sensor 35 is output to the control circuit 22. Subsequently, the sensor signal changeover switch 36 is changed over to the UV sensor 34 side for measuring the high concentration ozone of the H contact, and the intensity of the transmitted light of the UV rays measured by the UV sensor 34 is output to the control circuit 22. After this measurement, the sensor signal changeover switch 36 is changed over again to the UV sensor 35 side for measuring the low concentration ozone at the L contact.

【0022】制御回路22では、低濃度オゾン測定用の
紫外線センサ35が測定する基準水とオゾン水の透過光
の強さに基づいて、該紫外線センサ35によるオゾン水
を透過する紫外線透過光の減衰割合を計算する。さら
に、高濃度オゾン測定用の紫外線センサ34が測定する
基準水とオゾン水の透過光の強さに基づいて、該紫外線
センサ34によるオゾン水を透過する紫外線透過光の減
衰割合を計算する。そして、低濃度オゾン測定用の紫外
線センサ35によるオゾン水を透過する紫外線透過光の
減衰割合が、図7のグラフ中に示した予め設定された上
限値以下であれば、ランバート・ベールの法則によりそ
の減衰割合で定まるオゾン水濃度を算出して濃度表示器
23に表示する。
In the control circuit 22, the ultraviolet transmitted light transmitted through the ozone water by the ultraviolet sensor 35 is attenuated based on the intensity of the transmitted light of the reference water and the ozone water measured by the ultraviolet sensor 35 for measuring low-concentration ozone. Calculate the percentage. Further, based on the intensity of the transmitted light of the reference water and the ozone water measured by the ultraviolet sensor 34 for measuring high-concentration ozone, the attenuation rate of the ultraviolet transmitted light transmitted through the ozone water by the ultraviolet sensor 34 is calculated. Then, if the attenuation rate of the ultraviolet transmitted light that transmits the ozone water by the ultraviolet sensor 35 for measuring low-concentration ozone is equal to or less than the preset upper limit value shown in the graph of FIG. 7, according to the Lambert-Beer law. The ozone water concentration determined by the attenuation rate is calculated and displayed on the concentration display 23.

【0023】低濃度オゾン測定用の紫外線センサ35に
よるオゾン水を透過する紫外線透過光の減衰割合が、図
7のグラフ中に示した上限値以上の場合は、オゾン濃度
が低濃度オゾン測定の範囲を超えたものであり、この場
合には、高濃度オゾン測定用の紫外線センサ34による
オゾン水を透過する紫外線透過光の減衰割合で定まるオ
ゾン水濃度を算出して濃度表示器23に表示する。
When the attenuation rate of the ultraviolet transmitted light which transmits the ozone water by the ultraviolet sensor 35 for measuring low concentration ozone is more than the upper limit value shown in the graph of FIG. 7, the ozone concentration is in the range of low concentration ozone measurement. In this case, the ozone water concentration determined by the attenuation rate of the ultraviolet transmitted light that passes through the ozone water by the ultraviolet sensor 34 for measuring high-concentration ozone is calculated and displayed on the concentration display 23.

【0024】上記したように第2実施形態のオゾン水濃
度計31は、測定セル32の内面の紫外線照射窓7及び
紫外線透過窓8を設けた辺を除く他の辺4−3に、さら
に別の紫外線透過窓33を設け、該紫外線透過窓33に
対向して高濃度オゾン測定用の紫外線センサ34を配置
するとともに、紫外線透過窓8に対向して低濃度オゾン
測定用の紫外線センサ35を配置したから、1台のオゾ
ン水濃度計で光路長を複数設定でき、低濃度とこれより
高濃度の広い測定範囲を有するコストパフォーマンスの
高いオゾン水濃度計を提供できる。
As described above, the ozone water concentration meter 31 of the second embodiment is further divided into the side 4-3 other than the side provided with the ultraviolet irradiation window 7 and the ultraviolet transmission window 8 on the inner surface of the measurement cell 32. The UV transmission window 33 is provided, the UV sensor 34 for measuring high concentration ozone is arranged facing the UV transmission window 33, and the UV sensor 35 for measuring low concentration ozone is arranged facing the UV transmission window 8. Therefore, it is possible to set a plurality of optical path lengths with one ozone water concentration meter, and it is possible to provide an ozone water concentration meter having a wide measurement range of low concentration and high concentration and high cost performance.

【0025】また、低濃度オゾン測定用の紫外線センサ
35によるオゾン水を透過する紫外線透過光の減衰割合
が予め設定した上限値以内の場合には、該紫外線センサ
35による紫外線透過光の減衰割合に基づいてオゾン水
濃度を算出し、一方、上限値以上の場合には、高濃度オ
ゾン測定用の紫外線センサ34による紫外線透過光の減
衰割合に基づいてオゾン水濃度を算出するようにしたか
ら、分解能の高い高精度のオゾン水濃度計を提供でき
る。
If the attenuation rate of the ultraviolet transmitted light that passes through the ozone water by the ultraviolet sensor 35 for measuring low-concentration ozone is within a preset upper limit value, the attenuation rate of the ultraviolet transmitted light by the ultraviolet sensor 35 is set to the attenuation rate. On the other hand, when the ozone water concentration is calculated based on the above, on the other hand, when it is equal to or higher than the upper limit value, the ozone water concentration is calculated based on the attenuation ratio of the ultraviolet transmitted light by the ultraviolet sensor 34 for measuring high-concentration ozone. A highly accurate ozone water concentration meter can be provided.

【0026】尚、上記第1及び第2実施形態では、オゾ
ン水のオゾン濃度を測定する態様で説明したが、気体中
に含まれるオゾンのオゾン濃度を測定対象とすることも
できる。また、測定セルの内面を断面正五角形とした
が、断面正七角形、断面正九角形等の5以上の奇数とな
る断面正多角形とすることができる。
In the first and second embodiments, the ozone concentration of ozone water is measured, but the ozone concentration of ozone contained in the gas may be measured. Further, although the inner surface of the measurement cell has a regular pentagonal cross section, it may have a regular polygonal cross section having an odd number of 5 or more, such as a regular heptagonal cross section and a regular nonagonal cross section.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施形態に係るオゾン水濃度計の概略のブ
ロック図である。
FIG. 1 is a schematic block diagram of an ozone water concentration meter according to a first embodiment.

【図2】測定セルの横断面図である。FIG. 2 is a cross-sectional view of a measuring cell.

【図3】測定時のタイミングチャートである。FIG. 3 is a timing chart at the time of measurement.

【図4】第2実施形態に係るオゾン水濃度計の概略のブ
ロック図である。
FIG. 4 is a schematic block diagram of an ozone water concentration meter according to a second embodiment.

【図5】測定セルの横断面図である。FIG. 5 is a cross-sectional view of a measuring cell.

【図6】測定時のタイミングチャートである。FIG. 6 is a timing chart at the time of measurement.

【図7】紫外線透過光の減衰割合とオゾン水濃度の関係
を示したグラフである。
FIG. 7 is a graph showing the relationship between the attenuation rate of ultraviolet transmitted light and the concentration of ozone water.

【図8】従来例を示したブロック図である。FIG. 8 is a block diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1,31...オゾン水濃度計 2,32...測定セル 4−1〜4−5...測定セル内面の正五角形の辺 5...紫外線反射面 7...紫外線照射窓 8...紫外線透過窓 12...オゾン水管路 13...基準水管路 20...紫外線ランプ 21,34,35...紫外線センサ 22...制御回路 23...濃度表示器 33...紫外線透過窓 36...センサ信号切替えスイッチ R...中心光路 1,31 ... Ozone water concentration meter 2, 32 ... Measuring cell 4-1 to 4-5 ... Regular pentagonal side of inner surface of measuring cell 5 ... UV reflective surface 7 ... UV irradiation window 8 ... UV transparent window 12 ... Ozone water pipeline 13 ... Standard water line 20 ... UV lamp 21, 34, 35 ... UV sensor 22 ... Control circuit 23 ... Concentration indicator 33 ... UV transparent window 36 ... Sensor signal changeover switch R ... central optical path

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年5月10日(2002.5.1
0)
[Submission date] May 10, 2002 (2002.5.1)
0)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項3[Name of item to be corrected] Claim 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】請求項3に記載のオゾン濃度計は、請求項
2に記載の構成において、前記第1の受光器でのオゾン
含有流体の紫外線吸光度が予め設定した上限値以内の場
合には、該第1の受光器でのオゾン含有流体の紫外線吸
光度に基づいてオゾン濃度を算出し、一方、第1受光
器でのオゾン含有流体の紫外線吸光度が予め設定した上
限値以上の場合には、前記第2の受光器でのオゾン含有
流体の紫外線吸光度に基づいてオゾン濃度を算出するよ
うにしたことを特徴とする
According to a third aspect of the present invention, in the ozone concentration meter according to the second aspect, when the ultraviolet absorption of the ozone-containing fluid in the first light receiver is within a preset upper limit, calculating the ozone concentration based on UV absorbance of an ozone-containing fluid at the first light receiver, whereas, when the UV absorbance of the ozone-containing fluid at the first light receiver is more than the upper limit value set in advance, the It is characterized in that the ozone concentration is calculated based on the ultraviolet absorbance of the ozone-containing fluid in the second light receiver.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】請求項3に記載のオゾン濃度計によれば、
第1の受光器でのオゾン含有流体の紫外線吸光度が予め
設定した上限値以内の場合には、該第1の受光器でのオ
ゾン含有流体の紫外線吸光度に基づいてオゾン濃度を算
出し、一方、第1受光器でのオゾン含有流体の紫外線
吸光度が予め設定した上限値以上の場合には、第2の受
光器でのオゾン含有流体の紫外線吸光度に基づいてオゾ
ン濃度を算出するようにして、複数の受光器をオゾン濃
度に適合させて使い分けるようにしたから、分解能の高
い高精度のオゾン濃度計を提供できる。
According to the ozone concentration meter of claim 3,
When the ultraviolet absorption of the ozone-containing fluid in the first light receiver is within the preset upper limit value, the ozone concentration is calculated based on the ultraviolet absorption of the ozone-containing fluid in the first light receiver, in the case of more than the upper limit value of UV absorbance preset ozone-containing fluid at the first light receiver, so as to calculate the ozone concentration based on UV absorbance of an ozone-containing fluid at the second photodetector, Since a plurality of light receivers are adapted to the ozone concentration and used properly, it is possible to provide a highly accurate ozone concentration meter with high resolution.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 オゾンを含有するオゾン含有流体とオゾ
ンを含有しない基準流体を交互に供給可能な供給管路
と、供給されたオゾン含有流体又は基準流体が送り込ま
れて光源からオゾン含有流体又は基準流体中を通過した
光を受光器で受光して紫外線吸光度を測定する測定セル
とを備え、オゾン含有流体と基準流体を交互に測定セル
に供給してオゾン含有流体のオゾン濃度を求めるオゾン
濃度計において、 前記測定セルの内面を5以上の奇数となる断面正多角形
に形成するとともに、該正多角形の辺の何れか1つの辺
に光源を設け、該光源からの光を測定セル内面の複数の
辺で測定セル内を多重反射させて、他の辺に設けた第1
の受光器により受光するように構成したことを特徴とす
るオゾン濃度計。
1. A supply pipeline capable of alternately supplying an ozone-containing fluid containing ozone and a reference fluid containing no ozone, and an ozone-containing fluid or reference supplied from the light source by feeding the supplied ozone-containing fluid or reference fluid. An ozone densitometer equipped with a measuring cell for measuring the UV absorbance by receiving light that has passed through the fluid with a light receiver, and supplying the ozone-containing fluid and the reference fluid alternately to the measuring cell to obtain the ozone concentration of the ozone-containing fluid. In, while forming the inner surface of the measurement cell into a regular polygonal cross section having an odd number of 5 or more, a light source is provided on any one of the sides of the regular polygon, and light from the light source is supplied to the inner surface of the measurement cell. Multiple reflections inside the measurement cell on multiple sides, and the first on the other side
An ozone densitometer, characterized in that it is configured to receive light by the above-mentioned light receiver.
【請求項2】 前記光源を設けた辺と第1の受光器を設
けた辺を除く他の反射面となる複数の辺の何れか1つに
第2の受光器を設けたことを特徴とする請求項1に記載
のオゾン濃度計。
2. A second photodetector is provided on any one of a plurality of sides that are reflection surfaces other than the side on which the light source is provided and the side on which the first photodetector is provided. The ozone concentration meter according to claim 1.
【請求項3】 前記第1の受光器でのオゾン含有流体の
紫外線吸光度が予め設定した上限値以内の場合には、該
第1の受光器でのオゾン含有流体の紫外線吸光度に基づ
いてオゾン濃度を算出し、一方、第1受光器でのオゾン
含有流体の紫外線吸光度が予め設定した上限値以上の場
合には、前記第2の受光器でのオゾン含有流体の紫外線
吸光度に基づいてオゾン濃度を算出するようにしたこと
を特徴とすることを特徴とする請求項2に記載のオゾン
濃度計。
3. When the ultraviolet absorption of the ozone-containing fluid in the first light receiver is within a preset upper limit, the ozone concentration is determined based on the ultraviolet absorption of the ozone-containing fluid in the first light receiver. On the other hand, when the ultraviolet absorption of the ozone-containing fluid in the first light receiver is equal to or more than the preset upper limit value, the ozone concentration is calculated based on the ultraviolet absorption of the ozone-containing fluid in the second light receiver. The ozone concentration meter according to claim 2, wherein the ozone concentration meter is calculated.
JP2002133725A 2002-05-09 2002-05-09 Ozone concentration meter Pending JP2003329585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133725A JP2003329585A (en) 2002-05-09 2002-05-09 Ozone concentration meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002133725A JP2003329585A (en) 2002-05-09 2002-05-09 Ozone concentration meter

Publications (1)

Publication Number Publication Date
JP2003329585A true JP2003329585A (en) 2003-11-19

Family

ID=29696599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133725A Pending JP2003329585A (en) 2002-05-09 2002-05-09 Ozone concentration meter

Country Status (1)

Country Link
JP (1) JP2003329585A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243270A (en) * 2009-04-03 2010-10-28 Riken Keiki Co Ltd Composite type multi-path cell and gas measuring instrument
JP2011169645A (en) * 2010-02-16 2011-09-01 Hamamatsu Photonics Kk Gas concentration calculation device and gas concentration measurement module
JP2016011888A (en) * 2014-06-30 2016-01-21 株式会社日立製作所 Optical detection device
US9274048B2 (en) 2010-02-16 2016-03-01 Hamamatsu Photonics K.K. Gas concentration calculation device and gas concentration measurement module
KR101842639B1 (en) 2016-11-22 2018-05-14 한국해양과학기술원 Optical signal analyzer using multiple light sources

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243270A (en) * 2009-04-03 2010-10-28 Riken Keiki Co Ltd Composite type multi-path cell and gas measuring instrument
JP2011169645A (en) * 2010-02-16 2011-09-01 Hamamatsu Photonics Kk Gas concentration calculation device and gas concentration measurement module
US9274048B2 (en) 2010-02-16 2016-03-01 Hamamatsu Photonics K.K. Gas concentration calculation device and gas concentration measurement module
JP2016011888A (en) * 2014-06-30 2016-01-21 株式会社日立製作所 Optical detection device
KR101842639B1 (en) 2016-11-22 2018-05-14 한국해양과학기술원 Optical signal analyzer using multiple light sources
WO2018097458A1 (en) * 2016-11-22 2018-05-31 한국해양과학기술원 Optical analysis device using multi-light source structure and method therefor
US10684169B2 (en) 2016-11-22 2020-06-16 Korea Institute Of Ocean Science & Technology Optical analysis device using multi-light source structure and method therefor

Similar Documents

Publication Publication Date Title
US7491366B2 (en) Portable multi-channel device for optically testing a liquid sample
TWI414774B (en) A total reflection optical probe, and an aqueous solution spectrophotometer using the probe
CN102445437B (en) Method and device for measuring turbidity
US8582106B2 (en) Automatic optical measurement system and method
JP3762677B2 (en) Cell for fluid analysis and analyzer using the same
JP2010181150A (en) Method and instrument for measuring concentration of dissolved substance, and method and device for detecting color tone
WO2001029541A1 (en) Device for measuring water quality
US20150293019A1 (en) Arrangement for optically measuring one or more physical, chemical and/or biological, process variables of a medium
JP2003329585A (en) Ozone concentration meter
JPH06265471A (en) Mixed acid content measuring method and device thereof
JP2007113987A (en) Calibration method of orthogonal scattering turbidity meter and calibration container used therein
CN108489903A (en) A kind of light-conducting capillaries photometer
JP2003065952A (en) Dissolved-ozone concentration meter
JPH10325797A (en) Measuring apparatus for concentration of fluid
JP4467933B2 (en) Refractometer
JP3573128B2 (en) Ozone water concentration meter
JP2002340787A (en) Apparatus for measuring absorbance
CN105092474A (en) Device and method for measuring extinction coefficient of water body and method for measuring extinction coefficient of suspended matter
JPH11118715A (en) Water quality meter and water quality measuring method
JP2000046728A (en) Corrosion-resistant cell for optical analysis
CN106770050B (en) Liquid spectrum transmission and scattering coefficient measuring device based on integrating sphere
JP2004333280A (en) Concentration-measuring device
JPH063266A (en) Method for measuring ozone concentration, and light absorbing type ozone concentration meter
JPH0827293B2 (en) Liquid sensor
CN218629494U (en) Reflection type water quality detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040727

A977 Report on retrieval

Effective date: 20060721

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061205