JPH10316799A - Rubber composition for tire tread and its production - Google Patents

Rubber composition for tire tread and its production

Info

Publication number
JPH10316799A
JPH10316799A JP9145780A JP14578097A JPH10316799A JP H10316799 A JPH10316799 A JP H10316799A JP 9145780 A JP9145780 A JP 9145780A JP 14578097 A JP14578097 A JP 14578097A JP H10316799 A JPH10316799 A JP H10316799A
Authority
JP
Japan
Prior art keywords
glass transition
transition point
diene rubber
rubber
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9145780A
Other languages
Japanese (ja)
Other versions
JP3938612B2 (en
Inventor
Norihiko Nakamura
典彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP14578097A priority Critical patent/JP3938612B2/en
Publication of JPH10316799A publication Critical patent/JPH10316799A/en
Application granted granted Critical
Publication of JP3938612B2 publication Critical patent/JP3938612B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rubber composition for tire treads, improved in fuel consumption and braking performances on a wet road surface as well as abrasion resistance. SOLUTION: There is provided a rubber composition for tire treads, wherein the rubber component is a blend of a high-glass transition point diene rubber having a relatively high glass transition point Tg (H) with a low-glass-transition- point diene rubber having a relatively low glass transition point Tg (L), the glass transition point Tg (H) of the high-glass transition point diene is in the range: -60 deg.C<Tg(H)<0 deg.C, the absolute value of the difference ΔSP between the solubility parameter (SP) of the high-glass transition-point diene rubber and that of the low-glass-transition point diene rubber in the range: 0.10<|ΔSP|<0.75, and the blend of the high-glass transition point diene rubber with the low-glass transition point diene rubber is formed by blending a masterbatch of a silica-filled high-glass-transition-point diene rubber with a masterbatch of a carbon-black-filled low-glass transition-point diene rubber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はタイヤトレッド用ゴ
ム組成物及びその製造方法に関し、更に詳細には、耐摩
耗性を維持しつつ、低燃費性及び湿潤路面における制動
性に優れたタイヤトレッド用ゴム組成物及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rubber composition for a tire tread and a method for producing the same, and more particularly, to a tire tread excellent in fuel efficiency and braking performance on a wet road surface while maintaining abrasion resistance. The present invention relates to a rubber composition and a method for producing the same.

【0002】[0002]

【従来の技術】近年、環境問題の点から省エネルギーの
自動車が望まれている。そこで自動車部品の一つである
タイヤにおいても燃費効率の高いものが求められる様に
なってきた。
2. Description of the Related Art In recent years, energy-saving automobiles have been desired in view of environmental problems. Therefore, tires, which are one of the automotive parts, are required to have high fuel efficiency.

【0003】従来、燃費効率の高いタイヤとするため
に、タイヤの転がり抵抗を低減させるタイヤトレッド用
ゴム組成物が種々提案されている。例えば、タイヤトレ
ッド用ゴム組成物にヒステリシスロスの少ないポリマー
を使用する技術がある。また、大粒径のカーボンブラッ
クを使用する方法も提案されている。また、カーボンブ
ラックとオイルを低充填化したり、またカーボンブラッ
クに変えてシリカを利用すること等も提案されている。
Conventionally, various rubber compositions for tire treads have been proposed to reduce the rolling resistance of tires in order to provide tires with high fuel efficiency. For example, there is a technique of using a polymer having a small hysteresis loss in a rubber composition for a tire tread. A method using carbon black having a large particle size has also been proposed. It has also been proposed to reduce the amount of carbon black and oil, or to use silica instead of carbon black.

【0004】[0004]

【発明が解決しようとする課題】しかし、タイヤトレッ
ド用ゴム組成物中にヒステリシスロスの少ないポリマー
を使用すると、タイヤの転がり抵抗は改善されるもの
の、湿潤路面における制動性が低下する問題がある。ま
た、タイヤトレッド用ゴム組成物中に大粒径のカーボン
ブラックを使用する場合も、タイヤの転がり抵抗は改善
されるが、耐摩耗性は低下する問題がある。また、タイ
ヤトレッド用ゴム組成物中でカーボンブラックとオイル
を低充填化した場合は、耐摩耗性、特に耐偏摩耗性が低
下する。タイヤトレッド用ゴム組成物中にシリカを使用
した場合は、カーボンブラックと比べると、低燃費性及
び湿潤路面における制動性は向上するが、耐摩耗性及び
加工性が低下する。
However, when a polymer having a small hysteresis loss is used in the rubber composition for a tire tread, although the rolling resistance of the tire is improved, there is a problem that the braking performance on a wet road surface is reduced. Also, when carbon black having a large particle diameter is used in the rubber composition for a tire tread, the rolling resistance of the tire is improved, but the abrasion resistance is reduced. Further, when carbon black and oil are reduced in the rubber composition for a tire tread, wear resistance, particularly uneven wear resistance, is reduced. When silica is used in the rubber composition for a tire tread, fuel efficiency and braking performance on a wet road surface are improved as compared with carbon black, but abrasion resistance and workability are reduced.

【0005】この発明の課題は、耐摩耗性を維持しつつ
低燃費性及び湿潤路面における制動性に優れたタイヤト
レッド用ゴム組成物及びその製造方法を提供する点にあ
る。
An object of the present invention is to provide a rubber composition for a tire tread excellent in fuel economy and braking performance on wet roads while maintaining abrasion resistance, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、ゴム成分として、相対的に高いガラス転
移点Tg(H)を有する高ガラス転移点ジエン系ゴムと相
対的に低いガラス転移点Tg(L)を有する低ガラス転移
点ジエン系ゴムがブレンドされており、上記高ガラス転
移点ジエン系ゴムはガラス転移点Tg(H)が−60℃<
Tg(H)<0℃の範囲内にあり、かつ高ガラス転移点ジ
エン系ゴムの溶解パラメーター(SP値)と低ガラス転
移点ジエン系ゴムの溶解パラメーター(SP値)との差
ΔSPの絶対値が0.10<|ΔSP|<0.75の範
囲内にあり、上記高ガラス転移点ジエン系ゴムと低ガラ
ス転移点ジエン系ゴムとのブレンドは、シリカ配合の高
ガラス転移点ジエン系ゴムのマスターバッチと、カーボ
ンブラック配合の低ガラス転移点ジエン系ゴムのマスタ
ーバッチによりブレンドされているタイヤトレッド用ゴ
ム組成物を採用した。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a rubber composition having a high glass transition point diene rubber having a relatively high glass transition point Tg (H) and a glass having a relatively low glass transition point. A low glass transition point diene rubber having a transition point Tg (L) is blended, and the high glass transition point diene rubber has a glass transition point Tg (H) of −60 ° C. <
Absolute value of ΔSP in the range of Tg (H) <0 ° C. and the difference between the solubility parameter (SP value) of the high glass transition point diene rubber and the solubility parameter (SP value) of the low glass transition point diene rubber Is in the range of 0.10 <| ΔSP | <0.75, and the blend of the high glass transition point diene rubber and the low glass transition point diene rubber A rubber composition for tire tread blended with a masterbatch and a masterbatch of a low glass transition point diene rubber containing carbon black was employed.

【0007】なお、本発明において、「相対的に高いガ
ラス転移点Tg(H)を有する」とは上記低ガラス転移点
ジエン系ゴムに対して相対的に高いガラス転移点を有す
ることをいい、また「相対的に低いガラス転移点Tg
(L)を有する」とは上記高ガラス転移点ジエン系ゴムに
対して相対的に低いガラス転移点を有することをいう。
In the present invention, "having a relatively high glass transition point Tg (H)" means having a relatively high glass transition point with respect to the low glass transition point diene rubber. In addition, "a relatively low glass transition point Tg
Having (L) "means having a relatively low glass transition point with respect to the high glass transition point diene rubber.

【0008】従って、上記条件下においては、シリカ配
合の高ガラス転移点ジエン系ゴムとカーボンブラック配
合の低ガラス転移点ジエン系ゴムの各ゴム成分がゴム組
成物中にそれぞれ適度な相溶性を有しながら適度な不均
一状態にて偏在していることから、高ガラス転移点ジエ
ン系ゴム成分と低ガラス転移点ジエン系ゴムの各ゴム成
分が適度な不均一領域において独自の作用効果を過不足
なく発揮することになる。因って、高ガラス転移点ジエ
ン系ゴム成分の領域では、耐摩耗性は低下する傾向にあ
るが、相対的に高いガラス転移点を有する高ガラス転移
点ジエン系ゴム成分特有の作用効果である湿潤路面にお
ける制動性が向上する。また、加えて同高ガラス転移点
ジエン系ゴム成分中にはシリカが配合されていることか
ら、このシリカ成分との相乗効果によって更に一層湿潤
路面における制動性が向上し、また低燃費性も向上す
る。一方、低ガラス転移点ジエン系ゴムのゴム成分の領
域では、相対的に低いガラス転移点を有する低ガラス転
移点ジエン系ゴム成分特有の作用効果である耐摩耗性が
発揮されると共に、タイヤの転がり抵抗は減少して低燃
費性が向上する。さらに、同低ガラス転移点ジエン系ゴ
ム成分中にはカーボンブラックが配合されていることか
ら、このカーボンブラック成分との相乗効果によって更
に一層耐摩耗性が発揮される。従って、シリカ配合の高
ガラス転移点ジエン系ゴムとカーボンブラック配合の低
ガラス転移点ジエン系ゴムの両ゴム成分によって、耐摩
耗性を維持して、低燃費性と湿潤路面における制動性を
向上することができる。
Accordingly, under the above conditions, the rubber components of the high glass transition point diene rubber containing silica and the low glass transition point diene rubber containing carbon black have appropriate compatibility in the rubber composition. However, due to uneven distribution in a moderately non-uniform state, each of the rubber components of the high glass transition point diene rubber component and the low glass transition point diene rubber component has a unique effect in a moderately nonuniform region. It will be able to demonstrate without. Therefore, in the region of the high glass transition point diene rubber component, the abrasion resistance tends to decrease, but this is an effect specific to the high glass transition point diene rubber component having a relatively high glass transition point. The braking performance on wet road surfaces is improved. In addition, since silica is compounded in the high glass transition point diene rubber component, the braking effect on wet road surfaces is further improved by the synergistic effect with the silica component, and the fuel efficiency is also improved. I do. On the other hand, in the region of the rubber component of the low glass transition point diene rubber component, the wear resistance, which is a function and effect unique to the low glass transition point diene rubber component having a relatively low glass transition point, is exhibited, and the tire has Rolling resistance is reduced and fuel economy is improved. Further, since carbon black is blended in the low glass transition point diene rubber component, the wear resistance is further enhanced by a synergistic effect with the carbon black component. Therefore, both the high glass transition point diene rubber compounded with silica and the low glass transition point diene rubber compounded with carbon black are used to maintain wear resistance, improve fuel efficiency and improve braking performance on wet road surfaces. be able to.

【0009】[0009]

【発明の実施の形態】本発明のタイヤトレッド用ゴム組
成物を製造する方法としては例えば以下の方法を採用で
きる。すなわち、高ガラス転移点ジエン系ゴムのガラス
転移点Tg(H)が−60℃<Tg(H)<0℃の範囲内にあ
り、かつ高ガラス転移点ジエン系ゴムの溶解パラメータ
ー(SP値)と低ガラス転移点ジエン系ゴムの溶解パラ
メーター(SP値)との差ΔSPの絶対値が0.10<
|ΔSP|<0.75の範囲内にある高ガラス転移点ジ
エン系ゴムと低ガラス転移点ジエン系ゴムの2種類のジ
エン系ゴムを用い、まずシリカ配合の上記高ガラス転移
点ジエン系ゴムのマスターバッチと、カーボンブラック
配合の低ガラス転移点ジエン系ゴムのマスターバッチを
作成し、その後それぞれのマスターバッチをブレンドす
ることにより製造することができる。なお、高ガラス転
移点ジエン系ゴムのガラス転移点Tg(H)が−60℃未
満の場合は、湿潤路面における制動性が低下する。また
高ガラス転移点ジエン系ゴムのガラス転移点Tg(H)が
0℃を越える場合は低温特性が低下し、耐摩耗性が低下
すると共に、タイヤの低燃費性が低下する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a method for producing a rubber composition for a tire tread of the present invention, for example, the following method can be adopted. That is, the glass transition point Tg (H) of the high glass transition point diene rubber is in the range of −60 ° C. <Tg (H) <0 ° C., and the dissolution parameter (SP value) of the high glass transition point diene rubber. The difference ΔSP between the solubility parameter (SP value) and the low glass transition point diene rubber is 0.10 <
Using two kinds of diene rubbers having a high glass transition point diene rubber and a low glass transition point diene rubber within the range of | ΔSP | <0.75, It can be manufactured by preparing a masterbatch and a masterbatch of a low glass transition point diene rubber containing carbon black, and then blending the respective masterbatches. In addition, when the glass transition point Tg (H) of the high glass transition point diene rubber is lower than −60 ° C., the braking performance on a wet road surface decreases. When the glass transition point Tg (H) of the high glass transition point diene rubber exceeds 0 ° C., the low-temperature properties are reduced, the wear resistance is reduced, and the fuel economy of the tire is reduced.

【0010】また、高ガラス転移点ジエン系ゴムの溶解
パラメーター(SP値)と低ガラス転移点ジエン系ゴム
の溶解パラメーター(SP値)との差ΔSPの絶対値が
0.10未満の場合は、高ガラス転移点ジエン系ゴム成
分とガラス転移点ジエン系ゴム成分との相溶性がよくな
りすぎる結果、特有の作用効果が減殺され、タイヤの燃
費性の低下と湿潤路面における制動性の向上を達成する
ことが困難となる。一方、高ガラス転移点ジエン系ゴム
の溶解パラメーター(SP値)と低ガラス転移点ジエン
系ゴムの溶解パラメーター(SP値)との差ΔSPの絶
対値が0.75を越える場合は、相溶性がなくなり不均
一すぎる結果、耐摩耗性が著しく低下する。
When the absolute value of the difference ΔSP between the solubility parameter (SP value) of the high glass transition point diene rubber and the solubility parameter (SP value) of the low glass transition point diene rubber is less than 0.10, The compatibility between the high glass transition point diene rubber component and the glass transition point diene rubber component becomes too good, resulting in the reduction of the specific effects and the reduction in tire fuel efficiency and improvement in braking performance on wet road surfaces. It will be difficult to do. On the other hand, when the absolute value of the difference ΔSP between the solubility parameter (SP value) of the high glass transition point diene rubber and the solubility parameter (SP value) of the low glass transition point diene rubber exceeds 0.75, the compatibility is poor. As a result, the wear resistance is significantly reduced.

【0011】なお、本発明において、ジエン系ゴムの溶
解パラメーター(SP値)はA.C.S., Rubber divisio
n, 93, 148, 1995を参照して求めた。
In the present invention, the solubility parameter (SP value) of the diene rubber is determined by ACS, Rubber divisio.
n, 93, 148, 1995.

【0012】本発明で使用するジエン系ゴムとしては、
スチレンブタジエンゴム(SBR)、天然ゴム、ブタジ
エンゴムなどを例示することができる。因みに、スチレ
ンブタジエンゴム(SBR)の溶解パラメーター(SP
値)は、8.40+0.0133×スチレン量(重量%)−0.0033×
ビニル量(重量%)となる。ここで、スチレン量(重量
%)、ビニル量(重量%)はスチレンブタジエンゴム(S
BR)中の重量%である。また、天然ゴムは溶解パラメ
ーター(SP値)が8.11、ハイ−シスブタジエンゴ
ムは8.40である。
The diene rubber used in the present invention includes:
Styrene butadiene rubber (SBR), natural rubber, butadiene rubber and the like can be exemplified. Incidentally, the solubility parameter of styrene butadiene rubber (SBR) (SP
Value) is 8.40 + 0.0133 × amount of styrene (% by weight) −0.0033 ×
It becomes vinyl content (% by weight). Here, the amount of styrene (% by weight) and the amount of vinyl (% by weight) are based on styrene butadiene rubber (S
(BR). Natural rubber has a solubility parameter (SP value) of 8.11, and high-cis butadiene rubber has a solubility parameter of 8.40.

【0013】高ガラス転移点ジエン系ゴムのマスターバ
ッチに配合するシリカ量は、特に限定されないが、30
〜100重量部が好ましい範囲である。シリカ量が30
重量部未満では湿潤路面の制動性が悪化し、100重量
部を超えると転がり抵抗が劣る。また、低ガラス転移点
ジエン系ゴムのマスターバッチに配合するカーボンブラ
ックも特に限定されず、タイヤトレッドゴム配合として
通常使用されるものであれば差し支えないが、耐摩耗性
の点からはHAF、ISAF、SAFが好適に用いられ
る。またその量も特に限定されないが、30〜100重
量部が好ましい範囲である。カーボンブラック量が30
重量部未満では耐摩耗性が劣り、100重量部を超える
と転がり抵抗が悪化する。また、シランカップリング剤
も特に限定されず、公知のものであれば使用でき、ビス
−(3−トリエトキシシリルプロピル)−テトラスルフ
ィドを例示することができる。
The amount of silica compounded in the masterbatch of the high glass transition point diene rubber is not particularly limited.
-100 parts by weight is a preferable range. Silica content is 30
If the amount is less than 100 parts by weight, the rolling resistance is poor. The carbon black blended in the low glass transition point diene rubber masterbatch is not particularly limited, and any carbon black commonly used as a tire tread rubber blend may be used. , SAF are preferably used. Also, the amount is not particularly limited, but 30 to 100 parts by weight is a preferable range. 30 carbon black
If the amount is less than 100 parts by weight, the abrasion resistance is inferior. If the amount exceeds 100 parts by weight, the rolling resistance is deteriorated. The silane coupling agent is not particularly limited, and any known silane coupling agent can be used, and examples thereof include bis- (3-triethoxysilylpropyl) -tetrasulfide.

【0014】また、シリカ配合の高ガラス転移点ジエン
系ゴムのマスターバッチとカーボンブラック配合の低ガ
ラス転移点ジエン系ゴムのマスターバッチとの配合比
(重量比)は、特に限定されないが、好ましくは3対7
〜7対3であり、最適には1対1である。
The mixing ratio (weight ratio) between the masterbatch of the high glass transition point diene rubber containing silica and the masterbatch of the low glass transition point diene rubber containing carbon black is not particularly limited. 3 to 7
77: 3, optimally 1: 1.

【0015】[0015]

【実施例】表1に示すジエン系ゴムを用いて、シリカ配
合の高ガラス転移点ジエン系ゴムのマスターバッチ(以
下、シリカMBと略す。)と、カーボンブラック配合の
低ガラス転移点ジエン系ゴムのマスターバッチ(以下、
CBMBと略す。)をまず作成した。次に、それぞれの
マスターバッチを混合機にて実施例1〜6及び比較例2
〜6は50/50の重量比で、実施例7はシリカMB/
CBMB=30/70の重量比で、実施例8はシリカM
B/CBMB=70/30の重量比でそれぞれブレンド
して各ポリマー成分とし、さらにこれらのポリマー成分
100重量部に対してそれぞれ下記のベース配合組成に
て各成分を混合し、この混合ゴムをシート状に成形して
冷却した後、イオウ2.0重量部、加硫促進剤であるN
−テトラブチル−2−ベンゾチアゾールスルフェンアミ
ド1.5重量部とジフェニルグアニジン0.25重量部
を添加混合して実施例1〜8及び比較例2〜6のタイヤ
トレッド用ゴム組成物を得た。
EXAMPLES Using the diene rubbers shown in Table 1, a master batch of a high glass transition point diene rubber containing silica (hereinafter abbreviated as silica MB) and a low glass transition point diene rubber containing carbon black were used. Master batch (hereinafter,
Abbreviated as CBMB. ) Was created first. Next, each of the master batches was mixed with a mixer in Examples 1 to 6 and Comparative Example 2.
-6 are 50/50 weight ratio, Example 7 is silica MB /
In a weight ratio of CBMB = 30/70, Example 8 was silica M
B / CBMB = 70/30 by weight to blend each polymer component. Further, each component is mixed with 100 parts by weight of these polymer components according to the following base composition, and this mixed rubber is sheeted. After cooling and cooling, 2.0 parts by weight of sulfur and N, a vulcanization accelerator,
-1.5 parts by weight of tetrabutyl-2-benzothiazolesulfenamide and 0.25 parts by weight of diphenylguanidine were added and mixed to obtain rubber compositions for tire treads of Examples 1 to 8 and Comparative Examples 2 to 6.

【0016】 (ベース配合組成) ポリマー成分 100重量部 カーボンブラック(HAF) 30重量部 シリカ 30重量部 シランカップリング剤 3重量部 (ビス−(3−トリエトキシシリルプロピル)−テトラスルフィド) アロマ系プロセスオイル 35重量部 老化防止剤 1重量部 パラフィンワックス 2重量部 ステアリン酸 2重量部 亜鉛華 3重量部(Base compounding composition) Polymer component 100 parts by weight Carbon black (HAF) 30 parts by weight Silica 30 parts by weight Silane coupling agent 3 parts by weight (bis- (3-triethoxysilylpropyl) -tetrasulfide) Aroma-based process Oil 35 parts by weight Antioxidant 1 part by weight Paraffin wax 2 parts by weight Stearic acid 2 parts by weight Zinc white 3 parts by weight

【0017】なお、シリカ配合の高ガラス転移点ジエン
系ゴムのマスターバッチ(シリカMB)は、表1に示す
ジエン系ゴム100重量部に対してシリカ60重量部と
シランカップリング剤6重量部とアロマ系プロセスオイ
ル35重量部をあらかじめ混合して作成した。カーボン
ブラック配合の低ガラス転移点ジエン系ゴムのマスター
バッチ(CBMB)は、ジエン系ゴム100重量部に対
してカーボンブラック60重量部とアロマ系プロセスオ
イル35重量部をあらかじめ混合して作成した。
The masterbatch (silica MB) of a high glass transition point diene rubber containing silica was prepared by mixing 60 parts by weight of silica and 6 parts by weight of a silane coupling agent with respect to 100 parts by weight of the diene rubber shown in Table 1. It was prepared by mixing 35 parts by weight of an aroma-based process oil in advance. A master batch (CBMB) of a low glass transition point diene rubber containing carbon black was prepared by previously mixing 60 parts by weight of carbon black and 35 parts by weight of an aroma-based process oil with 100 parts by weight of the diene rubber.

【0018】比較例1は、実施例1〜6及び比較例2〜
6の様にあらかじめマスターバッチを作成しないで、2
種類のポリマーを50/50の重量比で混合した後、カ
ーボンブラック及びシリカを各30重量部配合し、上記
ベース配合組成にてタイヤトレッド用ゴム組成物とし
た。
Comparative Example 1 includes Examples 1 to 6 and Comparative Examples 2 to
Do not create a master batch in advance as in 6.
After mixing the kinds of polymers at a weight ratio of 50/50, 30 parts by weight of carbon black and 30 parts by weight of silica were blended to obtain a rubber composition for a tire tread with the above base blending composition.

【0019】[0019]

【表1】 [Table 1]

【0020】(表1の注記) 1)TTR20 2)乳化重合SBR(スチレン含量=35重量%、ビニル含
量=12重量%) 3)溶液重合SBR(スチレン含量=22重量%、ビニル含
量=29重量%) 4)溶液重合SBR(スチレン含量=13重量%、ビニル含
量=36重量%) 5)溶液重合SBR(スチレン含量=70重量%、ビニル含
量=13重量%) 6)乳化重合SBR(スチレン含量=45重量%、ビニル含
量=10重量%) 7)溶液重合SBR(スチレン含量=18重量%、ビニル含
量=11重量%) 8)溶液重合SBR(スチレン含量=30重量%、ビニル含
量=13重量%) 9)溶液重合SBR(スチレン含量=31重量%、ビニル含
量=45重量%) 10)ハイシス-BR なお、上記SBR中のスチレン含量及びビニル含量はS
BR中の重量%を示している。
(Notes in Table 1) 1) TTR20 2) Emulsion polymerized SBR (styrene content = 35% by weight, vinyl content = 12% by weight) 3) Solution polymerized SBR (styrene content = 22% by weight, vinyl content = 29% by weight) %) 4) Solution-polymerized SBR (styrene content = 13% by weight, vinyl content = 36% by weight) 5) Solution-polymerized SBR (styrene content = 70% by weight, vinyl content = 13% by weight) 6) Emulsion-polymerized SBR (styrene content = 45% by weight, vinyl content = 10% by weight) 7) Solution-polymerized SBR (styrene content = 18% by weight, vinyl content = 11% by weight) 8) Solution-polymerized SBR (styrene content = 30% by weight, vinyl content = 13% by weight) %) 9) Solution-polymerized SBR (styrene content = 31% by weight, vinyl content = 45% by weight) 10) High cis-BR The styrene content and vinyl content in the above SBR are S
The percentage by weight in BR is shown.

【0021】次に、各実施例及び各比較例のゴム組成物
をタイヤトレッドゴムとして用いてタイヤサイズ185
/70R14のタイヤを定法により試作し、低燃費性、
湿潤路面での制動性及び耐摩耗性についてそれぞれ評価
した。その結果を表1に併記する。
Next, using the rubber composition of each of the examples and comparative examples as a tire tread rubber,
/ 70R14 tires are prototyped by a standard method,
The braking performance and the wear resistance on a wet road surface were evaluated. The results are also shown in Table 1.

【0022】低燃費性は、上記実施例及び比較例に係る
タイヤを一軸ドラム試験機で速度80Km/h 、空気圧2
Kg/cm2 、荷重400Kgの条件にて測定し、比較例1を
100として指数表示する。数値が小さいほど良好であ
る。
The fuel efficiency is as follows: the tires according to the above-described Examples and Comparative Examples were tested with a uniaxial drum testing machine at a speed of 80 km / h and an air pressure of 2 km.
It is measured under the conditions of Kg / cm 2 and a load of 400 Kg, and the index is indicated by setting Comparative Example 1 to 100. The smaller the value, the better.

【0023】湿潤路面での制動性は、上記実施例及び比
較例に係るタイヤをトレーラーに装着し、64.4Km/h
にてロックさせてブレーキングフォースを記録し、比較
例1を100として指数表示する。数値が大きいほど良
好である。
The braking performance on a wet road surface was measured by mounting the tires according to the above Examples and Comparative Examples on a trailer, and measuring 64.4 km / h.
And the braking force is recorded, and the index is displayed as an index, with Comparative Example 1 being 100. The higher the value, the better.

【0024】耐摩耗試験は、上記実施例及び比較例に係
るタイヤをタクシーに装着して約5000Kmごとにロー
テーションし、20000Km走行後の後溝深さを測定
し、比較例1を100として指数表示する。数値が大き
いほど良好である。
In the abrasion resistance test, the tires according to the above-described Examples and Comparative Examples were mounted on a taxi, rotated every 5,000 km, and the depth of the rear groove after traveling 20,000 km was measured. I do. The higher the value, the better.

【0025】表1より、同じ配合組成であるにも拘わら
ず、比較例1に係るタイヤに比して実施例1に係るタイ
ヤは、耐摩耗性を維持しつつ、低燃費性にすぐれ、かつ
湿潤路面での制動性にすぐれていることが認められる。
これは、シリカ配合の高ガラス転移点ジエン系ゴムとカ
ーボンブラック配合の低ガラス転移点ジエン系ゴムの各
ゴム成分がゴム組成物中にそれぞれ適度な相溶性を有し
ながら適度な不均一状態にて偏在していることから、高
ガラス転移点ジエン系ゴム成分と低ガラス転移点ジエン
系ゴムの各ゴム成分が適度な不均一領域において独自の
作用効果を両立して過不足なく発揮したためと考えられ
る。
From Table 1, it can be seen that, despite having the same composition, the tire according to Example 1 has excellent fuel economy while maintaining abrasion resistance as compared with the tire according to Comparative Example 1. It is recognized that the braking performance on wet road surfaces is excellent.
This is because the rubber components of the high glass transition point diene rubber compounded with silica and the low glass transition point diene rubber compounded with carbon black have moderate compatibility in the rubber composition while having appropriate compatibility. It is thought that the rubber components of the high glass transition point diene-based rubber component and the low glass transition point diene-based rubber exhibited their unique functions and effects in a moderately non-uniform region, and exhibited their functions without excess or shortage. Can be

【0026】一方、高ガラス転移点ジエン系ゴムのガラ
ス転移点Tg(H)が0℃を越える比較例3に係るタイヤ
では、耐摩耗性が低下し、低燃費性が悪化している。こ
れに対して、高ガラス転移点ジエン系ゴムのガラス転移
点Tg(H)が−60℃未満の比較例4に係るタイヤでは
湿潤路面における制動性が低下している。
On the other hand, in the tire according to Comparative Example 3 in which the glass transition point Tg (H) of the high glass transition point diene rubber exceeds 0 ° C., the wear resistance is reduced and the fuel economy is deteriorated. On the other hand, in the tire according to Comparative Example 4 in which the glass transition point Tg (H) of the high glass transition point diene rubber is lower than −60 ° C., the braking performance on a wet road surface is reduced.

【0027】また、高ガラス転移点ジエン系ゴムの溶解
パラメーター(SP値)と低ガラス転移点ジエン系ゴム
の溶解パラメーター(SP値)との差ΔSPの絶対値が
0.10未満の比較例5に係るタイヤでは、相溶しすぎ
るため、湿潤路面における制動性が低下している。一
方、高ガラス転移点ジエン系ゴムの溶解パラメーター
(SP値)と低ガラス転移点ジエン系ゴムの溶解パラメ
ーター(SP値)との差ΔSPの絶対値が0.75を越
える比較例6に係るタイヤでは、相溶性がなくなり不均
一すぎる結果、耐摩耗性が低下している。
Comparative Example 5 in which the absolute value of the difference ΔSP between the solubility parameter (SP value) of the high glass transition point diene rubber and the solubility parameter (SP value) of the low glass transition point diene rubber was less than 0.10. In the tire according to the above, since the tires are too compatible, the braking performance on a wet road surface is reduced. On the other hand, the tire according to Comparative Example 6 in which the absolute value of the difference ΔSP between the solubility parameter (SP value) of the high glass transition point diene rubber and the solubility parameter (SP value) of the low glass transition point diene rubber exceeds 0.75. In this case, the compatibility is lost, and as a result, the wear resistance is lowered.

【0028】また、カーボンブラック配合の高ガラス転
移点ジエン系ゴムのマスターバッチと、シリカ配合の低
ガラス転移点ジエン系ゴムのマスターバッチをブレンド
した比較例2に係るタイヤでは、シリカ配合の効果が減
殺されており、湿潤路面での制動性が低下し、低燃費性
も悪化している。
In the tire according to Comparative Example 2 in which a masterbatch of a high glass transition point diene rubber containing carbon black and a masterbatch of a low glass transition point diene rubber containing silica are blended, the effect of the silica addition is small. As a result, the braking performance on wet road surfaces is reduced, and the fuel economy is also deteriorated.

【0029】[0029]

【発明の効果】以上の通り、本発明はゴム成分として、
相対的に高いガラス転移点Tg(H)を有する高ガラス転
移点ジエン系ゴムと相対的に低いガラス転移点Tg(L)
を有する低ガラス転移点ジエン系ゴムがブレンドされて
おり、上記高ガラス転移点ジエン系ゴムはガラス転移点
Tg(H)が−60℃<Tg(H)<0℃の範囲内にあり、か
つ高ガラス転移点ジエン系ゴムの溶解パラメーター(S
P値)と低ガラス転移点ジエン系ゴムの溶解パラメータ
ー(SP値)との差ΔSPの絶対値が0.10<|ΔS
P|<0.75の範囲内にあり、上記高ガラス転移点ジ
エン系ゴムと低ガラス転移点ジエン系ゴムとのブレンド
は、シリカ配合の高ガラス転移点ジエン系ゴムのマスタ
ーバッチと、カーボンブラック配合の低ガラス転移点ジ
エン系ゴムのマスターバッチによりブレンドされている
タイヤトレッド用ゴム組成物である。
As described above, the present invention provides, as a rubber component,
High glass transition point diene rubber having a relatively high glass transition point Tg (H) and relatively low glass transition point Tg (L)
Wherein the high glass transition point diene rubber has a glass transition point Tg (H) in the range of −60 ° C. <Tg (H) <0 ° C., and Dissolution parameters of high glass transition point diene rubber (S
P value) and the solubility ΔSP of the low glass transition point diene rubber (SP value) is 0.10 <| ΔS
P | <0.75, and the blend of the high glass transition point diene rubber and the low glass transition point diene rubber is obtained by mixing a master batch of silica-containing high glass transition point diene rubber and carbon black. It is a rubber composition for a tire tread that is blended with a master batch of a compounded low glass transition point diene rubber.

【0030】従って、シリカ配合の高ガラス転移点ジエ
ン系ゴムとカーボンブラック配合の低ガラス転移点ジエ
ン系ゴムの各ゴム成分がゴム組成物中にそれぞれ適度な
相溶性を有しながら適度な不均一状態にて偏在している
ことから、高ガラス転移点ジエン系ゴム成分と低ガラス
転移点ジエン系ゴムの各ゴム成分が適度な不均一領域に
おいて独自の作用効果を過不足なく発揮することにな
る。因って、シリカ配合の高ガラス転移点ジエン系ゴム
とカーボンブラック配合の低ガラス転移点ジエン系ゴム
の両ゴム成分によって、耐摩耗性を維持して、低燃費性
と湿潤路面における制動性を向上することができる。
Accordingly, each of the rubber components of the high glass transition point diene rubber containing silica and the low glass transition point diene rubber containing carbon black has moderate compatibility in the rubber composition. Since the rubber components are unevenly distributed in the state, the rubber components of the high glass transition point diene rubber component and the low glass transition point diene rubber component can exert their own functions and effects in an appropriate non-uniform region. . Therefore, both rubber components of high glass transition point diene rubber containing silica and low glass transition point diene rubber containing carbon black maintain abrasion resistance, improve fuel efficiency and braking performance on wet road surfaces. Can be improved.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ゴム成分として、相対的に高いガラス転
移点Tg(H)を有する高ガラス転移点ジエン系ゴムと相
対的に低いガラス転移点Tg(L)を有する低ガラス転移
点ジエン系ゴムがブレンドされており、上記高ガラス転
移点ジエン系ゴムはガラス転移点Tg(H)が−60℃<
Tg(H)<0℃の範囲内にあり、かつ高ガラス転移点ジ
エン系ゴムの溶解パラメーター(SP値)と低ガラス転
移点ジエン系ゴムの溶解パラメーター(SP値)との差
ΔSPの絶対値が0.10<|ΔSP|<0.75の範
囲内にあり、上記高ガラス転移点ジエン系ゴムと低ガラ
ス転移点ジエン系ゴムとのブレンドは、シリカ配合の高
ガラス転移点ジエン系ゴムのマスターバッチと、カーボ
ンブラック配合の低ガラス転移点ジエン系ゴムのマスタ
ーバッチによりブレンドされているタイヤトレッド用ゴ
ム組成物。
1. A high glass transition point diene rubber having a relatively high glass transition point Tg (H) and a low glass transition point diene rubber having a relatively low glass transition point Tg (L) as rubber components. Is blended, and the high glass transition point diene rubber has a glass transition point Tg (H) of −60 ° C. <
Absolute value of ΔSP in the range of Tg (H) <0 ° C. and the difference between the solubility parameter (SP value) of the high glass transition point diene rubber and the solubility parameter (SP value) of the low glass transition point diene rubber Is in the range of 0.10 <| ΔSP | <0.75, and the blend of the high glass transition point diene rubber and the low glass transition point diene rubber A rubber composition for a tire tread, which is blended with a masterbatch and a masterbatch of a low glass transition point diene rubber containing carbon black.
【請求項2】 シリカ配合の高ガラス転移点ジエン系ゴ
ムのマスターバッチとカーボンブラック配合の低ガラス
転移点ジエン系ゴムのマスターバッチが1対1でブレン
ドされている請求項1記載のタイヤトレッド用ゴム組成
物。
2. The tire tread according to claim 1, wherein a master batch of a high glass transition point diene rubber containing silica and a master batch of a low glass transition point diene rubber containing carbon black are blended one to one. Rubber composition.
【請求項3】 高ガラス転移点ジエン系ゴムのガラス転
移点Tg(H)が−60℃<Tg(H) <0℃の範囲内にあ
り、かつ高ガラス転移点ジエン系ゴムの溶解パラメータ
ー(SP値)と低ガラス転移点ジエン系ゴムの溶解パラ
メーター(SP値)との差ΔSPの絶対値が0.10<
|ΔSP|<0.75の範囲内にある高ガラス転移点ジ
エン系ゴムと低ガラス転移点ジエン系ゴムの2種類のジ
エン系ゴムを用い、まずシリカ配合の上記高ガラス転移
点ジエン系ゴムのマスターバッチと、カーボンブラック
配合の低ガラス転移点ジエン系ゴムのマスターバッチを
作成し、その後それぞれのマスターバッチをブレンドし
てなるタイヤトレッド用ゴム組成物の製造方法。
3. The glass transition point Tg (H) of the high glass transition point diene rubber is in the range of −60 ° C. <Tg (H) <0 ° C., and the dissolution parameter of the high glass transition point diene rubber ( SP value) and the melting parameter (SP value) of the low glass transition point diene rubber have an absolute value of ΔSP of 0.10 <
Using two kinds of diene rubbers having a high glass transition point diene rubber and a low glass transition point diene rubber within the range of | ΔSP | <0.75, A method for producing a rubber composition for a tire tread, comprising preparing a masterbatch and a masterbatch of a low glass transition point diene rubber containing carbon black, and then blending each masterbatch.
JP14578097A 1997-05-19 1997-05-19 Rubber composition for tire tread and method for producing the same Expired - Fee Related JP3938612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14578097A JP3938612B2 (en) 1997-05-19 1997-05-19 Rubber composition for tire tread and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14578097A JP3938612B2 (en) 1997-05-19 1997-05-19 Rubber composition for tire tread and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10316799A true JPH10316799A (en) 1998-12-02
JP3938612B2 JP3938612B2 (en) 2007-06-27

Family

ID=15393006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14578097A Expired - Fee Related JP3938612B2 (en) 1997-05-19 1997-05-19 Rubber composition for tire tread and method for producing the same

Country Status (1)

Country Link
JP (1) JP3938612B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160816A (en) * 1997-08-07 1999-03-05 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JP2001011194A (en) * 1999-06-28 2001-01-16 Yamada Shingijutsu Kenkyusho Kk Organic polymer composition, its production, and production of wet type master batch
US7235174B2 (en) 2002-11-13 2007-06-26 Tsuguo Inaba Method of sludge recycling
JP2012172021A (en) * 2011-02-18 2012-09-10 Toyo Tire & Rubber Co Ltd Rubber composition, method for producing the same and pneumatic tire
JP2012251086A (en) * 2011-06-03 2012-12-20 Toyo Tire & Rubber Co Ltd Silica-containing rubber master batch and rubber composition
JP2013112731A (en) * 2011-11-28 2013-06-10 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread and pneumatic tire
JP2014028902A (en) * 2012-07-31 2014-02-13 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2014125613A (en) * 2012-12-27 2014-07-07 Toyo Tire & Rubber Co Ltd Manufacturing method of rubber composition
JP2014193984A (en) * 2013-03-29 2014-10-09 Bridgestone Corp Rubber composition, tire, and method for producing tire

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160816A (en) * 1997-08-07 1999-03-05 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread
JP2001011194A (en) * 1999-06-28 2001-01-16 Yamada Shingijutsu Kenkyusho Kk Organic polymer composition, its production, and production of wet type master batch
US7235174B2 (en) 2002-11-13 2007-06-26 Tsuguo Inaba Method of sludge recycling
JP2012172021A (en) * 2011-02-18 2012-09-10 Toyo Tire & Rubber Co Ltd Rubber composition, method for producing the same and pneumatic tire
JP2012251086A (en) * 2011-06-03 2012-12-20 Toyo Tire & Rubber Co Ltd Silica-containing rubber master batch and rubber composition
JP2013112731A (en) * 2011-11-28 2013-06-10 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread and pneumatic tire
JP2014028902A (en) * 2012-07-31 2014-02-13 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2014125613A (en) * 2012-12-27 2014-07-07 Toyo Tire & Rubber Co Ltd Manufacturing method of rubber composition
JP2014193984A (en) * 2013-03-29 2014-10-09 Bridgestone Corp Rubber composition, tire, and method for producing tire

Also Published As

Publication number Publication date
JP3938612B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
US5672639A (en) Starch composite reinforced rubber composition and tire with at least one component thereof
JP3406105B2 (en) Pneumatic tire
JP3933207B2 (en) Rubber composition, method for producing the same, and tire using the composition
KR20190132760A (en) Rubber composition for tire tread and tire manufactured by using the same
US5780535A (en) Rubber compositions for use in tire tread
JP2012503055A (en) Tire sidewall
JP4477386B2 (en) Method for producing rubber composition
JP3369278B2 (en) Rubber composition
JP3938612B2 (en) Rubber composition for tire tread and method for producing the same
JP3811548B2 (en) Rubber composition for tire tread
EP1803587A2 (en) Tire tread comprising discrete particles having a color different from the color of the tread
JP2001081239A (en) Tread rubber composition for high-performance tire and its manufacture
JPH08225684A (en) Rubber composition, tire tread produced using the same, and tire with the tread
JP3444814B2 (en) Rubber composition for tire tread
JP2009019078A (en) Rubber composition for tire tread and tire
JP4127916B2 (en) Pneumatic tire
JP4111765B2 (en) Rubber composition for tire tread
JP2944906B2 (en) Rubber composition, tire tread manufactured from the rubber composition, and tire having the tread
JP2002241542A (en) Rubber composition for tire tread and pneumatic tire
JPH07233286A (en) Tire tread rubber composition
JPH04224840A (en) Pneumatic tire
JP2007002031A (en) Rubber composition and pneumatic tire
JP2006291105A (en) Rubber composition for tread, and pneumatic tire
JP4017263B2 (en) Heavy duty pneumatic tire
JP3410984B2 (en) Rubber composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160406

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees