JPH10317125A - Production of vapor deposition zinc plated steel strip - Google Patents

Production of vapor deposition zinc plated steel strip

Info

Publication number
JPH10317125A
JPH10317125A JP13220797A JP13220797A JPH10317125A JP H10317125 A JPH10317125 A JP H10317125A JP 13220797 A JP13220797 A JP 13220797A JP 13220797 A JP13220797 A JP 13220797A JP H10317125 A JPH10317125 A JP H10317125A
Authority
JP
Japan
Prior art keywords
steel strip
vapor
plating
deposited
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13220797A
Other languages
Japanese (ja)
Inventor
Kazuyuki Sakamoto
和志 坂本
Yasumi Ariyoshi
康実 有吉
Yasushi Fukui
康 福居
Minoru Saito
実 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP13220797A priority Critical patent/JPH10317125A/en
Publication of JPH10317125A publication Critical patent/JPH10317125A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a vapor deposition Zn plated steel strip or a vapor deposi tion Zn-Mg plated steel strip, having a pore-free dense Zn layer and excellent in corrosion resistance. SOLUTION: At the time of producing a vapor deposition Zn plated steel strip by introducing a continuously traveling steel strip into a vacuum chamber, vapor deposition Zn plating is carried out under the condition that a relation of T>=-(2/5)R+215 is valid between the temp. T( deg.C) of the steel strip to be vapor deposition plated and Zn vapor deposition rate R (g/m<2> .sec), by which the dense vapor deposition Zn plating layer free from pores in the inner part is formed. At the time of producing a vapor deposition Zn-Mg plated steel strip by performing vapor deposition plating treatments with Zn, Mg, and Zn in the order named, a relation of T>=-(2/5)R+215 is valid at the time of applying a first vapor deposition Zn plating. It is preferable that respective Zn vapor deposition treatments are carried out in the vacuum chamber held so that it has an atmosphere composed of nonoxidizing gases of 0.005-1.0 Torr pressure. By this method, the dense vapor deposition Zn layer can be formed, and corrosion resistance inherent in vapor deposition plating can be produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、蒸着Zn系めっき鋼帯
や蒸着Zn−Mg系めっき鋼帯を製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a vapor-deposited Zn-based steel strip or a vapor-deposited Zn-Mg-based steel strip.

【0002】[0002]

【従来の技術】鋼帯の耐食性を向上させるため、従来か
ら各種の表面処理が採用されている。なかでも、代表的
な表面処理方法であるZnめっきには、主として電気め
っき法、溶融めっき法が採用されている。耐食性の向上
に対する要求は年々高まる傾向にあり、これに伴って溶
融めっき法、電気めっき法において種々の改良が提案さ
れている。溶融めっき法でZnめっき鋼帯の耐食性を向
上させようとすると、Znめっき層の付着量を増加させ
る、すなわち、めっき層を厚くすることが先ず考えられ
る。しかし、製造面からの制約により付着量には上限が
あり、付着量の増加によって耐食性の向上を図ることに
は限界がある。また、めっき層が厚くなると、めっき鋼
帯をプレス形成するときにカジリ、フレーキング等の欠
陥を発生させる原因になりやすい。
2. Description of the Related Art Various surface treatments have conventionally been employed to improve the corrosion resistance of steel strips. Among them, an electroplating method and a hot-dip plating method are mainly used for Zn plating, which is a typical surface treatment method. The demand for improvement in corrosion resistance tends to increase year by year, and accordingly, various improvements in hot-dip plating and electroplating have been proposed. In order to improve the corrosion resistance of the Zn-plated steel strip by the hot-dip plating method, firstly, it is conceivable to increase the adhesion amount of the Zn-plated layer, that is, to increase the thickness of the plated layer. However, there is an upper limit to the amount of adhesion due to restrictions from the viewpoint of manufacturing, and there is a limit to improving the corrosion resistance by increasing the amount of adhesion. Further, when the plating layer is thick, it tends to cause defects such as galling and flaking when press-forming the plated steel strip.

【0003】一方、電気めっき法で同様に付着量を増加
させることも考えられる。しかし、電気めっき法で付着
量を増加させることは、めっき金属の折出に必要な電気
量を増加させ、めっき鋼帯のコストを上昇させる原因と
なる。そこで、電気めっき法では、Zn−Ni合金めっ
き等のZn合金めっきを施すことによって耐食性の向上
を図っている。しかし、Zn−Ni合金めっき層は、硬
質で脆く、成形加工の際めっき層に割れや欠け等の欠陥
を発生させやすい。このような欠陥がめっき層に発生す
ると、欠陥部を介して下地鋼が露出するため、めっき層
本来の性能が発揮されず、欠陥部を起点とした腐食が進
行する。
On the other hand, it is conceivable that the amount of adhesion is similarly increased by electroplating. However, increasing the amount of adhesion by the electroplating method increases the amount of electricity required for depositing the plated metal, and causes an increase in the cost of the plated steel strip. Therefore, in the electroplating method, the corrosion resistance is improved by applying a Zn alloy plating such as a Zn-Ni alloy plating. However, the Zn—Ni alloy plating layer is hard and brittle, and tends to generate defects such as cracks and chips in the plating layer during molding. When such a defect occurs in the plating layer, the underlying steel is exposed through the defective portion, so that the original performance of the plating layer is not exhibited, and corrosion starting from the defective portion proceeds.

【0004】[0004]

【発明が解決しようとする課題】以上のような背景か
ら、高耐食性のZn系めっき鋼帯やZn−Mg系めっき
鋼帯を蒸着法で製造することが試みられている。蒸着Z
n系めっき鋼帯,蒸着Zn−Mg系めっき鋼帯等は、従
来のZnめっき鋼帯に比較して優れた耐食性を呈するも
のの、田園地帯の屋外等のように、比較的穏やかな腐食
環境に曝されると本来の高耐食性が発揮されない場合が
ある。本発明者等は、蒸着Znめっきの本来の優れた耐
食性が発現されない原因が蒸着めっき層の組織にあるも
のと考え、めっき層組織と耐食性との関係を調査した。
その結果、鋼帯表面に形成されたZnめっき層が十分緻
密で連続した組織になっていないと、蒸着Zn系めっき
鋼帯本来の特性が発揮されないことが判った。
From the background described above, attempts have been made to produce a highly corrosion-resistant Zn-based plated steel strip or Zn-Mg-based plated steel strip by a vapor deposition method. Deposition Z
n-plated steel strips, vapor-deposited Zn-Mg-based steel strips, etc., exhibit superior corrosion resistance compared to conventional Zn-plated steel strips, but are used in relatively mild corrosive environments such as outdoors in rural areas. When exposed, the original high corrosion resistance may not be exhibited. The present inventors considered that the cause of the lack of the original excellent corrosion resistance of vapor-deposited Zn plating was due to the structure of the vapor-deposited plating layer, and investigated the relationship between the structure of the plating layer and the corrosion resistance.
As a result, it was found that unless the Zn plating layer formed on the surface of the steel strip had a sufficiently dense and continuous structure, the intrinsic properties of the vapor-deposited Zn-based plated steel strip could not be exhibited.

【0005】また、鋼帯にZn,Mg,Znの順で蒸着
めっきして蒸着Zn−Mg系めっき鋼帯を製造する場
合、1回目の蒸着Znめっきによって鋼板表面に形成さ
れたZnめっき層が十分に緻密で連続した組織になって
いないと、その影響がMg層にも反映され、蒸着Zn−
Mg系めっきの高耐食性が発現しないことが判った。本
発明は、このような問題を解消すべく案出されたもので
あり、鋼帯温度とZn蒸着速度との関係を調整すること
により、緻密で連続した組織をもつ蒸着Zn層を形成
し、耐食性に優れた蒸着Zn系めっき鋼帯や蒸着Zn−
Mg系めっき鋼帯を提供することを目的とする。
[0005] In the case of producing a vapor-deposited Zn-Mg-based steel strip by vapor-depositing a steel strip in the order of Zn, Mg, and Zn, a Zn-plated layer formed on the steel sheet surface by the first vapor-deposition Zn plating is formed. If the structure is not sufficiently dense and continuous, the effect is reflected on the Mg layer, and the deposited Zn-
It was found that the high corrosion resistance of the Mg-based plating did not appear. The present invention has been devised to solve such a problem, by adjusting the relationship between the steel strip temperature and the Zn deposition rate, to form a vapor-deposited Zn layer having a dense and continuous structure, Evaporated Zn-based steel strip with excellent corrosion resistance and evaporated Zn-
An object is to provide a Mg-based plated steel strip.

【0006】[0006]

【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、連続走行する鋼帯を真空室に導
入して蒸着Zn系めっき鋼帯を製造する際、蒸着めっき
される鋼帯の温度T(℃)とZnの蒸着速度R(g/m
2 ・秒)との間にT≧−(2/5)R+215の関係が
成立する条件下で蒸着Znめっきを施すことにより、内
部に空隙を含まない緻密な蒸着Znめっき層を形成する
ことを特徴とする。Zn,Mg,Znの順に蒸着めっき
することにより蒸着Zn−Mg系めっき鋼帯を製造する
場合、1回目の蒸着Znめっきを施す際にT≧−(2/
5)R+215の関係を成立させる。何れのZn蒸着
も、圧力0.005〜1.0トールの非酸化性ガス種か
らなる雰囲気に保持された真空室で行うことが好まし
い。
According to the manufacturing method of the present invention, in order to achieve the object, when a continuously running steel strip is introduced into a vacuum chamber to manufacture a vapor-deposited Zn-based steel strip, vapor-deposition plating is performed. Steel strip temperature T (° C) and Zn deposition rate R (g / m
2 · sec) to form a dense vapor-deposited Zn plating layer containing no voids by applying vapor-deposited Zn plating under the condition that T ≧ − (2/5) R + 215 is satisfied. Features. In the case of producing a vapor-deposited Zn—Mg-based steel strip by vapor-depositing Zn, Mg, and Zn in this order, T ≧ − (2 /
5) The relationship of R + 215 is established. It is preferable that any Zn deposition be performed in a vacuum chamber maintained in an atmosphere composed of a non-oxidizing gas species at a pressure of 0.005 to 1.0 Torr.

【0007】[0007]

【作用】鋼帯の蒸着Znめっきでは、飛来したZn蒸気
が鋼帯表面に付着して結晶粒として成長し、めっき層と
なる。Zn蒸気の付着,結晶粒の成長,めっき層の形成
は、蒸着速度や鋼帯温度に影響される。本発明者等は、
蒸着Zn層の組織を調査・研究した結果、次のような理
由で空隙が蒸着Zn層に形成されるものと推察した。め
っき面にZn蒸気を供給すると、めっき面に付着したZ
nは結晶粒となる。更にZn蒸気が連続して飛来する
と、飛来してきたZnが結晶粒に付着し、蒸着Zn層が
次第にZn蒸気の飛来方向に成長する。蒸着速度が小さ
いと、めっき面に発生する結晶粒が少ないためZn蒸気
の飛来方向には成長するが、面内方向から飛来するZn
蒸気が少なければ面内方向には成長しにくくなる。その
ため、鋼帯の面内方向に関して結晶粒が連続化せず、図
1に示すようにZnめっき層に空隙が発生する。
In the vapor-deposited Zn plating of a steel strip, flying Zn vapor adheres to the surface of the steel strip and grows as crystal grains to form a plating layer. The deposition of Zn vapor, the growth of crystal grains, and the formation of a plating layer are affected by the deposition rate and the temperature of the steel strip. The present inventors,
As a result of investigating and studying the structure of the deposited Zn layer, it was presumed that voids were formed in the deposited Zn layer for the following reasons. When Zn vapor is supplied to the plating surface, Z
n is a crystal grain. Further, when the Zn vapor continuously comes, the flying Zn adheres to the crystal grains, and the deposited Zn layer gradually grows in the direction in which the Zn vapor comes. If the deposition rate is low, there are few crystal grains generated on the plating surface, so that the Zn vapor grows in the flying direction.
If the vapor is small, it is difficult to grow in the in-plane direction. Therefore, the crystal grains do not become continuous in the in-plane direction of the steel strip, and voids are generated in the Zn plating layer as shown in FIG.

【0008】これに対し、蒸着速度が大きいと、めっき
面に形成されるZnの結晶粒が多くなるので、不連続が
発生しにくくなる。大きな蒸着速度ではめっき面に供給
されるZn蒸気も多量になるので、Zn蒸気が相互に衝
突し、めっき面からみてZn蒸気の飛来方向が不揃いと
なり、バラバラの方向からZn蒸気が飛来することにな
る。その結果、面内方向における結晶粒の成長が促進さ
れ、空隙がない連続したZn層が形成される。めっき面
に付着したZnはめっき面内を移動するが、Znの移動
はめっき面の温度が高いほど促進される。そのため、蒸
着速度が小さく結晶粒が面内方向に成長し難い場合で
も、めっき面の温度を高くすると、付着したZnの移動
によって面内方向への成長が促進され、結果として蒸着
速度が小さくても連続した蒸着Zn層が形成され易くな
る。
On the other hand, when the deposition rate is high, the number of Zn crystal grains formed on the plating surface increases, so that discontinuity is less likely to occur. At a high deposition rate, a large amount of Zn vapor is supplied to the plating surface, so that the Zn vapor collides with each other, and the flying directions of the Zn vapor become uneven when viewed from the plating surface, so that the Zn vapor comes from different directions. Become. As a result, the growth of crystal grains in the in-plane direction is promoted, and a continuous Zn layer without voids is formed. Zn attached to the plated surface moves in the plated surface, and the movement of Zn is promoted as the temperature of the plated surface increases. Therefore, even when the deposition rate is small and the crystal grains are difficult to grow in the in-plane direction, if the temperature of the plating surface is increased, the growth of the deposited Zn is promoted in the in-plane direction by the movement of the attached Zn, and as a result, the deposition rate is small. Also, a continuous deposited Zn layer is easily formed.

【0009】このような蒸着速度及び鋼帯温度が蒸着Z
n層の生成,成長に及ぼす影響を多数の実験から定量的
に解析した結果、蒸着めっきされる鋼帯の温度T(℃)
とZnの蒸着速度R(g/m2 ・秒)との間にT≧−
(2/5)R+215の関係が成立するとき、内部に空
隙を含まない緻密で健全な組織をもつ蒸着Zn層が形成
されることを解明した。また、この蒸着Zn層の上にM
g,Znを更に蒸着するとき、最終的に形成されるZn
−Mg系めっき層は、本来の高耐食性を安定的に呈する
ことが判った。これに対し、T<−(2/5)R+21
5の条件下でZn蒸着すると、図1に示すように空隙を
もつ蒸着Zn層が形成され易い。また、この蒸着Zn層
の上にMg,Znを更に蒸着し拡散させてZn−Mg系
めっき層を形成すると、図2に示すように下層のZn層
に空隙が含まれているので、本来の高耐食性が発現しな
い。
[0009] Such a deposition rate and a steel strip temperature are determined by the deposition Z
As a result of quantitative analysis of the effects on the formation and growth of the n-layer from a number of experiments, the temperature T (° C.)
T ≧ − between Zn and the deposition rate R of Zn (g / m 2 · second).
It has been clarified that when the relationship of (2/5) R + 215 is established, a deposited Zn layer having a dense and sound structure without voids therein is formed. In addition, M
When further depositing g and Zn, the finally formed Zn
It was found that the Mg-based plating layer stably exhibited the original high corrosion resistance. On the other hand, T <− (2/5) R + 21
When Zn is deposited under the condition of 5, the deposited Zn layer having voids is easily formed as shown in FIG. Further, when Mg and Zn are further vapor-deposited and diffused on the vapor-deposited Zn layer to form a Zn—Mg-based plating layer, as shown in FIG. 2, the underlying Zn layer contains voids. Does not exhibit high corrosion resistance.

【0010】蒸着Zn層の成長は、雰囲気に含まれるガ
ス成分の圧力が高い場合、雰囲気圧の影響を受け易い。
雰囲気中に不可避的に存在する水蒸気(H2 O)等の酸
化性ガス成分によってめっき表面が酸化・汚染され、緻
密で連続化した蒸着Zn層の成長が妨げられるので、乾
燥窒素ガス等で置換した後、排気することにより酸化性
ガス成分による悪影響を抑制する。雰囲気圧が高いと、
めっき面に到達するガス成分が多くなり、めっき面に付
着したZnの移動を阻害する。蒸着Zn層が成長する場
合、めっき面に到達する単位時間当りの個数で比較する
と、到達する雰囲気ガスの分子の数/Zn蒸気の個数の
比を1.0以下に抑制することにより、良好な組織をも
つ蒸着Zn層が形成される。たとえば、Znの蒸着速度
が300g/m2 ・秒の場合、雰囲気ガスの圧力が1.
0トールであると、到達する雰囲気ガスの分子の数/Z
n蒸気の個数の比は1.0になる。
The growth of the deposited Zn layer is easily affected by the atmospheric pressure when the pressure of the gas component contained in the atmosphere is high.
Oxidizing gas components such as water vapor (H 2 O) unavoidably present in the atmosphere oxidize and contaminate the plating surface, hindering the growth of a dense and continuous deposited Zn layer. After that, the exhaust gas is exhausted to suppress the adverse effect of the oxidizing gas component. If the atmospheric pressure is high,
The gas component reaching the plating surface increases, which hinders the movement of Zn attached to the plating surface. When a vapor-deposited Zn layer grows, the ratio of the number of molecules of the ambient gas / the number of Zn vapor reaching to the surface per unit time is suppressed to 1.0 or less. A deposited Zn layer having a texture is formed. For example, when the deposition rate of Zn is 300 g / m 2 · sec, the pressure of the atmosphere gas is 1.
If the pressure is 0 Torr, the number of molecules of the atmospheric gas to be reached / Z
The ratio of the number of n vapors becomes 1.0.

【0011】蒸着室の内部は、真空ポンプによって排気
される。たとえば、図3に示す蒸着Znめっき設備は、
0.005〜1.0トールの真空圧力の範囲で操業され
ている。0.005トール程度までの圧力は、ルーツポ
ンプ等によって比較的容易に得られる。0.005トー
ル以下の低圧力(高真空)を実現することは可能である
が、真空ポンプの油の逆流等に対する対策が必要にな
り、排気系統の配管も大口径になることから、工業的な
製造設備としては現実的でない。また、1.0トールを
超える高圧力(低真空)でZn蒸着すると、Zn蒸気が
相互に凝集して粉末状になり易く、Zn粉末が鋼帯に付
着する傾向がみられる。そのため、Zn蒸着の際の雰囲
気圧は、1.0トール以下に設定することが好ましい。
なお、鋼帯表面が清浄であれば、室温程度の温度の鋼帯
に蒸着Znめっきしても十分な密着性が得られる。すな
わち、真空槽に導入される鋼帯の温度を少なくとも20
℃以上に保持することで蒸着Znめっきが可能となる。
The inside of the evaporation chamber is evacuated by a vacuum pump. For example, the vapor deposition Zn plating equipment shown in FIG.
It operates in a vacuum pressure range of 0.005 to 1.0 Torr. Pressures up to about 0.005 Torr can be obtained relatively easily with a Roots pump or the like. It is possible to realize a low pressure (high vacuum) of 0.005 Torr or less, but it is necessary to take countermeasures against the backflow of oil from the vacuum pump, and the piping of the exhaust system becomes large in diameter. It is not realistic as a simple manufacturing facility. Further, when Zn is deposited at a high pressure (low vacuum) exceeding 1.0 Torr, the Zn vapors tend to aggregate with each other to form a powder, and the Zn powder tends to adhere to the steel strip. Therefore, it is preferable to set the atmospheric pressure at the time of Zn deposition to 1.0 Torr or less.
In addition, if the steel strip surface is clean, sufficient adhesion can be obtained even by vapor deposition Zn plating on a steel strip at a temperature around room temperature. That is, the temperature of the steel strip introduced into the vacuum chamber is set to at least 20
By maintaining the temperature at not less than ° C., vapor deposition Zn plating can be performed.

【0012】[0012]

【実施の形態】図3は、本発明を拘束するものではない
が、3層構造のめっき層をもつ蒸着Zn−Mg系めっき
鋼帯を製造する蒸着めっきラインを示している。蒸着Z
nめっき鋼帯は、Mg蒸着系統のない蒸着めっきライン
又は図3のMg蒸着系統を休止させたラインで製造され
る。めっき原板10は、ペイオフリール11から巻き戻
され、無酸化炉20及び還元焼鈍炉25で表面活性化及
び焼鈍された後、鋼帯温度制御装置26を経て真空室3
0に導かれる。鋼帯温度制御装置26は、窒素及び水素
の混合ガスを吹き付けることによりめっき原板10を冷
却する装置であり、吹き付けるガス量によりめっき原板
10の温度が調整される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 shows a vapor deposition plating line for producing a vapor-deposited Zn-Mg-based steel strip having a plating layer having a three-layer structure, without restricting the present invention. Deposition Z
The n-plated steel strip is manufactured by a vapor deposition plating line having no Mg vapor deposition system or a line in which the Mg vapor deposition system of FIG. 3 is stopped. The plating base plate 10 is unwound from the payoff reel 11, surface-activated and annealed in a non-oxidizing furnace 20 and a reduction annealing furnace 25, and then passed through a steel strip temperature control device 26 to form a vacuum chamber 3.
It is led to 0. The steel strip temperature control device 26 is a device that cools the plating base plate 10 by blowing a mixed gas of nitrogen and hydrogen, and the temperature of the plating base plate 10 is adjusted by the amount of the blown gas.

【0013】真空室30は、入側真空シール部31及び
出側真空シール部32を備えた気密構造をもち、適宜の
真空ポンプにより0.05トール程度の減圧雰囲気に維
持される。真空室30に配置された蒸着室33の内部に
は、めっき原板10の搬送方向に沿ってプレZn蒸着部
34,Mg蒸着部35及びポストZn蒸着部36が順次
配置されている。プレZn蒸着部34,Mg蒸着部35
及びポストZn蒸着部36では、蒸発源(図示せず)に
接続されているプレZnダクト37,Mgダクト38及
びポストZnダクト39が走行中のめっき原板10に向
けて開口している。真空室30に導入されためっき原板
10は、蒸着Zn−Mg系めっき鋼帯を製造する場合、
プレZn蒸着部34で先ずプレZn蒸着され、次いでM
g蒸着部35でMg蒸着され、更にポストZn蒸着部3
6でZn蒸着される。蒸着Zn系めっき鋼帯を製造する
場合、プレZn蒸着部34のみで、又はMg蒸着部35
を休止させた状態でプレZn蒸着部34及びポストZn
蒸着部37でZn蒸着される。蒸着めっきは、必要に応
じてめっき原板10の片面又は両面に施される。
The vacuum chamber 30 has an airtight structure having an inlet-side vacuum seal portion 31 and an outlet-side vacuum seal portion 32, and is maintained in a reduced pressure atmosphere of about 0.05 Torr by an appropriate vacuum pump. Inside the vapor deposition chamber 33 disposed in the vacuum chamber 30, a pre-Zn vapor deposition unit 34, a Mg vapor deposition unit 35, and a post Zn vapor deposition unit 36 are sequentially disposed along the transport direction of the plating original plate 10. Pre-Zn deposition unit 34, Mg deposition unit 35
In the post-Zn vapor deposition section 36, a pre-Zn duct 37, a Mg duct 38, and a post-Zn duct 39 connected to an evaporation source (not shown) are open toward the running plating original plate 10. When the plating original plate 10 introduced into the vacuum chamber 30 is used to produce a vapor-deposited Zn-Mg-based plated steel strip,
In the pre-Zn deposition section 34, pre-Zn is first deposited, and then M
The Mg deposition section 35 deposits Mg, and the post Zn deposition section 3
6, Zn is deposited. When producing a vapor-deposited Zn-based plated steel strip, only the pre-Zn vapor deposition unit 34 or the Mg vapor deposition unit 35
Is stopped and the pre-Zn deposition unit 34 and the post Zn
Zn is vapor-deposited in the vapor deposition section 37. The vapor deposition plating is performed on one side or both sides of the original plating plate 10 as necessary.

【0014】蒸着後のめっき鋼帯15は、出側真空シー
ル部32を経て真空室30から送り出され、冷却装置4
0を通り、最終的にめっき鋼帯15として巻取りリール
16に巻き取られる。めっき鋼帯15は、冷却装置40
において窒素ガス吹付けにより冷却される。冷却装置4
0の冷却能は、吹き付ける窒素ガスや空気の温度及び流
量によって調整される。めっき原板を連続走行させなが
ら蒸着めっきを施す場合、製造条件としては、製造しよ
うとするめっき鋼帯の付着量G,めっき原板の走行速度
V,蒸着めっきを施す部分の長さL等がある。長さL
は、設備の仕様として予め決まっている。これらの操業
条件とプレめっきZnの蒸着速度Rとの間には、次の関
係が成立する。
The plated steel strip 15 after the vapor deposition is sent out of the vacuum chamber 30 through the outlet side vacuum seal section 32 and is cooled.
0, and finally wound up on a take-up reel 16 as a plated steel strip 15. The plated steel strip 15 has a cooling device 40.
Is cooled by blowing nitrogen gas. Cooling device 4
The cooling capacity of 0 is adjusted by the temperature and flow rate of the blown nitrogen gas or air. When vapor deposition plating is performed while the plating base plate is continuously running, the manufacturing conditions include the adhesion amount G of the plated steel strip to be manufactured, the traveling speed V of the plating base plate, the length L of the portion to be subjected to vapor deposition plating, and the like. Length L
Is predetermined as the equipment specification. The following relationship is established between these operating conditions and the deposition rate R of the pre-plated Zn.

【0015】 たとえば、プレZnの蒸着長さL=0.5mの製造ライ
ンにおいて、めっき原板の走行速度V=0.83m/秒
(50m/分)で付着量G=30g/m2 のZnめっき
を施す場合、上式の関係を満足するように50g/m2
・秒の蒸着速度でZn蒸気をめっき原板に供給する必要
がある。 すなわち、製造しようとするめっき鋼帯の仕様(付着量
G)と製造条件(鋼帯の走行速度V)及び製造ラインの
仕様(蒸着長さL)によって、Znの蒸着速度Rが決定
される。このように決定された蒸着速度Rに応じて、鋼
帯温度制御装置26によってめっき原板10の温度を、
適正に調節する。
[0015] For example, in the case of performing Zn plating with a deposition amount G of 30 g / m 2 at a running speed V of a plating original plate of 0.83 m / sec (50 m / min) on a production line having a pre-Zn deposition length L = 0.5 m. , 50 g / m 2 so as to satisfy the above equation.
It is necessary to supply Zn vapor to the plating base plate at a deposition rate of seconds. That is, the deposition rate R of Zn is determined by the specifications of the plated steel strip to be manufactured (adhesion amount G), the manufacturing conditions (running speed V of the steel strip), and the specifications of the manufacturing line (deposition length L). According to the deposition rate R determined in this way, the temperature of the plating base plate 10 is changed by the steel strip temperature controller 26.
Adjust properly.

【0016】[0016]

【実施例】図3の蒸着めっきラインを用い、表1〜4に
示す各種製造条件下で蒸着Zn系めっき鋼帯及び蒸着Z
n−Mg系めっき鋼帯を製造した。表1及び表2の製造
条件では、めっき付着量G及び鋼帯走行速度Vを段階的
に固定しておき、換言すればZn蒸着速度Rを段階的に
一定にした条件下でZn蒸着時の鋼帯温度を変化させ
た。なお、蒸着室33の雰囲気圧力は、0.05トール
と共通にした。蒸着Zn系めっき鋼帯を製造する場合、
プレZn蒸着部34だけを稼動させた。蒸着Zn−Mg
系めっき鋼帯を製造する場合、同じ条件下でプレZn蒸
着部34でプレZn蒸着した後、Mg蒸着部35でMg
蒸着し、ポストZn蒸着部36でポストZnめっきし
た。蒸着Zn−Mg系めっき鋼帯製造時のプレZn層の
蒸着条件とめっき層組織との関係は蒸着Znめっき鋼帯
を製造する場合と同じであるから、以下の説明では蒸着
Zn系めっき鋼帯について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Using the vapor deposition plating line shown in FIG.
An n-Mg-based plated steel strip was manufactured. In the production conditions of Tables 1 and 2, the coating weight G and the steel strip traveling speed V are fixed stepwise, in other words, the Zn deposition rate R is set stepwise at a constant stepwise rate. The steel strip temperature was changed. The atmosphere pressure in the vapor deposition chamber 33 was set to 0.05 Torr. When manufacturing a vapor-deposited Zn-based plated steel strip,
Only the pre-Zn deposition unit 34 was operated. Evaporated Zn-Mg
When manufacturing a system-plated steel strip, pre-Zn deposition is performed in the pre-Zn deposition section 34 under the same conditions, and then Mg is deposited in the Mg deposition section 35.
It was vapor-deposited and post-Zn-plated in a post-Zn vapor deposition unit 36. The relationship between the deposition conditions of the pre-Zn layer and the structure of the plating layer during the production of the vapor-deposited Zn-Mg-plated steel strip is the same as in the case of producing the vapor-deposited Zn-plated steel strip. Will be described.

【0017】表3は、蒸着室33の雰囲気圧力を一定値
0.05トールに維持して鋼帯温度を変化させ、鋼帯温
度がめっき層の組織に及ぼす影響を調査した結果を示
す。表4は、蒸着条件を固定して雰囲気圧力を変化さ
せ、雰囲気圧力がめっき層の組織に及ぼす影響を示す。
なお、鋼帯温度は、鋼帯温度制御装置26で制御した。
この鋼帯温度制御装置26は、窒素と水素の混合ガスを
鋼帯表面に吹き付けることにより鋼帯を冷却する装置で
あり、吹付けガス量の増減により鋼帯温度が調節され
る。蒸着室33の雰囲気圧力は、入側真空シール装置3
1,出側真空シール装置32のシール状態の調節,蒸着
室33に取り付けられた真空ポンプに接続されている排
気バルブの開度調節等によって制御される。製造された
蒸着Zn系めっき鋼帯及び蒸着Zn−Mg系めっき鋼帯
の断面組織を電子顕微鏡で観察し、蒸着Znめっき層及
びプレZn層の組織を調査した。図1に示したようなプ
レZn層の内部に何らの空隙が検出されなかった場合を
プレZn層の組織が良好(○),空隙が検出された場合
をプレZn層の組織が不良(×)と判定し、判定結果を
表1〜4に併せ示す。また、蒸着速度Rと鋼帯温度Tと
の関係でめっき層組織の良否を判定したところ、図4に
示すようにT≧−(2/5)R+215で空隙のない緻
密組織のめっき層が形成されることが判った。
Table 3 shows the results obtained by changing the steel strip temperature while maintaining the atmospheric pressure of the vapor deposition chamber 33 at a constant value of 0.05 Torr, and examining the effect of the steel strip temperature on the structure of the plating layer. Table 4 shows the influence of the atmospheric pressure on the structure of the plating layer by changing the atmospheric pressure while fixing the deposition conditions.
The steel strip temperature was controlled by the steel strip temperature control device 26.
The steel strip temperature control device 26 is a device that cools the steel strip by spraying a mixed gas of nitrogen and hydrogen onto the steel strip surface, and the steel strip temperature is adjusted by increasing or decreasing the amount of the blowing gas. The atmospheric pressure of the vapor deposition chamber 33 is controlled by the input side vacuum sealing device 3
1. The control is performed by adjusting the sealing state of the outlet side vacuum sealing device 32, adjusting the opening of an exhaust valve connected to a vacuum pump attached to the vapor deposition chamber 33, and the like. The cross-sectional structures of the manufactured vapor-deposited Zn-based plated steel strip and vapor-deposited Zn-Mg-based plated steel strip were observed with an electron microscope, and the structures of the vapor-deposited Zn plating layer and the pre-Zn layer were investigated. When no voids were detected inside the pre-Zn layer as shown in FIG. 1, the structure of the pre-Zn layer was good (○), and when the voids were detected, the texture of the pre-Zn layer was poor (×). ) And the results are shown in Tables 1 to 4. In addition, when the quality of the plating layer structure was determined based on the relationship between the deposition rate R and the steel strip temperature T, as shown in FIG. 4, a plating layer having a dense structure without voids was formed at T ≧ − (2/5) R + 215 as shown in FIG. It turned out to be.

【0018】 [0018]

【0019】 [0019]

【0020】 [0020]

【0021】 [0021]

【0022】表1〜4の結果から、組織が良好な蒸着Z
n層を形成するためには、Zn蒸気を高温でめっき表面
に付着させ且つめっき原板の温度を高く保持すればよい
ことが判る。また、蒸着速度Rと鋼帯温度Tとの関係で
めっき層組織の良否を判定したところ、図4に示すよう
にT≧−(2/5)R+215で空隙のない緻密組織の
めっき層が形成されることが判った。具体的には、Zn
蒸着されるめっき原板10の温度が100℃以上150
℃未満の場合には蒸着速度300g/m2 ・秒以下の条
件でZn蒸着するように、めっき原板10の温度が15
0℃以上200℃未満の場合には200〜300g/m
2 ・秒でZnを蒸着するように、めっき原板10の温度
が200℃以上220℃未満の場合にはZnを50〜3
00g/m2 ・秒で蒸着し、めっき原板10の温度が2
20℃以上370℃未満の場合にはZnを5〜300g
/m2 ・秒で蒸着するように、めっきされる鋼帯温度と
Znの蒸着速度との組合せを選択することにより、内部
に空隙がなく緻密に連続した蒸着Zn層が形成されるこ
とを確認した。なお、めっき原板10の温度を370℃
未満と規定したのは、この温度を超えて蒸着Znめっき
しても下地鋼とZnめっき層との間でFeとZnの拡散
により合金化が起こり、図1又は図2に示したような断
面のめっき構造をもつ蒸着Zn系めっき鋼帯又は蒸着Z
n−Mg系めっき鋼帯が得られないためである。このよ
うにして形成された蒸着Znめっき層をもつ蒸着Zn系
めっき鋼帯及び同様に緻密なプレZn層を介してZn−
Mg層及びポストZn層が形成された3層構造の蒸着Z
n−Mg系めっき鋼帯は、種々の耐食試験で極めて良好
な耐食性を呈した。他方、空隙のある蒸着Znめっき層
をもつ蒸着Zn系めっき鋼帯及び空隙のあるプレZn層
をもつ蒸着Zn−Mg系めっき鋼帯は、海岸地域から遠
く温暖な気候の田園地帯等の穏やかな腐食環境で屋外暴
露する腐食試験で腐食が発生した。
From the results shown in Tables 1 to 4, it can be seen from the results that the deposition Z having a good structure was obtained.
It can be seen that in order to form the n-layer, Zn vapor should be adhered to the plating surface at a high temperature and the temperature of the original plating plate should be kept high. In addition, when the quality of the plating layer structure was determined based on the relationship between the deposition rate R and the steel strip temperature T, as shown in FIG. 4, a plating layer having a dense structure without voids was formed at T ≧ − (2/5) R + 215 as shown in FIG. It turned out to be. Specifically, Zn
The temperature of the plating base plate 10 to be deposited is 100 ° C. or higher and 150
When the temperature is lower than 150 ° C., the temperature of the original plating plate 10 is set at 15 ° C. so that Zn is deposited at a deposition rate of 300 g / m 2 second or less.
200 to 300 g / m when 0 ° C or higher and lower than 200 ° C
When the temperature of the plating base plate 10 is 200 ° C. or more and less than 220 ° C., Zn is reduced to 50 to 3 so that Zn is deposited in 2 seconds.
Deposited at 00 g / m 2 · sec.
When the temperature is 20 ° C. or more and less than 370 ° C., 5-300 g of Zn
/ M 2 · sec, by selecting the combination of the temperature of the steel strip to be plated and the deposition rate of Zn so as to confirm that a dense and continuous deposited Zn layer without voids is formed inside did. The temperature of the original plating plate 10 was 370 ° C.
The reason for defining the lower limit is that even if the Zn plating is performed at a temperature exceeding this temperature, alloying occurs due to the diffusion of Fe and Zn between the base steel and the Zn plating layer, and the cross section as shown in FIG. 1 or FIG. Zn-plated steel strip or Z with a plating structure of
This is because an n-Mg-based plated steel strip cannot be obtained. Through the deposited Zn-based plated steel strip having the deposited Zn plating layer formed in this way and the similarly dense pre-Zn layer, the Zn-
Deposition Z of three-layer structure with Mg layer and post Zn layer formed
The n-Mg plated steel strip exhibited extremely good corrosion resistance in various corrosion tests. On the other hand, a vapor-deposited Zn-based steel strip having a vapor-deposited Zn-plated layer and a vapor-deposited Zn-Mg-plated steel strip having a voided pre-Zn layer are milder in a countryside far from the coastal region and in a warm climate. Corrosion occurred in a corrosion test exposed outdoors in a corrosive environment.

【0023】[0023]

【発明の効果】以上に説明したように、本発明に従って
蒸着Zn系めっき鋼帯を製造するとき、Zn蒸気の蒸着
速度及び鋼帯温度を相関的に制御することにより、空隙
のない緻密な蒸着Zn層を鋼帯表面に形成している。こ
のようにして製造された蒸着Zn系めっき鋼帯は、蒸着
めっき特有の優れた耐食性を発揮する。また、蒸着Zn
−Mg系めっき鋼帯の製造では、同様にして形成された
空隙のない緻密なプレZn層を第1層とし、その上にZ
n−Mg層及びポストZn層を形成している。このよう
にして形成された3層構造の蒸着Zn−Mg系めっき層
は、めっき層内部に欠陥がなく、従来の蒸着Zn−Mg
系めっき鋼帯本来の高耐食性が発揮され、特に田園地帯
等の穏やかな腐食環境において耐久性に優れた建材等と
して使用される。
As described above, when producing a vapor-deposited Zn-based plated steel strip according to the present invention, dense vapor deposition without voids is controlled by correlating the vapor deposition rate of Zn vapor and the steel strip temperature. A Zn layer is formed on the surface of the steel strip. The vapor-deposited Zn-plated steel strip produced in this manner exhibits excellent corrosion resistance unique to vapor-deposition plating. In addition, evaporation Zn
-In the production of a Mg-based plated steel strip, a dense pre-Zn layer having no voids formed in the same manner is used as the first layer, and Z
An n-Mg layer and a post Zn layer are formed. The deposited Zn—Mg-based plating layer having a three-layer structure formed as described above has no defect inside the plating layer, and has a conventional deposition Zn—Mg-based plating layer.
It exhibits the high corrosion resistance inherent in a system-plated steel strip and is used as a building material with excellent durability especially in a mild corrosive environment such as a rural area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 空隙のある蒸着Zn層が形成された蒸着Zn
めっき鋼帯の断面構造
FIG. 1 shows a vapor-deposited Zn on which a vapor-deposited Zn layer is formed.
Sectional structure of galvanized steel strip

【図2】 空隙のあるプレZn層をもつ蒸着Zn−Mg
系めっき鋼帯の断面構造
FIG. 2 Evaporated Zn-Mg with pre-Zn layer with voids
Section structure of system-coated steel strip

【図3】 蒸着Zn−Mg系めっき鋼帯を製造する蒸着
めっきライン
FIG. 3 A vapor deposition plating line for producing a vapor-deposited Zn—Mg-based steel strip

【図4】 蒸着速度及び鋼帯温度がめっき層の組織に及
ぼす影響
Fig. 4 Effect of deposition rate and steel strip temperature on microstructure of plated layer

【符号の説明】[Explanation of symbols]

10:めっき原板(鋼帯) 11:ペイオフリール
15:めっき鋼帯 16:巻取りリール 20:無酸化炉 25:還元焼鈍炉 26:鋼帯温
度制御装置 30:真空室 31:入側真空シール部 32:出
側真空シール部 33:蒸着室 34:プレZn蒸着部 35:Mg
蒸着部 36:ポストZn蒸着部 37:プレZn
ダクト 38:Mgダクト 39:ポストZnダク
ト 40:冷却装置
10: Plated steel plate (steel strip) 11: Payoff reel
15: Plated steel strip 16: Take-up reel 20: Non-oxidizing furnace 25: Reduction annealing furnace 26: Steel strip temperature control device 30: Vacuum chamber 31: Inlet vacuum seal part 32: Outlet vacuum seal part 33: Evaporation chamber 34 : Pre-Zn deposition unit 35: Mg
Deposition section 36: Post Zn deposition section 37: Pre-Zn
Duct 38: Mg duct 39: Post Zn duct 40: Cooling device

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年7月15日[Submission date] July 15, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0005】また、鋼帯にZn,Mg,Znの順で蒸着
めっきして蒸着Zn−Mg系めっき鋼帯を製造する場
合、1回目の蒸着Znめっきによって鋼板表面に形成さ
れたZnめっき層が十分に緻密で連続した組織になって
いないと、蒸着Zn−Mg系めっきの高耐食性が発現し
ないことが判った。本発明は、このような問題を解消す
べく案出されたものであり、鋼帯温度とZn蒸着速度と
の関係を調整することにより、緻密で連続した組織をも
つ蒸着Zn層を形成し、耐食性に優れた蒸着Zn系めっ
き鋼帯や蒸着Zn−Mg系めっき鋼帯を提供することを
目的とする。
[0005] In the case of producing a vapor-deposited Zn-Mg-based steel strip by vapor-depositing a steel strip in the order of Zn, Mg, and Zn, a Zn-plated layer formed on the steel sheet surface by the first vapor-deposition Zn plating is formed. It was found that if the structure was not sufficiently dense and continuous, high corrosion resistance of the deposited Zn-Mg based plating would not be exhibited. The present invention has been devised to solve such a problem, by adjusting the relationship between the steel strip temperature and the Zn deposition rate, to form a vapor-deposited Zn layer having a dense and continuous structure, An object is to provide a vapor-deposited Zn-based plated steel strip and a vapor-deposited Zn-Mg-based plated steel strip having excellent corrosion resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 斎藤 実 大阪府堺市石津西町5番地 日新製鋼株式 会社技術研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Minoru Saito 5th Ishizu Nishimachi, Sakai-shi, Osaka Nisshin Steel Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 連続走行する鋼帯を真空室に導入して蒸
着Zn系めっき鋼帯を製造する際、蒸着めっきされる鋼
帯の温度T(℃)とZnの蒸着速度R(g/m2 ・秒)
との間にT≧−(2/5)R+215の関係が成立する
条件下で蒸着Znめっきを施すことにより、内部に空隙
を含まない緻密な蒸着Znめっき層を形成することを特
徴とする蒸着Zn系めっき鋼帯の製造方法。
When a continuously traveling steel strip is introduced into a vacuum chamber to produce a vapor-deposited Zn-based steel strip, the temperature T (° C.) of the steel strip to be vapor-deposited and the Zn deposition rate R (g / m 2). 2 seconds)
A dense vapor-deposited Zn plating layer containing no voids therein by applying vapor-deposited Zn plating under a condition that a relationship of T ≧ − (2/5) R + 215 is established between the two. A method for producing a Zn-based plated steel strip.
【請求項2】 圧力0.005〜1.0トールの非酸化
性ガス種からなる雰囲気に、蒸着Znめっきが行われる
真空室を保持する請求項1記載の蒸着Zn系めっき鋼帯
の製造方法。
2. A method for producing a vapor-deposited Zn-based plated steel strip according to claim 1, wherein a vacuum chamber in which vapor-deposited Zn plating is performed is held in an atmosphere composed of a non-oxidizing gas species at a pressure of 0.005 to 1.0 Torr. .
【請求項3】 連続走行する鋼帯を真空室に導入し、Z
n,Mg,Znの順に蒸着めっきすることにより蒸着Z
n−Mg系めっき鋼帯を製造する際、蒸着めっきされる
鋼帯の温度T(℃)とZnの蒸着速度R(g/m2
秒)との間にT≧−(2/5)R+215の関係が成立
する条件下で1回目の蒸着Znめっきを施すことによ
り、内部に空隙を含まない緻密な蒸着Znめっき層を1
回目の蒸着Znめっきで形成することを特徴とする蒸着
Zn−Mg系めっき鋼帯の製造方法。
3. A continuously running steel strip is introduced into a vacuum chamber.
vapor deposition Z by vapor deposition plating in the order of n, Mg, Zn
When producing an n-Mg-based steel strip, the temperature T (° C.) of the steel strip to be vapor-deposited and the Zn deposition rate R (g / m 2.
The second deposition Zn plating is performed under the condition that the relationship of T ≧ − (2/5) R + 215 is established between the first deposition Zn plating layer and the second deposition plating layer.
A method for producing a vapor-deposited Zn-Mg-based steel strip, which is formed by a second vapor-deposited Zn plating.
【請求項4】 圧力0.005〜1.0トールの非酸化
性ガス種からなる雰囲気に、蒸着Znめっきが行われる
真空室を保持する請求項3記載の蒸着Zn−Mg系めっ
き鋼帯の製造方法。
4. The vapor-deposited Zn—Mg-based steel strip according to claim 3, wherein a vacuum chamber in which vapor-deposition Zn plating is performed is held in an atmosphere composed of a non-oxidizing gas species at a pressure of 0.005 to 1.0 Torr. Production method.
JP13220797A 1997-05-22 1997-05-22 Production of vapor deposition zinc plated steel strip Withdrawn JPH10317125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13220797A JPH10317125A (en) 1997-05-22 1997-05-22 Production of vapor deposition zinc plated steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13220797A JPH10317125A (en) 1997-05-22 1997-05-22 Production of vapor deposition zinc plated steel strip

Publications (1)

Publication Number Publication Date
JPH10317125A true JPH10317125A (en) 1998-12-02

Family

ID=15075909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13220797A Withdrawn JPH10317125A (en) 1997-05-22 1997-05-22 Production of vapor deposition zinc plated steel strip

Country Status (1)

Country Link
JP (1) JPH10317125A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2085492A1 (en) 2007-12-28 2009-08-05 Posco Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
CN106399945A (en) * 2016-09-30 2017-02-15 中国科学院合肥物质科学研究院 Preparation method for growing zinc alloy plating on surface of biological porous magnesium
CN110168141A (en) * 2016-12-22 2019-08-23 Posco公司 The coated steel sheet and its manufacturing method of multilayered structure
KR20220076773A (en) * 2020-12-01 2022-06-08 주식회사 포스코 Plated steel sheet having multilayer structure and welded structure using the same, and manufacturing method for the plated steel sheet having multilayer structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2085492A1 (en) 2007-12-28 2009-08-05 Posco Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
US9382630B2 (en) 2007-12-28 2016-07-05 Posco Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
CN106399945A (en) * 2016-09-30 2017-02-15 中国科学院合肥物质科学研究院 Preparation method for growing zinc alloy plating on surface of biological porous magnesium
CN106399945B (en) * 2016-09-30 2020-09-18 中国科学院合肥物质科学研究院 Preparation method of zinc alloy coating grown on surface of biological porous magnesium
CN110168141A (en) * 2016-12-22 2019-08-23 Posco公司 The coated steel sheet and its manufacturing method of multilayered structure
JP2020502368A (en) * 2016-12-22 2020-01-23 ポスコPosco Multi-layered plated steel sheet and method of manufacturing the same
US20200080205A1 (en) * 2016-12-22 2020-03-12 Posco Plated steel sheet having multilayer structure and manufacturing method therefor
US10988845B2 (en) * 2016-12-22 2021-04-27 Posco Plated steel sheet having multilayer structure and manufacturing method therefor
KR20220076773A (en) * 2020-12-01 2022-06-08 주식회사 포스코 Plated steel sheet having multilayer structure and welded structure using the same, and manufacturing method for the plated steel sheet having multilayer structure

Similar Documents

Publication Publication Date Title
EP0730045B1 (en) Steel sheet with Zn-Mg binary coating layer excellent in corrosion resistance and manufacturing method thereof
US4963440A (en) Al-Cr alloy vapor-deposited material
KR101819394B1 (en) Zinc-magnesium alloy plated steel material having excellent adhesion to plating
US5397650A (en) Composite spray coating having improved resistance to hot-dip galvanization
JPH10317125A (en) Production of vapor deposition zinc plated steel strip
JP3545051B2 (en) Zn-Mg based plated steel sheet excellent in corrosion resistance and manufacturing method
JPS6328857A (en) Alloyed zinc plated steel sheet and its production
JPH07268605A (en) Production of alloyed zn-mg vapor deposition-coated steel sheet
JPH08134632A (en) Production of zinc-magnesium alloy plated steel sheet
KR920009844B1 (en) Plated steel sheet having excellent coating performance
JPH09143682A (en) Zinc-magnesium vapor deposition method using multiple duct and vapor deposition equipment
CA2107560C (en) Al-si-cr-plated steel sheet excellent in corrosion resistance and production thereof
JPH05222550A (en) Multiple layer alloy plated steel sheet and its manufacture
JPH0578801A (en) Member for molten zinc bath
JPH08239754A (en) Zn-mg alloy plated steel sheet excellent in secondary adhesion and corrosion resistance
JPH09137267A (en) Alloyed zinc-magnesium base plated steel sheet excellent in corrosion resistance and its production
JPS6320448A (en) Aluminum plated steel sheet having excellent heat resistance
JPS60116787A (en) Method and device for plating
JP2912029B2 (en) Alloyed galvanized steel sheet
JP3207958B2 (en) Composite Al alloy plated steel sheet and method for producing the same
JPH0978229A (en) Production of zinc-magnesium alloy plated steel sheet
JPH07268604A (en) Production of zn-mg vapor deposition-coated steel sheet
JPH0860342A (en) Vapor deposited zinc-magnesium alloy plated steel sheet having excellent adhesion property and its manufacture
JPH07188903A (en) Zn-mg alloy plated steel sheet excellent in adhesion of coating film and its production
JPH06316755A (en) Galvanized steel sheet containing o, n and c and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803