JPH10317950A - Fuel injection control device of direct injection type internal combustion engine - Google Patents

Fuel injection control device of direct injection type internal combustion engine

Info

Publication number
JPH10317950A
JPH10317950A JP9267083A JP26708397A JPH10317950A JP H10317950 A JPH10317950 A JP H10317950A JP 9267083 A JP9267083 A JP 9267083A JP 26708397 A JP26708397 A JP 26708397A JP H10317950 A JPH10317950 A JP H10317950A
Authority
JP
Japan
Prior art keywords
catalyst
amount
downstream
exhaust gas
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9267083A
Other languages
Japanese (ja)
Other versions
JP3796919B2 (en
Inventor
Kazuya Kibe
一哉 木部
Tatsuji Mizuno
達司 水野
Shinya Hirota
信也 広田
Toshiaki Tanaka
俊明 田中
Yoichi Iwata
洋一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP26708397A priority Critical patent/JP3796919B2/en
Publication of JPH10317950A publication Critical patent/JPH10317950A/en
Application granted granted Critical
Publication of JP3796919B2 publication Critical patent/JP3796919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To always supply a proper quantity of reductant by interposing upper stream side catalyst purifying exhaust gas by reductant on an exhaust passage on the upper stream side of a confluent part where the exhaust passage of two cylinder groups meet, and computing the quantity of reductant to be supplied to this catalyst based on engine speed and intake air pressure. SOLUTION: During operation of an internal combustion engine 1, a CPU 42 computes the exhaust gas volume passing through NOx catalyst 10a on the upper stream side based on supercharging pressure detected by a pressure sensor 72 and engine speed obtained from the output of a crank angle sensor. The higher the supercharging pressure is, the larger the gas volume is, and the higher the engine speed, the larger the volume. Next, an HC quantity to be supplied to the NOx catalyst 10a on the upper stream side is computed based on the exhaust gas volume. Further, based on the difference of the detected temperature of the respective NOx catalyst 10a, 10b on the upper stream and the downstream, the HC quantity for NOx cleaning to be injected by sub-injection is corrected. Namely when the upper stream side temperature is higher than the downstream side temperature in the NOx catalyst, the HC quantity for NOx cleaning is corrected so as to be restrained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は筒内直接噴射式内燃
機関の燃料噴射制御装置に関する。
The present invention relates to a fuel injection control device for a direct injection type internal combustion engine.

【0002】[0002]

【従来の技術】複数の気筒を二つの気筒群に分割してこ
れら気筒群に接続された排気通路を互いに合流せしめ、
一方の気筒群から排出された排気ガスを吸入空気に導入
して機関内で生成される窒素酸化物(以下、NOX )の
量を低減するようにした内燃機関が公知である。また、
上記内燃機関において、吸入空気に導入すべき排気ガス
を取り入れる取入口の上流側の排気通路に機関から排出
されるNOX を浄化するためのNOX 触媒を備えた内燃
機関が公知である。ここでのNOX 触媒は機関内で燃焼
せしめられる混合気の空燃比が理論空燃比より非常に大
きいために排気ガス中の酸素濃度が非常に高い状態にお
いて、炭化水素(以下、HC)を触媒表面に吸着させて
活性種を生成し、このHCの活性種とNOX とを反応さ
せることによりNOX を浄化する。このNOX 触媒を備
えた内燃機関では機関燃焼後の排気ガス中にHCが殆ど
含まれていないため、機関駆動用HCとは別個に還元剤
としてNOX 浄化用HCをNOX 触媒に供給する。とこ
ろが、機関駆動用HCとは別個に浄化用HCをNOX
媒に供給するときにNOX 触媒で消費される量以上の浄
化用HCを供給すると、HCがNOX 触媒を通過して大
気中に放出されてしまう。そこで、NOX 触媒において
消費可能な量のHCがNOX 触媒に供給されるように制
御する必要がある。例えば特開平6−117225では
機関内で生成されるNOX の量が吸入空気量に概ね比例
し且つ吸入空気量は機関回転数と機関負荷とに概ね比例
することを利用して機関回転数と機関負荷とに基づいて
機関内で生成されるNOX 量を推定し、このNOX 量に
基づいて浄化用HCの量を算出している。しかしなが
ら、NOX 触媒を通過する単位時間あたりの排気ガスの
量が多いとき、すなわちNOX 触媒を通過する排気ガス
の触媒通過速度が速いときにはHCが触媒表面に吸着し
て活性種となり、NOX と反応するのに確保できる時間
が短くなる。したがって機関内で生成されるNOX の量
に基づいて算出された量の浄化用HCを供給しても、排
気ガスの触媒通過速度が速いときには供給したHCがN
X 触媒において消費されずに大気に排出されてしま
う。そこで機関に供給される吸入空気量からNOX 触媒
を通過する単位時間あたりの排気ガス量を推定し、この
排気ガス量に基づいてNOX 触媒に供給すべきHC量を
算出するようにした内燃機関が公知である。
2. Description of the Related Art A plurality of cylinders are divided into two cylinder groups, and exhaust passages connected to these cylinder groups are joined together.
2. Description of the Related Art There is known an internal combustion engine in which exhaust gas discharged from one cylinder group is introduced into intake air to reduce the amount of nitrogen oxides (hereinafter, NO x ) generated in the engine. Also,
2. Description of the Related Art In the above-mentioned internal combustion engine, there is known an internal combustion engine provided with an NO X catalyst for purifying NO X exhausted from the engine in an exhaust passage on an upstream side of an intake for taking exhaust gas to be introduced into intake air. The NO X catalyst catalyzes hydrocarbons (hereinafter, HC) in a state where the oxygen concentration in the exhaust gas is extremely high because the air-fuel ratio of the air-fuel mixture burned in the engine is much higher than the stoichiometric air-fuel ratio. adsorbed on the surface to produce an active species, to purify NO X by reacting an active species and NO X in the HC. Supplies for HC in the exhaust gas after the engine combustion in an internal combustion engine equipped with this NO X catalyst is hardly included, the NO X purifying HC separately as a reducing agent to the engine driving HC to the NO X catalyst . However, when the engine driving HC supply amount or more purifying HC consumed in the NO X catalyst when separately supplying purifying HC in the NO X catalyst, HC passes through the NO X catalyst in air Will be released to Therefore, it is necessary to control the HC amount that can be consumed in the NO X catalyst is supplied to the NO X catalyst. For example generally proportional to and the amount of intake air to the amount the intake air amount of the NO X produced in the JP-A 6-117225 at engine and the engine speed by utilizing the fact that generally proportional to the engine speed and engine load The amount of NO X generated in the engine is estimated based on the engine load, and the amount of HC for purification is calculated based on the amount of NO X. However, when the amount of exhaust gas per unit time passing through the NO X catalyst is large, that is, when the catalyst passing speed of the exhaust gas passing through the NO X catalyst is high, HC is adsorbed on the catalyst surface to become an active species, and NO X The time that can be secured to react with is shortened. Therefore, even if the amount of purification HC calculated based on the amount of NO X generated in the engine is supplied, the supplied HC becomes N
It is discharged to the atmosphere without being consumed in the OX catalyst. Therefore, the internal combustion engine is configured to estimate the amount of exhaust gas per unit time passing through the NO X catalyst from the amount of intake air supplied to the engine and calculate the amount of HC to be supplied to the NO X catalyst based on the amount of exhaust gas. Agencies are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記一
方の気筒群から排出された排気ガスを吸入空気に導入
し、この一方の気筒群に接続された排気通路の排気ガス
取入口の上流側にNOX 触媒を備えた内燃機関では、こ
のNOX 触媒を通過する排気ガス内に当該一方の気筒群
に接続された排気通路から導入された排気ガスが含まれ
ているため、吸入空気量に基づいてNOX 触媒を通過す
る排気ガス量を算出することができない。したがって本
発明の目的は一部の気筒から排出された排気ガスを浄化
するための触媒を具備し、この触媒を通過した排気ガス
の一部を吸入空気に導入する内燃機関において、触媒に
おいて消費可能な量の浄化用の還元剤、すなわちHCを
触媒に供給することにある。
However, the exhaust gas discharged from the one group of cylinders is introduced into the intake air, and NO gas is provided upstream of the exhaust gas inlet of the exhaust passage connected to the one group of cylinders. In an internal combustion engine provided with an X catalyst, since the exhaust gas passing through the NO X catalyst contains exhaust gas introduced from an exhaust passage connected to the one cylinder group, it is determined based on the intake air amount. It can not be calculated amount of exhaust gas passing through the nO X catalyst. Therefore, an object of the present invention is to provide a catalyst for purifying exhaust gas discharged from some cylinders, and to consume a part of the exhaust gas passing through the catalyst into the intake air in the internal combustion engine in which the catalyst can be consumed. It is to supply an appropriate amount of a reducing agent for purification, that is, HC, to the catalyst.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に一番目の発明によれば、複数の気筒を二つの気筒群に
分割し、これら気筒群が接続された排気通路が合流する
合流部の上流側の排気通路に還元剤により排気ガスを浄
化する上流側触媒を備えるとともに該合流部の下流側の
排気通路に還元剤により排気ガスを浄化する下流側触媒
を備え、前記上流側触媒と前記合流部との間の排気通路
に吸入空気中に排気ガスを導入するための排気循環管が
接続された筒内直接噴射式内燃機関において、前記上流
側触媒に供給すべき還元剤の量を機関回転数と吸入空気
圧とに基づいて算出する還元剤量算出手段を具備する。
According to a first aspect of the present invention, a plurality of cylinders are divided into two cylinder groups, and a junction where an exhaust passage connected to the cylinder groups merges. An upstream catalyst for purifying exhaust gas with a reducing agent is provided in an exhaust passage on the upstream side, and a downstream catalyst for purifying exhaust gas with a reducing agent is provided in an exhaust passage on the downstream side of the junction. In an in-cylinder direct injection internal combustion engine in which an exhaust circulation pipe for introducing exhaust gas into intake air is connected to an exhaust passage between the junction, the amount of reducing agent to be supplied to the upstream catalyst is determined. There is provided a reducing agent amount calculating means for calculating based on the engine speed and the intake air pressure.

【0005】上記課題を解決するために二番目の発明に
よれば、一番目の発明において、前記合流部と前記下流
側触媒との間の排気通路に過給機のタービンホイールを
備える。これにより排気ガスがタービンホイールを通過
するときに排気ガス温度が低下する。
According to a second aspect of the present invention, in the first aspect, a turbine wheel of a supercharger is provided in an exhaust passage between the junction and the downstream catalyst. This reduces the exhaust gas temperature as the exhaust gas passes through the turbine wheel.

【0006】上記課題を解決するために三番目の発明に
よれば、一番目の発明において、前記還元剤量算出手段
が前記上流側触媒に供給すべき還元剤の量を該上流側触
媒の温度に基づいて補正する。
According to a third aspect of the present invention, in the first aspect, the reducing agent amount calculating means determines the amount of the reducing agent to be supplied to the upstream catalyst by the temperature of the upstream catalyst. Is corrected based on

【0007】上記課題を解決するために四番目の発明に
よれば、一番目の発明において、前記還元剤量算出手段
が前記下流側触媒に供給すべき還元剤の量を吸入空気量
に基づいて算出する。
According to a fourth aspect of the present invention, in the first aspect, the reducing agent amount calculating means determines the amount of the reducing agent to be supplied to the downstream catalyst based on the amount of intake air. calculate.

【0008】上記課題を解決するために五番目の発明に
よれば、四番目の発明において、前記還元剤量算出手段
が前記下流側触媒に供給すべき還元剤の量を該下流側触
媒の温度に基づいて補正する。
According to a fifth aspect of the present invention, in the fourth aspect, the reducing agent amount calculating means determines the amount of the reducing agent to be supplied to the downstream side catalyst by the temperature of the downstream side catalyst. Is corrected based on

【0009】[0009]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。図1には本実施形態の筒内直接噴射
式のディーゼル内燃機関の構成を示した。図1におい
て、1は機関本体、♯1〜♯4は第一気筒、第二気筒、
第三気筒および第四気筒、6a〜6dは各気筒に燃料を
噴射するための第一燃料噴射弁、第二燃料噴射弁、第三
燃料噴射弁および第四燃料噴射弁である。各気筒♯1〜
♯4にはインテークマニホルド66を介して吸気管9が
接続される。インテークマニホルド66にはインテーク
マニホルド66内の圧力を検出する圧力センサ72が取
り付けられる。また、各気筒♯1〜♯4にはそれぞれ対
応して第一排気枝管8a、第二排気枝管8b、第三排気
枝管8cおよび第四排気枝管8dが接続される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration of a direct injection type diesel internal combustion engine of the present embodiment. In FIG. 1, 1 is an engine body, # 1 to # 4 are first cylinders, second cylinders,
The third and fourth cylinders, 6a to 6d, are a first fuel injection valve, a second fuel injection valve, a third fuel injection valve, and a fourth fuel injection valve for injecting fuel into each cylinder. Each cylinder ♯1
The intake pipe 9 is connected to # 4 via an intake manifold 66. A pressure sensor 72 for detecting a pressure inside the intake manifold 66 is attached to the intake manifold 66. A first exhaust branch pipe 8a, a second exhaust branch pipe 8b, a third exhaust branch pipe 8c, and a fourth exhaust branch pipe 8d are respectively connected to the cylinders # 1 to # 4.

【0010】第二排気枝管8b、第三排気枝管8cおよ
び第四排気枝管8dは上流側合流部11において合流せ
しめられ、共通の上流側排気管7に接続される。すなわ
ち第二気筒♯2、第三気筒♯3および第四気筒♯4によ
り気筒群が形成される。さらに第一排気枝管8aと上流
側排気管7とは下流側合流部12において合流せしめら
れ、共通の下流側排気管64に接続される。
The second exhaust branch pipe 8b, the third exhaust branch pipe 8c, and the fourth exhaust branch pipe 8d are joined at the upstream junction 11 and connected to the common upstream exhaust pipe 7. That is, a cylinder group is formed by the second cylinder # 2, the third cylinder # 3, and the fourth cylinder # 4. Further, the first exhaust branch pipe 8a and the upstream exhaust pipe 7 are joined at the downstream junction 12 and connected to a common downstream exhaust pipe 64.

【0011】上流側排気管7にはリーンNOX 触媒とし
てNOX 選択還元触媒(以下、上流側NOX 触媒)10
aが配置される。上流側NOX 触媒10aの上流端部分
にはこの上流端部分の温度を測定する上流側温度センサ
70aが配置される。また、上流側NOX 触媒10aの
下流端部分にはこの下流端部分の温度を測定する下流側
温度センサ71aが配置される。一方、下流側排気管6
4にはリーンNOX 触媒としてNOX 選択還元触媒(以
下、下流側NOX 触媒)10bが配置される。下流側N
X 触媒10aの上流端部分にはこの上流端部分の温度
を測定する上流側温度センサ70bが配置される。ま
た、下流側NOX 触媒10aの下流端部分にはこの下流
端部分の温度を測定する下流側温度センサ71bが配置
される。なお、NOX 触媒は、機関で燃焼せしめられる
混合気の空燃比が理論空燃比より非常に大きいために排
気ガス中の酸素濃度が非常に高い状態において、HCを
触媒表面に吸着させてHCの活性種を生成し、このHC
の活性種とNOX とを反応させることによりNOX を浄
化する。また、NOX 触媒は予め定められた温度範囲
(以下、適正温度範囲)において予め定められた浄化率
より高いNOX 浄化率を示す。本実施形態によれば一つ
の機関に対して二つのNOX 触媒を配置可能であるた
め、高いNOX 浄化率を得ることができる。
[0011] the NO X selective reducing catalyst on the upstream side exhaust pipe 7 as the lean NO X catalyst (hereinafter, upstream NO X catalyst) 10
a is arranged. The upstream end portion of the upstream-side NO X catalyst 10a upstream temperature sensor 70a for measuring the temperature of the upstream end portion is arranged. Further, the downstream end portion of the upstream-side NO X catalyst 10a downstream temperature sensor 71a for measuring the temperature of the downstream end portion is disposed. On the other hand, the downstream exhaust pipe 6
The 4 NO X selective reducing catalyst (hereinafter, downstream NO X catalyst) as the lean NO X catalyst 10b is disposed. Downstream side N
O X is the upstream end portion of the catalyst 10a upstream temperature sensor 70b for measuring the temperature of the upstream end portion is arranged. Further, the downstream end portion of the downstream NO X catalyst 10a downstream temperature sensor 71b for measuring the temperature of the downstream end portion is disposed. It should be noted that the NO X catalyst adsorbs HC on the catalyst surface in a state where the oxygen concentration in the exhaust gas is extremely high because the air-fuel ratio of the air-fuel mixture burned by the engine is much higher than the stoichiometric air-fuel ratio, and Generates active species and this HC
Purifying NO X by reacting an active species and NO X in. Further, the NO X catalyst exhibits a higher NO X purification rate than a predetermined purification rate in a predetermined temperature range (hereinafter, appropriate temperature range). According to the present embodiment, since two NO X catalysts can be arranged for one engine, a high NO X purification rate can be obtained.

【0012】上流側NOX 触媒10aの下流側であって
下流側合流部12の上流側の上流側排気管7には排気ガ
スを吸入空気中に導入するための排気循環管65が接続
される。排気循環管65の他端はインテークマニホルド
66に接続される。気筒内で生成されるNOX 量は気筒
内における燃焼温度が低いほど少ない。また、排気ガス
中に含まれる水分や二酸化炭素といった不活性ガスは気
筒内における燃焼温度を低下する働きがある。したがっ
て排気ガスを吸入空気中に導入することにより気筒内で
生成されるNOX 量が低減される。排気循環管65には
吸入空気中に導入すべき排気ガス量を制御するための排
気循環制御弁67が取り付けられる。排気循環制御弁6
7は三方弁68を介して吸引ポンプ69および大気に連
通される。排気循環制御弁67が三方弁68により吸引
ポンプ69に連通されると排気循環制御弁67に負圧が
かかり開弁する。一方、排気循環制御弁67が三方弁6
8により大気に連通されると排気循環制御弁67に大気
圧がかかり閉弁する。
An exhaust circulation pipe 65 for introducing exhaust gas into intake air is connected to the upstream exhaust pipe 7 downstream of the upstream NO X catalyst 10a and upstream of the downstream junction 12. . The other end of the exhaust circulation pipe 65 is connected to an intake manifold 66. The NO X amount generated in the cylinder decreases as the combustion temperature in the cylinder decreases. In addition, inert gas such as moisture and carbon dioxide contained in the exhaust gas has a function of lowering the combustion temperature in the cylinder. Therefore, by introducing the exhaust gas into the intake air, the NO X amount generated in the cylinder is reduced. An exhaust circulation control valve 67 for controlling the amount of exhaust gas to be introduced into the intake air is attached to the exhaust circulation pipe 65. Exhaust circulation control valve 6
7 is connected to a suction pump 69 and the atmosphere via a three-way valve 68. When the exhaust circulation control valve 67 is connected to the suction pump 69 by the three-way valve 68, a negative pressure is applied to the exhaust circulation control valve 67 and the exhaust circulation control valve 67 is opened. On the other hand, the exhaust circulation control valve 67 is
When the exhaust gas circulation control valve 67 is communicated with the atmosphere by the atmospheric pressure, the atmospheric pressure is applied to the exhaust gas circulation control valve 67 and the valve is closed.

【0013】また、本実施形態の内燃機関は下流側合流
部12の下流側であって下流側NO X 触媒10bの上流
側の下流側排気管64内に配置された排気側タービンホ
イール62と吸気管9内に配置された吸気側タービンホ
イール61とを具備する過給機63を具備する。排気側
タービンホイール62と吸気側タービンホイール61と
は一つのシャフト60により互いに連結される。排気ガ
ス流により排気側タービンホイール62が回転せしめら
れると、シャフト60を介して吸気側タービンホイール
61が回転せしめられる。これにより吸入空気量が増大
するため、機関出力が向上される。さらに本実施形態に
よれば、全ての排気ガスが合流する下流側合流部12の
下流に排気側タービンホイール62を配置したため、排
気側タービンホイール62を通過する排気ガス量が最も
多く、非常に高い過給効果が得られる。なお、吸気側タ
ービンホイール61の上流側の吸気管9には吸入空気量
を検出するためのエアフローメータ2が取り付けられ
る。
Further, the internal combustion engine of the present embodiment
NO on the downstream side of the part 12 XUpstream of the catalyst 10b
Exhaust turbine turbine disposed in the downstream exhaust pipe 64
The intake-side turbine wheel disposed in the wheels 62 and the intake pipe 9
A supercharger 63 having an eel 61 is provided. Exhaust side
The turbine wheel 62 and the intake-side turbine wheel 61
Are connected to each other by one shaft 60. Exhaust gas
The exhaust-side turbine wheel 62 is rotated by the
And the intake-side turbine wheel through the shaft 60
61 is rotated. This increases the intake air volume
As a result, the engine output is improved. Further in this embodiment
According to the description, the downstream merging portion 12 where all the exhaust gas merges
Since the exhaust turbine wheel 62 is located downstream,
Exhaust gas passing through the air-side turbine wheel 62
In many cases, a very high supercharging effect can be obtained. Note that the intake side
Intake air at the intake pipe 9 on the upstream side of the bin wheel 61
Air flow meter 2 for detecting
You.

【0014】また、後述するように第二気筒♯2、第三
気筒♯3および第四気筒♯4において噴射されたNOX
浄化用のHCは上流側NOX 触媒10aにおいて消費さ
れるため、HCを含んだ排気ガスは排気循環管65には
到達しない。また、下流側合流部12の下流に排気側タ
ービンホイール62が配置されているため、第一気筒♯
1において噴射されたNOX 浄化用HCを含んだ排気ガ
スは上流側排気管7に流入することなく下流側NOX
媒10bに到達せしめられる。したがって本実施形態に
よれば排気循環管65が上流側NOX 触媒10aの下流
側であって下流側合流部12の上流側の上流側排気管7
に接続されているため、HCを含まない排気ガスを吸入
空気に導入することができる。したがってHCにより排
気循環管65が閉塞されることが防止される。また、下
流側NOX 触媒10bに正確な量のHCを供給できる。
さらにNOX を含まない排気ガスが吸入空気中に導入さ
れるため、機関から排出されるNOX 量を低減できる。
Further, as will be described later, NO X injected in the second cylinder # 2, the third cylinder # 3, and the fourth cylinder # 4.
HC for purification to be consumed in the upstream NO X catalyst 10a, the exhaust gas containing HC does not reach the exhaust circulation pipe 65. Further, since the exhaust-side turbine wheel 62 is disposed downstream of the downstream-side merging portion 12, the first cylinder #
Exhaust gas containing injected NO X purifying HC in 1 is made to reach the downstream NO X catalyst 10b without flowing into the upstream-side exhaust pipe 7. Thus the upstream side exhaust pipe 7 on the upstream side of the downstream-side merging portion 12 a downstream side of the exhaust circulation pipe 65 according to this embodiment the upstream NO X catalyst 10a
, Exhaust gas not containing HC can be introduced into the intake air. Therefore, the exhaust circulation pipe 65 is prevented from being blocked by the HC. In addition, it supplies the correct amount of HC to the downstream side NO X catalyst 10b.
Since the exhaust gas still contains no NO X is introduced into the intake air, it can reduce the amount of NO X discharged from the engine.

【0015】電子制御ユニット40はデジタルコンピュ
ータからなり、双方向性バス41を介して相互に接続さ
れたCPU(マイクロプロセッサ)42、RAM(ラン
ダムアクセスメモリ)43、ROM(リードオンリーメ
モリ)44、入力ポート45および出力ポート46を具
備する。上流側NOX 触媒10aに配置された上流側温
度センサ70aおよび下流側温度センサ71a並びに下
流側NOX 触媒10bに配置された上流側温度センサ7
1aおよび下流側温度センサ71bはそれぞれ対応した
AD変換器47を介して入力ポート45に接続される。
また、圧力センサ72およびエアフローメータ2は対応
するAD変換器48および52を介して入力ポート45
に接続される。
The electronic control unit 40 is composed of a digital computer, and is connected to a CPU (microprocessor) 42, a RAM (random access memory) 43, a ROM (read only memory) 44 and an input via a bidirectional bus 41. A port 45 and an output port 46 are provided. Upstream NO X catalyst 10a disposed the upstream-side temperature sensor 70a and the downstream temperature sensor 71a and the downstream NO X disposed catalyst 10b the upstream temperature sensor 7
1a and the downstream temperature sensor 71b are connected to the input port 45 via the corresponding AD converters 47, respectively.
The pressure sensor 72 and the air flow meter 2 are connected to the input port 45 via the corresponding AD converters 48 and 52.
Connected to.

【0016】さらに本実施形態の内燃機関は機関本体1
のクランクシャフト(図示せず)が例えば30度回転す
る毎に出力パルスを発生するクランク角センサ16を具
備する。クランク角センサ16は対応するAD変換器4
9を介して入力ポート45に接続される。また、本実施
形態の内燃機関はアクセル踏込量Dに比例した出力電圧
を発生するアクセル踏込量センサ18を具備する。アク
セル踏込量センサ18は対応するAD変換器49を介し
て入力ポート45に接続される。一方、出力ポート46
は対応する駆動回路51を介して各燃料噴射弁6および
三方弁68に接続される。
Further, the internal combustion engine of the present embodiment has an engine body 1.
Is provided with a crank angle sensor 16 that generates an output pulse every time a crankshaft (not shown) rotates, for example, 30 degrees. The crank angle sensor 16 is connected to the corresponding AD converter 4
9 and connected to the input port 45. Further, the internal combustion engine of the present embodiment includes an accelerator depression amount sensor 18 that generates an output voltage proportional to the accelerator depression amount D. The accelerator depression amount sensor 18 is connected to the input port 45 via the corresponding AD converter 49. On the other hand, the output port 46
Are connected to the respective fuel injection valves 6 and the three-way valve 68 via the corresponding drive circuit 51.

【0017】次に本実施形態の内燃機関の作動を説明す
る。本実施形態では各気筒♯1〜♯4における圧縮上死
点の直後に主噴射を実行して各燃料噴射弁6a〜6dか
ら駆動用の燃料、すなわちHCを各気筒♯1〜♯4内に
噴射する。主噴射により各気筒♯1〜♯4内に噴射され
る駆動用燃料の量はアクセル踏込量センサ18により検
出されたアクセルペダルの踏込量Dに基づいて算出さ
れ、踏込量Dが大きくなるほど燃料量が増大される。主
噴射が実行された後に該主噴射とは別個に副噴射を実行
して各燃料噴射弁6a〜6dから浄化用の燃料、すなわ
ちHCを還元剤として各気筒♯1〜♯4内に噴射する。
Next, the operation of the internal combustion engine of this embodiment will be described. In the present embodiment, the main injection is performed immediately after the compression top dead center in each of the cylinders # 1 to # 4, and the fuel for driving, that is, HC is supplied from each of the fuel injection valves 6a to 6d into each of the cylinders # 1 to # 4. Inject. The amount of drive fuel injected into each of the cylinders # 1 to # 4 by the main injection is calculated based on the accelerator pedal depression amount D detected by the accelerator pedal depression sensor 18, and the fuel amount increases as the depression amount D increases. Is increased. After the main injection is executed, a sub-injection is executed separately from the main injection, and the fuel for purification, that is, HC is injected into each of the cylinders # 1 to # 4 from the fuel injection valves 6a to 6d as a reducing agent. .

【0018】なお、上流側NOX 触媒10aの温度が適
正温度範囲内にあるときに気筒群において副噴射を実行
し、適正温度範囲外にあるときには気筒群における副噴
射の実行を停止する。また、下流側NOX 触媒10bの
温度が適正温度範囲内にあるときに第一気筒♯1におい
て副噴射を実行し、適正温度範囲外にあるときには第一
気筒♯1における副噴射の実行を停止する。
[0018] The temperature of the upstream-side NO X catalyst 10a executes the sub injection in the cylinder group when in the appropriate temperature range, when in the out of the proper temperature range stops execution of the sub injection in the cylinder group. Also, run the sub injection in the first cylinder ♯1 when the temperature of the downstream NO X catalyst 10b is within the appropriate temperature range, when in the out of the proper temperature range stops executing the sub injection in the first cylinder ♯1 I do.

【0019】また、触媒を構成する材料の違い、すなわ
ち触媒が低温時に浄化率の高い物質を担持しているか或
いは高温時に浄化率の高い物質を担持しているか、また
は触媒の熱容量の違い、触媒の劣化度合いの違いによ
り、上流側NOX 触媒と下流側NOX 触媒とでNOX
浄化できる適正温度範囲が相違するが、この場合には各
NOX 触媒の触媒温度が各適正温度範囲内にあるか否か
に基づいて副噴射を実行する気筒を決定する。
Further, differences in the materials constituting the catalyst, that is, whether the catalyst carries a substance having a high purification rate at a low temperature or a substance having a high purification rate at a high temperature, a difference in heat capacity of the catalyst, the difference in degree of deterioration, but the appropriate temperature range that can purify NO X in the upstream side NO X catalyst and the downstream NO X catalyst are different, the catalyst temperature is the appropriate temperature range for the NO X catalyst in this case Is determined on the basis of whether or not the sub-injection is performed.

【0020】したがって例えば下流側NOX 触媒の温度
が上流側NOX 触媒の温度より低い場合でも各NOX
媒の適正温度範囲によっては気筒群および第一気筒にお
いて副噴射が実行される。このとき、気筒群における副
噴射により通常より多いHCを供給すれば、HCの一部
が上流側NOX 触媒で消費されずに改質され、第一気筒
における副噴射により供給されたHCが上流側NOX
媒で改質されたHCと下流側NOX 触媒において混合さ
れる。すなわち下流側NOX 触媒に改質されて高い活性
を有するHCが供給される。したがって触媒温度が低い
下流側NOX 触媒においてもNOX 浄化反応が行われる
ため、NOX 浄化率がさらに向上する。
Therefore, for example, even when the temperature of the downstream NO X catalyst is lower than the temperature of the upstream NO X catalyst, the sub-injection is executed in the cylinder group and the first cylinder depending on the appropriate temperature range of each NO X catalyst. At this time, if the sub injection by supplying more than usual HC in the cylinder groups, a part of HC is reformed without being consumed in the upstream NO X catalyst, HC supplied by the auxiliary injection in the first cylinder upstream They are mixed in HC and the downstream NO X catalyst modified with side NO X catalyst. That HC having high activity is reformed downstream NO X catalyst is supplied. Thus since the catalyst temperature is NO X purification reaction takes place even at low downstream NO X catalyst, NO X purification rate is further improved.

【0021】さらに本実施形態によれば、上流側NOX
触媒10aにおけるNOX 浄化反応熱により温度が上昇
した排気ガスは排気側タービンホイール62を通過する
ときに熱を奪われて冷却される。したがって高温の排気
ガスが下流側NOX 触媒10bに流入することが防止さ
れるため、上流側NOX 触媒10aと下流側NOX 触媒
10bとの温度を概ね等しく適正温度範囲内に維持する
ことができる。
Further, according to the present embodiment, the upstream NO X
Exhaust gas temperature by NO X purifying reaction heat in the catalyst 10a rises is cooled deprived of heat when passing through the exhaust side turbine wheel 62. Thus since the high-temperature exhaust gas is prevented from flowing into the downstream NO X catalyst 10b, to maintain the temperature of the upstream side NO X catalyst 10a and the downstream-side NO X catalyst 10b approximately equal to the appropriate temperature range it can.

【0022】なお、例えば、上流側NOX 触媒10aが
機関の燃焼室に非常に近い位置に配置され、下流側NO
X 触媒10bが燃焼室から非常に遠い位置に配置された
内燃機関では、上流側NOX 触媒10aの温度が下流側
NOX 触媒10bの温度よりも高くなることもある。
[0022] Incidentally, for example, the upstream-side NO X catalyst 10a is disposed very close to the combustion chamber of the engine, the downstream-side NO
In an internal combustion engine in which the X catalyst 10b is located very far from the combustion chamber, the temperature of the upstream NO X catalyst 10a may be higher than the temperature of the downstream NO X catalyst 10b.

【0023】次に本実施形態の内燃機関における副噴射
の実行タイミングの制御を説明する。なお、以下の説明
においてNOX 触媒には上流側NOX 触媒10aと下流
側NOX 触媒10bとが含まれ、気筒には第一気筒♯1
から第四気筒♯4がそれぞれ含まれる。また、NOX
媒の温度は例えば各NOX 触媒の上流側温度センサと下
流側温度センサとの平均により求める。
Next, control of the execution timing of the sub-injection in the internal combustion engine of the present embodiment will be described. Note that the following is the NO X catalyst in the description includes an upstream NO X catalyst 10a and the downstream-side NO X catalyst 10b, the first cylinder is the cylinder ♯1
To the fourth cylinder # 4. The temperature of the NO X catalyst, for example determined by the average of the upstream temperature sensor and the downstream temperature sensor of each NO X catalyst.

【0024】NOX 触媒の温度が適正温度範囲より低い
ときには各気筒における膨張行程初期から膨張行程中期
において副噴射を実行する。また、NOX 触媒の温度が
上昇するにつれて副噴射の実行タイミングを遅らせる。
膨張行程初期から膨張行程中期では気筒内の温度が比較
的高いため、副噴射により噴射されたHCのうち低沸点
HCに改質される割合が高い。したがって副噴射の実行
タイミングが遅れるほど副噴射により噴射されたHCの
うち低沸点HCに改質される割合が低下し、高沸点HC
のまま残るHCの割合が高くなる。すなわち本実施形態
によれば、触媒温度が適正温度範囲内の比較的低い温度
にあるときには活性が高い低沸点HCをNOX 触媒に供
給することにより比較的容易にNOX 浄化作用が開始せ
しめられるため、NOX 浄化率が向上する。また、膨張
行程初期から膨張行程中期において副噴射によりHCを
噴射すると、低沸点HCとして残らずに気筒内で焼失し
てしまうHCが多い。すなわち副噴射の実行タイミング
を遅らせるほど焼失してしまうHCが少ない。したがっ
て本実施形態によれば、低沸点HCにより浄化作用が開
始され、触媒温度が上昇せしめられた後には高沸点HC
により浄化作用を行うため、浄化作用に用いられる燃料
量を低減できる。
[0024] when the temperature of the NO X catalyst is lower than the appropriate temperature range to perform the sub injection in the expansion stroke to mid expansion stroke initial in each cylinder. Further, delay the execution timing of the sub injection as the temperature of the NO X catalyst is increased.
Since the temperature in the cylinder is relatively high from the initial stage of the expansion stroke to the middle stage of the expansion stroke, the ratio of the HC injected by the sub-injection to be reformed to the low boiling point HC is high. Therefore, as the execution timing of the sub-injection is delayed, the proportion of the HC injected by the sub-injection that is reformed to the low boiling point HC decreases, and the high boiling point HC is reduced.
The proportion of HC remaining as it is increases. That is, according to the present embodiment, when the catalyst temperature is at a relatively low temperature within an appropriate temperature range, the NO X purification operation can be started relatively easily by supplying a low-boiling HC having a high activity to the NO X catalyst. Therefore, the NO X purification rate is improved. Further, when HC is injected by sub-injection from the initial stage of the expansion stroke to the middle stage of the expansion stroke, there is a lot of HC which is burned in the cylinder without remaining as a low boiling point HC. In other words, the more the execution timing of the sub-injection is delayed, the less HC is burned. Therefore, according to the present embodiment, the purifying action is started by the low boiling point HC, and after the catalyst temperature is increased, the high boiling point HC is removed.
As a result, the amount of fuel used for the purification operation can be reduced.

【0025】次に本実施形態の浄化用HC噴射制御を説
明する。本実施形態では、まず、圧力センサ72により
検出された過給圧と機関回転数とに基づいて上流側NO
X 触媒10aを通過する排気ガス量(以下、上流側通過
排気ガス量)を算出する。上流側通過排気ガス量は過給
圧が高いほど多くなり、機関回転数が高いほど多くな
る。次に、上流側通過排気ガス量に基づいて上流側NO
X 触媒10aに供給すべきHC量を算出する。上流側N
X 触媒10aにおいて消費可能なHC量は上流側通過
排気ガス量が多いほど少なくなるため、上流側NOX
媒10aに供給すべきHC量は上流側通過排気ガス量が
多いほど少なくする。
Next, the HC injection control for purification according to this embodiment will be described. In the present embodiment, first, based on the supercharging pressure detected by the pressure sensor 72 and the engine speed, the upstream NO
The amount of exhaust gas passing through the X catalyst 10a (hereinafter, the amount of exhaust gas passing upstream) is calculated. The upstream side passing exhaust gas amount increases as the supercharging pressure increases, and increases as the engine speed increases. Next, based on the amount of exhaust gas passing through the upstream side,
The amount of HC to be supplied to the X catalyst 10a is calculated. Upstream N
O X catalyst 10a capable HC amount consumed in order to become less the larger the upstream passage exhaust gas amount, the amount of HC to be supplied to the upstream side NO X catalyst 10a is reduced the more upstream side passage exhaust gas amount.

【0026】また、エアフローメータ2により検出され
た吸入空気量に基づいて下流側NO X 触媒10bを通過
する排気ガス量(以下、下流側通過排気ガス量)を算出
する。下流側通過排気ガス量は吸入空気量が多いほど多
くなる。次に、下流側通過排気ガス量に基づいて下流側
NOX 触媒10bに供給すべきHC量を算出する。下流
側NOX 触媒10bにおいて消費可能なHC量は下流側
通過排気ガス量が多いほど少なくなるため、下流側NO
X 触媒10bに供給すべきHC量は下流側通過排気ガス
量が多いほど少なくする。なお、圧力センサ72により
検出された過給圧と機関回転数とに基づいて全気筒に供
給される吸入空気量を算出してもよい。
Also, the air flow meter 2 detects
NO based on the intake air volume XPass through catalyst 10b
The amount of exhaust gas to be discharged (hereinafter, the amount of exhaust gas passing downstream)
I do. The amount of exhaust gas passing downstream increases as the amount of intake air increases.
It becomes. Next, based on the amount of exhaust gas passing downstream,
NOXThe amount of HC to be supplied to the catalyst 10b is calculated. downstream
Side NOXThe amount of HC that can be consumed in the catalyst 10b is on the downstream side.
As the amount of passing exhaust gas increases, the amount decreases, so that the downstream side NO
XThe amount of HC to be supplied to the catalyst 10b is the amount of exhaust gas passing downstream.
The larger the amount, the less. Note that the pressure sensor 72
Supply to all cylinders based on the detected boost pressure and engine speed
The supplied intake air amount may be calculated.

【0027】したがって本実施形態によれば、一方の気
筒群から排出された排気ガスを吸入空気に導入し、この
一方の気筒群に接続された排気通路の排気ガス取入口、
すなわち排気循環管が接続された部位の上流側にNOX
触媒を備えた内燃機関において、このNOX 触媒におい
て消費可能な量の浄化用還元剤、すなわちHCがNO X
触媒に供給される。
Therefore, according to the present embodiment, one of the
The exhaust gas discharged from the cylinder group is introduced into the intake air,
An exhaust gas inlet of an exhaust passage connected to one cylinder group,
That is, NO is located upstream of the portion where the exhaust circulation pipe is connected.X
In an internal combustion engine equipped with a catalyst, this NOXCatalyst smell
The amount of the purifying reducing agent that can be consumed by X
Supplied to the catalyst.

【0028】また、本実施形態の浄化用HC噴射制御で
は、各NOX 触媒に取り付けられた温度センサにより検
出された上流側温度および下流側温度の差に基づいて副
噴射により噴射すべきNOX 浄化用HC量を補正する。
すなわち各NOX 触媒において上流側温度が下流側温度
よりも高いときには下流側温度が間もなく上流側温度に
追従して高くなると予想し、下流側温度が上流側温度に
追従して上昇したときに下流側温度が適正温度範囲から
外れることを防止するために副噴射により噴射すべきN
X 浄化用HC量を少なくする。逆に上流側温度が下流
側温度よりも低いときには下流側温度が間もなく上流側
温度に追従して低くなると予想し、下流側温度が上流側
温度に追従して低下したときに下流側温度が適正温度範
囲から外れることを防止するために副噴射により噴射す
べきNOX 浄化用HC量を多くする。したがって本実施
形態によればNO X 触媒内における温度変化に応じて副
噴射により噴射すべき浄化用HC量が制御される。この
ため、NOX 触媒の温度を適正温度範囲内に維持でき、
NOX 浄化率がさらに向上する。
Further, in the HC injection control for purification of the present embodiment,
Means each NOXDetected by temperature sensor attached to catalyst
Based on the difference between the upstream and downstream temperatures
NO to be injected by injectionXCorrect the HC amount for purification.
That is, each NOXThe upstream temperature is the downstream temperature in the catalyst
When the temperature is higher than the
The downstream temperature is expected to rise
When the downstream temperature rises from the appropriate temperature range
N to be injected by sub-injection to prevent departure
OXReduce the amount of HC for purification. Conversely, upstream temperature is downstream
When the temperature is lower than the side temperature, the downstream temperature will soon be upstream
It is expected that the temperature will decrease following the temperature.
When the temperature decreases following the temperature, the downstream
Inject by sub-injection to prevent falling out of the enclosure
Should be NOXIncrease the amount of HC for purification. Therefore this implementation
NO according to the form XDepending on the temperature change in the catalyst,
The amount of purification HC to be injected is controlled by the injection. this
NOXThe catalyst temperature can be maintained within an appropriate temperature range,
NOXThe purification rate is further improved.

【0029】次に図2のフローチャートを参照して本実
施形態の浄化用HC噴射制御を説明する。まず、ステッ
プS310において圧力センサ72により検出された過
給圧Pと機関回転数Nとに基づいて上流側NOX 触媒1
0aに流入する上流側通過排気ガス量G1 が算出され
る。次にステップS312に進んで上流側NOX 触媒1
0aの下流側温度センサ71aにより検出された上流側
NOX 触媒10aの下流側温度Td1とステップS310
で算出された上流側通過排気ガス量G1 とに基づいて上
流側NOX 触媒10aに供給すべき基本HC量HCb1
算出される。次にステップS314に進んで上流側NO
X 触媒10aの上流側温度センサ70aにより検出され
た上流側NOX 触媒10aの上流側温度Tu1と上流側N
X 触媒10aの下流側温度Td1とに基づいてHC補正
量HCk1が算出される。なお、HC補正量HCk1はTU1
<Td1のときには正の値をとり、TU1>Td1のときには
負の値をとる。次にステップS316に進んでステップ
S312で算出された基本HC量HCb1とステップS3
14で算出されたHC補正量HCk1とに基づいてHC供
給量HCf1が算出される。なお、HC供給量HCf1は式
HCf1=HCb1+HC k1により算出される。次にステッ
プS318に進んでHC供給量HCf1と燃料噴射弁6の
噴射圧力とに基づいて副噴射時間ts1が算出される。次
にステップS320に進んで副噴射時間ts1の副噴射が
気筒群において実行される。
Next, referring to the flowchart of FIG.
The HC injection control for purification according to the embodiment will be described. First,
In step S310.
Upstream NO based on the supply pressure P and the engine speed NXCatalyst 1
0a, the amount G of exhaust gas flowing upstream on the upstream side1 Is calculated
You. Next, proceeding to step S312, the upstream side NOXCatalyst 1
0a upstream detected by the downstream temperature sensor 71a
NOXDownstream temperature T of catalyst 10ad1And step S310
Upstream passing exhaust gas amount G calculated by1 And based on
Outflow side NOXBasic HC amount to be supplied to catalyst 10a HCb1But
Is calculated. Next, the process proceeds to step S314, where the upstream side NO
XDetected by the upstream temperature sensor 70a of the catalyst 10a
NO upstreamXUpstream temperature T of the catalyst 10au1And upstream N
OXDownstream temperature T of catalyst 10ad1HC correction based on
Amount HCk1Is calculated. The HC correction amount HCk1Is TU1
<Td1Takes a positive value whenU1> Td1When
Takes a negative value. Next, the process proceeds to step S316.
Basic HC amount HC calculated in S312b1And step S3
HC correction amount HC calculated in 14k1HC supply based on
Supply HCf1Is calculated. The HC supply amount HCf1Is the expression
HCf1= HCb1+ HC k1Is calculated by Next,
Proceeding to step S318, the HC supply amount HCf1And the fuel injection valve 6
Sub injection time t based on injection pressures1Is calculated. Next
In step S320, the sub-injection time ts1Of the secondary injection
This is executed in the cylinder group.

【0030】次にステップS322に進んでエアフロー
メータ2の出力に基づいて下流側NOX 触媒10bに流
入する下流側通過排気ガス量G2 が算出される。次にス
テップS324に進んで下流側NOX 触媒10bの下流
側温度センサ71bにより検出された下流側NOX 触媒
10bの下流側温度Td2とステップS322で算出され
た下流側通過排気ガス量G2 とに基づいて下流側NOX
触媒10bに供給すべき基本HC量HCb2が算出され
る。次にステップS326に進んで下流側NOX触媒1
0bの上流側温度センサ70bにより検出された下流側
NOX 触媒10bの上流側温度Tu2と下流側NOX 触媒
10bの下流側温度Td2とに基づいてHC補正量HCk2
が算出される。なお、HC補正量HCk2はTU2<Td2
ときには正の値をとり、TU2>Td2のときには負の値を
とる。次にステップS328に進んでステップS324
で算出された基本HC量HCb2とステップS326で算
出されたHC補正量HCk2とに基づいてHC供給量HC
f2が算出される。なお、HC供給量HCf2は式HCf2
HCb2+HCk2により算出される。次にステップS33
0に進んでHC供給量HCf2と燃料噴射弁6の噴射圧力
とに基づいて副噴射時間ts2が算出される。次にステッ
プS332に進んで副噴射時間ts2の副噴射を第一気筒
♯1において実行し、処理を終了する。
[0030] Next downstream passage exhaust gas amount G 2 flowing into the downstream NO X catalyst 10b based on the output of the air flow meter 2 proceeds to step S322 is calculated. Then downstream NO X catalyst 10b on the downstream side temperature sensor of the downstream NO X catalyst 10b detected by 71b downstream temperature T d2 and the downstream side passage exhaust gas calculated in step S322 the amount G 2 proceeds to step S324 downstream NO X based on bets
Basic amount of HC HC b2 to be supplied to the catalyst 10b is calculated. Then downstream NO X catalyst 1 proceeds to step S326
0b on the basis of the downstream temperature T d2 of the upstream temperature T u2 and the downstream NO X catalyst 10b of the upstream temperature sensor 70b by the detected downstream NO X catalyst 10b of HC correction amount HC k2
Is calculated. Note that the HC correction amount HC k2 takes a positive value when T U2 <T d2 , and takes a negative value when T U2 > T d2 . Next, the process proceeds to step S328 and proceeds to step S324.
The HC supply amount HC is calculated based on the basic HC amount HC b2 calculated at step S326 and the HC correction amount HC k2 calculated at step S326.
f2 is calculated. Note that the HC supply amount HC f2 is calculated by the formula HC f2 =
It is calculated by HC b2 + HC k2 . Next, step S33
The process proceeds to 0, and the sub injection time ts2 is calculated based on the HC supply amount HCf2 and the injection pressure of the fuel injection valve 6. Next, the routine proceeds to step S332, in which the sub-injection for the sub-injection time t s2 is executed in the first cylinder # 1, and the process ends.

【0031】本実施形態では気筒を第一気筒♯1と、第
二気筒♯2、第三気筒♯3および第四気筒♯4とに分割
したが、第三気筒♯3と第四気筒♯4とを上流側NOX
触媒10aを介して下流側NOX 触媒10bに接続され
る第一気筒群とし、第一気筒♯1と第二気筒♯2とを上
流側NOX 触媒10aをバイパスして直接下流側NO X
触媒10bに接続される第二気筒群としてもよい。
In this embodiment, the cylinders are the first cylinder # 1 and the first cylinder # 1.
Split into two cylinders # 2, third cylinder # 3 and fourth cylinder # 4
However, the third cylinder # 3 and the fourth cylinder # 4X
NO on the downstream side through the catalyst 10aXConnected to the catalyst 10b
The first cylinder group # 1 and the second cylinder # 2
Outflow side NOXNO on the downstream side directly bypassing the catalyst 10a X
It may be a second cylinder group connected to the catalyst 10b.

【0032】また、副噴射を実行する頻度や副噴射一回
当たりに噴射するHC量を触媒温度に応じて制御しても
よい。例えば、図3に示したように、触媒温度Tが第一
温度範囲T1 内にあるときには順次到来する副噴射の噴
射タイミングで毎回副噴射を実行する。触媒温度Tが第
二温度範囲T2 内にあるときには順次到来する副噴射の
噴射タイミングの二回に一回の割合で副噴射を実行す
る。以下、第三温度範囲T3 内では三回に一回、第四温
度範囲T4 内では四回に一回副噴射を実行する。さら
に、副噴射実行頻度制御と同時に、副噴射を実行する頻
度が少なくなるにしたがって副噴射一回当たりに噴射す
るHC量を増大する。
Further, the frequency of executing the sub-injection and the amount of HC injected per sub-injection may be controlled according to the catalyst temperature. For example, as shown in FIG. 3, when the catalyst temperature T is in the first temperature range T 1 executes the sub injection each time the injection timing of the auxiliary injection sequentially arriving. Executing the sub injection at a rate of once a second time injection timing of the sub injection sequentially arriving when the catalyst temperature T is in the second temperature range T 2. Hereinafter, the inside third temperature range T 3 once every three times, the inside fourth temperature range T 4 executes once sub injection to four times. Further, simultaneously with the sub-injection execution frequency control, as the frequency of executing the sub-injection decreases, the amount of HC injected per sub-injection increases.

【0033】また、予め定められた回数の副噴射の噴射
タイミングにおいて副噴射の実行を停止する回数を制御
してもよい。例えば、図4に示したように、触媒温度T
が第一温度範囲T1 内にあるときには機関サイクル五回
当たり五回の副噴射を行い、第二温度範囲T2 内にある
ときには機関サイクル五回当たり四回の副噴射を実行す
る。すなわち第二温度範囲T2 内においては副噴射の実
行を一回停止する。以下順次、第三温度範囲T3 内にあ
るときには副噴射の実行を二回停止し、第四温度範囲T
4 内にあるときには副噴射の実行を三回停止する。さら
に、副噴射実行停止頻度制御と同時に、副噴射一回当た
りに噴射するHC量を増大する。
The number of times the sub-injection is stopped at a predetermined number of sub-injection injection timings may be controlled. For example, as shown in FIG.
There when in a first temperature range T 1 performs sub injection of five times per five times engine cycle, when in the second temperature range T within 2 performs sub injection four times per five times engine cycle. That is, in the second temperature range T within 2 stops once the execution of the sub injection. The following sequence, when in a third temperature range T 3 the execution of the sub injection is stopped twice, fourth temperature range T
When it is within 4 , the execution of the sub-injection is stopped three times. Further, simultaneously with the sub-injection execution stop frequency control, the amount of HC injected per sub-injection is increased.

【0034】副噴射一回当たりに噴射するHC量を増大
すると気筒内雰囲気に晒されないHC量が増大する。こ
のため、予め定められた回数の副噴射の噴射タイミング
にわたって副噴射により供給されたHCのうち気筒内に
て焼失されるHC量が従来に比べ低減される(図5参
照)。したがってNOX 触媒10に供給されるHC量を
所望の量に制御できる。さらに従来より少ない量のHC
を気筒内に噴射しても、本実施形態によれば焼失される
HC量が少ないため、適量のHC量をNOX 触媒に供給
することができる。
When the amount of HC injected per sub-injection is increased, the amount of HC not exposed to the cylinder atmosphere increases. Therefore, the amount of HC burned in the cylinder among the HCs supplied by the sub-injection over the predetermined number of sub-injection injection timings is reduced as compared with the conventional case (see FIG. 5). Therefore, the amount of HC supplied to the NO X catalyst 10 can be controlled to a desired amount. Furthermore, a smaller amount of HC than before
The be injected into the cylinder, since the amount of HC is burned according to the present embodiment is small, it is possible to supply an appropriate amount of HC amount in the NO X catalyst.

【0035】なお、本願ではディーゼル内燃機関に適用
した場合の燃料噴射制御装置を挙げたが、リーンバーン
型であれば筒内直接噴射火花点火式の内燃機関に本発明
を適用することもできる。さらに排気ガス中の酸素濃度
が非常に高い状態でNOX を吸収して貯蔵しておき、H
Cが供給されて排気ガス中の酸素濃度が低下したときに
NOX を放出してHCと反応させる触媒に本発明を適用
することもできる。
Although the fuel injection control device applied to a diesel internal combustion engine has been described in the present application, the present invention can also be applied to an in-cylinder direct injection spark ignition type internal combustion engine of a lean burn type. Further, NO X is absorbed and stored in a state where the oxygen concentration in the exhaust gas is very high,
C can also be the oxygen concentration in the exhaust gas is supplied to apply the present invention the catalyst is reacted with HC to release the NO X when dropped.

【0036】[0036]

【発明の効果】一番目から五番目の発明によれば、一部
の気筒から排出された排気ガスを浄化する上流側触媒を
具備し、この上流側触媒を通過した排気ガスの一部を吸
入空気中に導入する内燃機関において、機関回転数と吸
入空気圧とに基づいて上流側触媒に供給すべき還元剤の
量が算出される。機関回転数と吸入空気圧とは上流側触
媒を通過する排気ガス量に係わるパラメータである。し
たがって算出された上流側触媒に供給すべき還元剤の量
は上流側触媒を通過する排気ガス量を考慮した量とな
る。このため、上流側触媒において消費可能な量の浄化
用の還元剤が供給され、還元剤の無駄を省くことができ
る。
According to the first to fifth aspects of the present invention, an upstream catalyst for purifying exhaust gas discharged from some cylinders is provided, and a part of the exhaust gas passing through the upstream catalyst is sucked. In the internal combustion engine introduced into the air, the amount of the reducing agent to be supplied to the upstream catalyst is calculated based on the engine speed and the intake air pressure. The engine speed and the intake air pressure are parameters related to the amount of exhaust gas passing through the upstream catalyst. Therefore, the calculated amount of the reducing agent to be supplied to the upstream catalyst is an amount in consideration of the amount of exhaust gas passing through the upstream catalyst. For this reason, an amount of purifying reducing agent that can be consumed in the upstream catalyst is supplied, and waste of the reducing agent can be reduced.

【0037】さらに二番目の発明によれば、上流側触媒
における浄化反応により上昇せしめられた排気ガスの温
度がタービンホイールにおいて低下せしめられるため、
下流側触媒の温度が過剰に増大することが防止される。
According to the second aspect of the present invention, the temperature of the exhaust gas raised by the purification reaction in the upstream catalyst is reduced in the turbine wheel.
Excessive increase in the temperature of the downstream catalyst is prevented.

【0038】さらに三番目および五番目の発明によれ
ば、触媒に供給すべき還元剤の量がその触媒の温度に基
づいて補正される。触媒はその温度により浄化特性が異
なるが、触媒温度に基づいて還元剤量を補正することに
より、触媒の浄化特性に沿った量の還元剤が触媒に供給
されるため、触媒における浄化率がさらに向上される。
Further, according to the third and fifth aspects, the amount of the reducing agent to be supplied to the catalyst is corrected based on the temperature of the catalyst. Although the purification characteristics of the catalyst vary depending on its temperature, the amount of the reducing agent in accordance with the purification characteristics of the catalyst is supplied to the catalyst by correcting the amount of the reducing agent based on the catalyst temperature. Be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の筒内直接噴射式内燃機関の
構成を示す図である。
FIG. 1 is a diagram showing a configuration of a direct injection type internal combustion engine according to an embodiment of the present invention.

【図2】本発明の実施形態の筒内直接噴射式内燃機関に
おける浄化用HC噴射制御のフローチャートである。
FIG. 2 is a flowchart of HC injection control for purification in an in-cylinder direct injection internal combustion engine according to an embodiment of the present invention.

【図3】触媒温度と副噴射間隔との関係を示す図であ
る。
FIG. 3 is a diagram showing a relationship between a catalyst temperature and a sub-injection interval.

【図4】触媒温度と副噴射回数との関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between a catalyst temperature and the number of sub injections.

【図5】気筒内温度とHC量との関係を示す図である。FIG. 5 is a diagram showing the relationship between the in-cylinder temperature and the amount of HC.

【符号の説明】[Explanation of symbols]

1…機関本体 6a〜6d…燃料噴射弁 10a…上流側NOX 触媒 10b…下流側NOX 触媒 63…過給機 65…排気循環管 72…圧力センサ1 ... engine body 6 a to 6 d ... fuel injection valves 10a ... upstream NO X catalyst 10b ... downstream NO X catalyst 63 ... turbocharger 65 ... exhaust circulation pipe 72 ... pressure sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F01N 3/24 F01N 3/28 ZAB ZAB 301C 3/28 ZAB 301G 301 F02B 37/02 E H F02B 37/02 F02D 41/02 325A F02M 25/07 580D F02D 41/02 325 B01D 53/36 ZAB F02M 25/07 580 102H (72)発明者 田中 俊明 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 岩田 洋一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内──────────────────────────────────────────────────の Continuation of front page (51) Int.Cl. 6 Identification code FI F01N 3/24 F01N 3/28 ZAB ZAB 301C 3/28 ZAB 301G 301 F02B 37/02 E H F02B 37/02 F02D 41/02 325A F02M 25/07 580D F02D 41/02 325 B01D 53/36 ZAB F02M 25/07 580 102H (72) Inventor Toshiaki Tanaka 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Yoichi Iwata Aichi 1 Toyota Town, Toyota City, Japan

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の気筒を二つの気筒群に分割し、こ
れら気筒群が接続された排気通路が合流する合流部の上
流側の排気通路に還元剤により排気ガスを浄化する上流
側触媒を備えるとともに該合流部の下流側の排気通路に
還元剤により排気ガスを浄化する下流側触媒を備え、前
記上流側触媒と前記合流部との間の排気通路に吸入空気
中に排気ガスを導入するための排気循環管が接続された
筒内直接噴射式内燃機関において、前記上流側触媒に供
給すべき還元剤の量を機関回転数と吸入空気圧とに基づ
いて算出する還元剤量算出手段を具備することを特徴と
する筒内直接噴射式内燃機関の燃料噴射制御装置。
A plurality of cylinders are divided into two cylinder groups, and an upstream catalyst for purifying exhaust gas with a reducing agent is provided in an exhaust passage upstream of a junction where the exhaust passages connected to the cylinder groups merge. A downstream catalyst for purifying exhaust gas with a reducing agent in an exhaust passage downstream of the junction, and introducing exhaust gas into intake air into an exhaust passage between the upstream catalyst and the junction. Amount of reducing agent to be supplied to the upstream catalyst is calculated based on the engine speed and the intake air pressure in a direct injection type internal combustion engine connected to an exhaust circulation pipe for exhaust gas. A fuel injection control device for a direct injection internal combustion engine, comprising:
【請求項2】 前記合流部と前記下流側触媒との間の排
気通路に過給機のタービンホイールを備えたことを特徴
とする請求項1に記載の筒内直接噴射式内燃機関の燃料
噴射制御装置。
2. The fuel injection of a direct injection internal combustion engine according to claim 1, wherein a turbine wheel of a supercharger is provided in an exhaust passage between the junction and the downstream catalyst. Control device.
【請求項3】 前記還元剤量算出手段が前記上流側触媒
に供給すべき還元剤の量を該上流側触媒の温度に基づい
て補正することを特徴とする請求項1に記載の筒内直接
噴射式内燃機関の燃料噴射制御装置。
3. The direct in-cylinder according to claim 1, wherein said reducing agent amount calculating means corrects the amount of reducing agent to be supplied to said upstream catalyst based on the temperature of said upstream catalyst. A fuel injection control device for an injection type internal combustion engine.
【請求項4】 前記還元剤量算出手段が前記下流側触媒
に供給すべき還元剤の量を吸入空気量に基づいて算出す
ることを特徴とする請求項1に記載の筒内直接噴射式内
燃機関の燃料噴射制御装置。
4. The direct injection type internal combustion engine according to claim 1, wherein said reducing agent amount calculating means calculates an amount of reducing agent to be supplied to said downstream side catalyst based on an intake air amount. Engine fuel injection control device.
【請求項5】 前記還元剤量算出手段が前記下流側触媒
に供給すべき還元剤の量を該下流側触媒の温度に基づい
て補正することを特徴とする請求項4に記載の筒内直接
噴射式内燃機関の燃料噴射制御装置。
5. The direct in-cylinder according to claim 4, wherein said reducing agent amount calculating means corrects the amount of reducing agent to be supplied to said downstream catalyst based on the temperature of said downstream catalyst. A fuel injection control device for an injection type internal combustion engine.
JP26708397A 1997-03-19 1997-09-30 Fuel injection control device for in-cylinder direct injection internal combustion engine Expired - Fee Related JP3796919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26708397A JP3796919B2 (en) 1997-03-19 1997-09-30 Fuel injection control device for in-cylinder direct injection internal combustion engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6638497 1997-03-19
JP9-66384 1997-03-19
JP26708397A JP3796919B2 (en) 1997-03-19 1997-09-30 Fuel injection control device for in-cylinder direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JPH10317950A true JPH10317950A (en) 1998-12-02
JP3796919B2 JP3796919B2 (en) 2006-07-12

Family

ID=26407588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26708397A Expired - Fee Related JP3796919B2 (en) 1997-03-19 1997-09-30 Fuel injection control device for in-cylinder direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP3796919B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274911A (en) * 2005-03-29 2006-10-12 Mitsubishi Fuso Truck & Bus Corp Temperature rise controller of aftertreatment device
JP2007002794A (en) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd Controller for cylinder direct injection type spark ignition internal combustion engine
WO2008114730A1 (en) * 2007-03-14 2008-09-25 Toyota Jidosha Kabushiki Kaisha Exhaust control device for internal combustion engine
WO2009017145A1 (en) 2007-08-01 2009-02-05 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
JP2011033039A (en) * 2000-10-31 2011-02-17 Emitec Ges Fuer Emissionstechnologie Mbh Exhaust system
US7958720B2 (en) 2005-05-31 2011-06-14 Nissan Motor Co., Ltd. Combustion control apparatus for direct-injection spark-ignition internal combustion engine
JP2014043819A (en) * 2012-08-28 2014-03-13 Ihi Corp Denitrification apparatus, and denitrification method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033039A (en) * 2000-10-31 2011-02-17 Emitec Ges Fuer Emissionstechnologie Mbh Exhaust system
JP2006274911A (en) * 2005-03-29 2006-10-12 Mitsubishi Fuso Truck & Bus Corp Temperature rise controller of aftertreatment device
US7958720B2 (en) 2005-05-31 2011-06-14 Nissan Motor Co., Ltd. Combustion control apparatus for direct-injection spark-ignition internal combustion engine
JP2007002794A (en) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd Controller for cylinder direct injection type spark ignition internal combustion engine
JP4581867B2 (en) * 2005-06-27 2010-11-17 日産自動車株式会社 In-cylinder direct injection spark ignition internal combustion engine controller
WO2008114730A1 (en) * 2007-03-14 2008-09-25 Toyota Jidosha Kabushiki Kaisha Exhaust control device for internal combustion engine
EP2123877A1 (en) * 2007-03-14 2009-11-25 Toyota Jidosha Kabusiki Kaisha Exhaust control device for internal combustion engine
EP2123877A4 (en) * 2007-03-14 2010-03-10 Toyota Motor Co Ltd Exhaust control device for internal combustion engine
US8286418B2 (en) 2007-03-14 2012-10-16 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
WO2009017145A1 (en) 2007-08-01 2009-02-05 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
JP2014043819A (en) * 2012-08-28 2014-03-13 Ihi Corp Denitrification apparatus, and denitrification method

Also Published As

Publication number Publication date
JP3796919B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
JP3175491B2 (en) Control device for variable cylinder engine
JP4208012B2 (en) Exhaust gas purification device for internal combustion engine
JP2003090250A (en) Control device for diesel engine
JPH1082315A (en) Exhaust emission control device for internal combustion engine
JPH10317946A (en) Exhaust emission control device
JP2003206785A (en) Method and device for controlling engine
JPH11280452A (en) Exhaust emission control device for engine
JP4311441B2 (en) Control device for internal combustion engine
JP2000356125A (en) Exhaust emission control device for internal combustion engine
JP5920368B2 (en) Control device for internal combustion engine
JP3796919B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
JPH10274085A (en) Exhaust emission control device for inter-cylinder injection type internal combustion engine
JPH11101154A (en) Emission control device for internal combustion engine
JPWO2004097200A1 (en) Control device for internal combustion engine
JP3649073B2 (en) Exhaust gas purification device for internal combustion engine
JP2005226600A (en) Exhaust emission control device of internal combustion engine
JP3800633B2 (en) Engine exhaust gas purification device
JP2004245046A (en) Exhaust emission control device of internal combustion engine
JPH0763096A (en) Air-fuel ratio controller of internal combustion engine
JP3767062B2 (en) Air-fuel ratio control device for internal combustion engine
JP3912488B2 (en) Air-fuel ratio control device for multi-cylinder internal combustion engine
JPH1193647A (en) Device for diagnosing deterioration of catalyst for internal combustion engine
JPH1150894A (en) Emission control device of internal combustion engine
WO2023223504A1 (en) Device and method for controlling oxygen storage amount in three-way catalyst
JP3161248B2 (en) Air-fuel ratio control device for internal combustion engine with EGR device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees