JPH10310818A - Method for refining stainless steel - Google Patents

Method for refining stainless steel

Info

Publication number
JPH10310818A
JPH10310818A JP13429997A JP13429997A JPH10310818A JP H10310818 A JPH10310818 A JP H10310818A JP 13429997 A JP13429997 A JP 13429997A JP 13429997 A JP13429997 A JP 13429997A JP H10310818 A JPH10310818 A JP H10310818A
Authority
JP
Japan
Prior art keywords
slag
refining
molten steel
oxygen
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP13429997A
Other languages
Japanese (ja)
Inventor
Kenichiro Miyamoto
健一郎 宮本
Katsuhiko Kato
勝彦 加藤
Akio Shinkai
昭男 新飼
Koji Sugano
浩至 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13429997A priority Critical patent/JPH10310818A/en
Priority to US09/101,859 priority patent/US6190435B1/en
Priority to CN97192437A priority patent/CN1070927C/en
Priority to DE69716582T priority patent/DE69716582T2/en
Priority to KR1019980705517A priority patent/KR100334947B1/en
Priority to PCT/JP1997/004234 priority patent/WO1998022627A1/en
Priority to EP97913417A priority patent/EP0881304B1/en
Publication of JPH10310818A publication Critical patent/JPH10310818A/en
Priority to US09/712,303 priority patent/US6468467B1/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To soften slag in a vessel, to facilitate the sampling and to keep decarburizing oxygen efficiency to high level by charging CaO at a specific wt. ratio to an aluminum for raising the temp., added before decarburizing by blowing oxygen in finish refining of a stainless steel having a specific Cr concn. or higher. SOLUTION: Into the molten steel 2 in a ladle 1, containing <=5% chromium concn. tapped from a converter, a straight barrel cylindrical immersion tube 4 arranged at the lower part of the vessel, is dipped and the pressure in the immersion tube 4 is reduced and also, Ar gas 9 for stirring, as inert gas, is supplied from a porous plug 3 arranged at the bottom part of the ladle 1. Further, Al is added into the vessel and the oxygen is blown with the oxygen jet 6 from an oxygen-blown lance 5 to execute the raising of the molten steel temp. and the decarburize-refining. Then, to Al for raising the temp. (WAl : kg), further, CaO corresponding to 0.8-4.0 WAl (kg), is charged. By this method, calcium aluminate compound is formed and liquid phase ratio of the slag is improved and the oxygen efficiency for decarburizing is raised.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、減圧下におけるス
テンレス鋼の吹酸脱炭精錬方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining stainless steel by blowing acid decarburization under reduced pressure.

【0002】[0002]

【従来の技術】一般にステンレス鋼の仕上脱炭精錬方法
としては、VOD法が広く知られている。しかしなが
ら、VOD法は取鍋全体を真空容器内に入れる方法、も
しくは取鍋上部に蓋をして取鍋全体を真空にする方法で
あるため、サンプリング装置の構造が必然的に複雑とな
り、それ故の設備トラブルが多く、サンプリング成功率
が低いという問題に起因して操業中の成分や温度が不明
確となり、吹止操業のバラツキが大きいという問題があ
った。また、真空下での吹酸脱炭精錬方法としてはRH
−OB法が広く知られている。しかしながら、RH−O
B法をステンレス鋼の仕上精錬に適用した場合、吹酸脱
炭中にクロムの酸化が進行すると槽内で酸化されたクロ
ム酸化物(Cr2 3)が下降管から槽外に流出し、こ
のCr2 3 が高融点であるが故に取鍋上のスラグが固
化し、サンプリングが困難となるなどの操業性の悪化の
問題や一旦槽外へ流出したCr2 3 はその後の脱炭反
応に全く寄与しないため、必然的に脱炭酸素効率が低下
してしまうといった問題があった。更に、特開昭61−
37912号公報においては、取鍋内の溶鋼を円筒状の
浸漬管を介して真空槽内に吸い上げ、浸漬管の投影下の
取鍋内に下位から吹込管を介して不活性ガスを吹き込
み、かつ、真空槽内の溶鋼表面に上部ランスを介して酸
化性ガスを吹き付ける方法が開示されているが、この方
法においてもRH−OB法と同様、Cr2 3 の槽外流
出により取鍋上のスラグ固化によるサンプリング性の悪
化や脱炭酸素効率低下の問題があった。
2. Description of the Related Art Generally, a VOD method is widely known as a method for finishing and decarburizing stainless steel. However, the VOD method is a method in which the entire ladle is put in a vacuum vessel, or a method in which a lid is placed on the upper part of the ladle to make the whole ladle vacuum, so that the structure of the sampling device is inevitably complicated, and therefore, There is a problem that the components and temperatures during operation are unclear due to the problem that the sampling success rate is low and the sampling success rate is low, and the variation of the blow stop operation is large. In addition, as a method of blowing acid decarburization refining under vacuum, RH
The -OB method is widely known. However, RH-O
When the method B is applied to the finishing refining of stainless steel, when oxidization of chromium proceeds during the decarburization of the blowing acid, the oxidized chromium oxide (Cr 2 O 3 ) in the tank flows out of the tank from the downcomer pipe, Because of the high melting point of Cr 2 O 3 , the slag on the ladle solidifies, making it difficult to perform operations, such as difficulty in sampling, and the Cr 2 O 3 that once flows out of the tank is decarbonized. Since it does not contribute to the reaction at all, there has been a problem that the decarboxylation efficiency necessarily decreases. Further, JP-A-61-
In Japanese Patent No. 37912, molten steel in a ladle is sucked up into a vacuum tank through a cylindrical dip tube, and an inert gas is blown into the ladle under the dip tube through a blow tube from below, and A method is disclosed in which an oxidizing gas is blown to the surface of molten steel in a vacuum chamber through an upper lance, but in this method as well as in the RH-OB method, Cr 2 O 3 flows out of the tank to cause the oxidizing gas to flow out of the ladle. There were problems such as deterioration of sampling performance and reduction of decarbonation efficiency due to solidification of slag.

【0003】[0003]

【発明が解決しようとする課題】本発明は、VOD法が
有している設備上の問題としてのサンプリングの困難性
に起因した操業性の悪化といった問題やRH−OB法、
更には特開昭61−37912号公報が有している固化
状Cr2 3 の槽外流出に起因した操業性悪化や脱炭酸
素効率の悪化といった問題を生じることなく、極めて効
率的な吹酸脱炭を可能とする精錬方法を提供することを
目的とする。
DISCLOSURE OF THE INVENTION The present invention relates to the problems of equipment that the VOD method has, such as deterioration of operability due to difficulty in sampling due to the difficulty of sampling, the RH-OB method,
Further, extremely efficient spraying can be achieved without causing problems such as deterioration of operability and deterioration of decarbonation efficiency due to outflow of solidified Cr 2 O 3 from JP-A-61-37912. An object of the present invention is to provide a refining method that enables acid decarburization.

【0004】[0004]

【課題を解決するための手段】前記目的に沿う請求項1
記載のステンレス鋼の精錬方法は、転炉より出鋼された
クロム濃度が5%以上の取鍋内溶鋼に対し、槽の下部に
設けられた直胴円筒型の浸漬管を浸漬したうえで、該浸
漬管内を減圧し、その後、前記槽内にアルミニウム(A
l)を添加して吹酸を行うことにより、溶鋼温度の昇熱
と脱炭精錬を行うステンレス鋼の精錬方法において、前
記昇熱用のアルミニウム(WAl;kg)に対し、更に、
0.8WAl〜4.0WAl(kg)相当のCaOを投入
し、吹酸脱炭精錬を行っている。このように低融点化合
物であるカルシウムアルミネート化合物(12CaO・
7Al2 3 )を形成させることによりスラグの液相率
を向上させることができる。そして、請求項2記載のス
テンレス鋼の精錬方法は、請求項1記載のステンレス鋼
の精錬方法において、前記昇熱期間中の前記浸漬管の溶
鋼への浸漬深さを、200〜400mmの範囲とし、か
つ、前記昇熱終了後の脱炭期においては、前記浸漬管の
溶鋼への浸漬深さを500〜700mmの範囲として吹
酸脱炭精錬を行っている。このことにより、昇熱期間中
においては、このカルシウムアルミネート系のスラグの
排出を促進し、サンプリング操業の容易化を可能とす
る。更に、その後の脱炭期においては、槽内に残留した
カルシウムアルミネートと吹酸により生成するCr2
3 を懸濁をさせることによって、槽内スラグの鋼浴中へ
の巻き込みを促進し、鋼中炭素によるCr2 3 の還元
を促進することを可能とする。
According to the present invention, there is provided a semiconductor device comprising:
The refining method of stainless steel described in the above is a method of immersing a straight cylindrical immersion pipe provided at the lower part of a tank into molten steel in a ladle having a chromium concentration of 5% or more, which is tapped from a converter, The pressure in the dip tube was reduced, and then aluminum (A
l) is added to perform blowing acid, so that in the refining method of stainless steel in which the temperature of the molten steel is raised and the decarburization is refined, the aluminum (W Al ; kg) for raising the heat is further
CaO equivalent to 0.8 W Al to 4.0 W Al (kg) is charged to perform the decarburization refining. Thus, the calcium aluminate compound (12CaO ·
7Al 2 O 3 ) can improve the liquid phase ratio of the slag. The method for refining stainless steel according to claim 2 is the method for refining stainless steel according to claim 1, wherein the immersion depth of the immersion tube in the molten steel during the heating period is in a range of 200 to 400 mm. In the decarburization period after the end of the heating, the immersion depth of the immersion pipe in the molten steel is set in the range of 500 to 700 mm to perform the decarburization refining with acid. This promotes the discharge of the calcium aluminate-based slag during the heating period, and facilitates the sampling operation. Further, in the subsequent decarburization period, the residual calcium aluminate in the tank and Cr 2 O
Suspension of 3 promotes entrainment of the slag in the tank into the steel bath and promotes the reduction of Cr 2 O 3 by carbon in the steel.

【0005】ステンレス鋼の吹酸脱炭精錬は、鋼浴に吹
き付けられた酸素により浴中のクロムが一旦、酸化され
てクロム酸化物(Cr2 3 )を形成し、その後にこの
Cr2 3 が鋼中の酸素によって還元されることにより
進行することが知られている。このCr2 3 は高融点
の酸化物であり、したがってこのCr2 3 の存在はス
ラグの液相率を著しく低下させることになる。本法の如
く、取鍋内溶鋼に対し、直胴円筒型の浸漬管を浸漬した
うえで、該浸漬管内を減圧し、吹酸脱炭精錬を行う方法
では、槽内で一旦形成されたCr2 3 が槽外に排出さ
れてしまい、取鍋上のスラグに取り込まれると、該取鍋
上スラグは著しく固化が進み、それ故にサンプリング作
業が困難となるため、操業中の成分・温度が不明瞭とな
り、吹止判定などに支障をきたすことになる。更に、こ
のCr2 3 が槽内で固化状のままであると、一部のC
2 3 は上記の如く、浴内に巻き込まれ槽外に排出さ
れるものの、大部分は真空槽内の溶鋼上を浮遊したまま
の状態となり、したがって溶鋼中炭素との接触機会が少
ないため、多大なクロム酸化ロスを引き起こす。
[0005] In blowing acid decarburization refining of stainless steel, chromium in the bath is once oxidized by oxygen blown into the steel bath to form chromium oxide (Cr 2 O 3 ), and then this Cr 2 O 3 is formed. 3 is known to proceed by being reduced by oxygen in the steel. This Cr 2 O 3 is an oxide having a high melting point, and therefore the presence of the Cr 2 O 3 significantly lowers the liquid phase ratio of the slag. In the method of immersing a straight cylindrical cylindrical immersion pipe in molten steel in a ladle and then reducing the pressure in the immersion pipe to perform a bleaching acid decarburization refining as in the present method, the Cr once formed in the tank is used. When 2 O 3 is discharged out of the tank and is taken into the slag on the ladle, the slag on the ladle remarkably solidifies, thereby making sampling work difficult. It becomes unclear and hinders the determination of the blowing stop. Furthermore, if this Cr 2 O 3 remains in a solidified state in the tank, some C
As described above, although r 2 O 3 is entrained in the bath and discharged out of the tank, most of the r 2 O 3 remains floating on the molten steel in the vacuum tank, and therefore there is little contact with the carbon in the molten steel. Causes significant chromium oxidation loss.

【0006】本発明者らは、これらの課題を解決すべく
数々の実験を行い、槽内のスラグを軟化させることによ
り、Cr2 3 リッチなスラグの溶中への巻き込みの促
進による槽内の還元効率向上と槽外排出後のスラグの固
化防止方法を見出した。本発明はこれらの知見に基づき
なされたものである。その具体的な方法としては、吹酸
脱炭の事前に行うAl昇熱期に昇熱Al量(WAl;k
g)に対し、0.8WAl〜4.0WAl(kg)相当のC
aOを投入することにある。これはAl酸化物(Al2
3 )自体は高融点の酸化物であるが、CaOと反応さ
せることによりカルシウムアルミネート化合物(12C
aO・7Al2 3 )を形成させることによって低融点
化が可能となるためである。これにより、溶融状のカル
シウムアルミネート化合物にCr2 3 が適度に懸濁
し、浴内への巻き込みが促進されることによって、Cr
2 3 と鋼中炭素の接触機会が増大し、結果としてCr
2 3 の還元効率すなわち脱炭酸素効率の高位維持が可
能となる。更に、これら溶融状の化合物が槽外に排出さ
れても、取鍋スラグの固化は防止されるため、サンプリ
ング作業についても極めて有効である。ここで、Al昇
熱時に添加するCaO量としては、昇熱Al量(WAl
kg)に対し、0.8WAl〜4.0WAl(kg)相当量
であることが望ましい。これは、CaO添加量が0.8
Al(kg)未満であると、12CaO・7Al2 3
の生成量が不足し、高融点酸化物であるAl2 3 単独
相が多量に析出するため槽内スラグの溶融化が不十分と
なってしまうためである。逆に、CaOを4.0W
Al(kg)を超える量を添加すると、槽内のスラグ量そ
のものが増大することに起因して、酸素ジェットの鋼浴
面への吹き付けが阻害され、結果として脱炭酸素効率の
低下を招くためである。
The present inventors have conducted various experiments in order to solve these problems, and softened the slag in the tank to promote the entrainment of Cr 2 O 3 -rich slag into the molten steel. A method for improving the reduction efficiency of slag and preventing solidification of slag after discharge from the tank was found. The present invention has been made based on these findings. As a specific method, a heat-up Al amount (W Al ; k) in an Al heat-up period performed before blowing acid decarburization.
g) to 0.8 W Al to 4.0 W Al (kg).
aO is to be introduced. This is an Al oxide (Al 2
O 3 ) itself is an oxide having a high melting point, but is reacted with CaO to form a calcium aluminate compound (12C).
aO.7Al 2 O 3 ) can reduce the melting point. Thereby, Cr 2 O 3 is appropriately suspended in the molten calcium aluminate compound, and entrainment into the bath is promoted, whereby Cr 2 O 3 is promoted.
The chance of contact between 2 O 3 and carbon in steel increases, resulting in Cr
It is possible to maintain the reduction efficiency of 2 O 3 , that is, the decarbonation efficiency at a high level. Furthermore, even if these molten compounds are discharged out of the tank, solidification of the ladle slag is prevented, which is extremely effective for sampling work. Here, the amount of CaO to be added at the time of raising the temperature of Al includes the amount of heat-raising Al (W Al ;
It is preferable that the amount is 0.8 W Al to 4.0 W Al (kg) corresponding to the weight of (kg). This is because the amount of CaO added is 0.8
If it is less than W Al (kg), 12CaO · 7Al 2 O 3
Is insufficient, and a single phase of Al 2 O 3, which is a high-melting oxide, precipitates in large quantities, resulting in insufficient melting of the slag in the tank. Conversely, 4.0 W of CaO
If the amount added exceeds Al (kg), the amount of slag in the tank itself increases, so that the spraying of the oxygen jet on the steel bath surface is hindered, and as a result, the efficiency of decarbonation decreases. It is.

【0007】また、昇熱期間中における浸漬管の溶鋼中
への浸漬深さとしては、200〜400mmの範囲が望
ましい。これは、吹酸により生成したAl2 3 とCa
Oを適度に接触させカルシウムアルミネートの生成を促
進させるためであり、浸漬深さが200mm未満である
と、Al2 3 がCaOとの槽内での接触時間が短く、
カルシウムアルミネートを生成する前に管外へ排出され
てしまうため、結果として取鍋上のスラグが固化してし
まい、サンプリング性が悪くなるためであり、逆に、4
00mmを超える浸漬深さであると、カルシウムアルミ
ネートの浸漬管内での滞留時間が長く、浸漬管耐火物の
溶損を助長することになることと、その後の脱炭期にお
いて槽内での残留スラグが過剰となることに起因して、
吹酸ジェットの溶鋼への到達が阻害されてしまうことに
よる脱炭酸素効率の低下を招くためである。更に、脱炭
期においては、浸漬深さを500〜700mmとするこ
とが望ましい。これは、脱炭期におけるCr2 3 をよ
り長く槽内に留め鋼中炭素との反応による還元を促進す
るためであり、浸漬深さが500mm未満の場合には、
鋼中に巻き込まれたスラグの排出が促進されてしまい、
鋼中炭素によるCr2 3 の還元が起こらず、結果とし
て脱炭酸素効率の低下を招いてしまうためであり、70
0mmより浸漬深さを深くしてしまうと、槽内でのCr
2 3 の滞留は促進されるものの、真空槽内と取鍋内溶
鋼の循環が悪化してしまうため、還元反応に使用される
べき炭素の供給が阻害されることになり、結果として脱
炭酸素効率の低下が生じるためである。
The immersion depth of the immersion tube in the molten steel during the heating period is preferably in the range of 200 to 400 mm. This is because Al 2 O 3 and Ca
This is for promoting the generation of calcium aluminate by appropriately contacting O, and when the immersion depth is less than 200 mm, the contact time of Al 2 O 3 with CaO in the tank is short,
Before the calcium aluminate is produced, it is discharged out of the tube. As a result, the slag on the ladle is solidified, and the sampling property is deteriorated.
If the immersion depth exceeds 00 mm, the residence time of the calcium aluminate in the immersion pipe is long, which promotes the erosion of the refractory in the immersion pipe, and the residual in the tank during the subsequent decarburization period. Due to excess slag,
This is because the efficiency of decarboxylation is reduced due to the inhibition of the blowing acid jet from reaching the molten steel. Furthermore, in the decarburization period, it is desirable to set the immersion depth to 500 to 700 mm. This is because the Cr 2 O 3 in the decarburization period is retained in the tank for a longer time to promote reduction by reaction with carbon in the steel, and when the immersion depth is less than 500 mm,
The discharge of slag entrained in steel is promoted,
This is because the reduction of Cr 2 O 3 by carbon in the steel does not occur, resulting in a decrease in decarbonation efficiency.
If the immersion depth is made deeper than 0 mm,
Although the retention of 2 O 3 is promoted, the circulation of the molten steel in the vacuum chamber and the ladle is deteriorated, so that the supply of carbon to be used for the reduction reaction is hindered. This is because the elementary efficiency is reduced.

【0008】ここで、溶鋼攪拌に用いるべき不活性ガス
の供給量としては、昇熱期では3.3〜4.7NL/
(分・t)、脱炭期では1.7〜6.0NL/(分・
t)とすることが望ましい。この理由としては上記と同
様、昇熱期においてはAl2 3とCaOの適正な反応
時間の確保であり、脱炭期においてはCr2 3 の滞留
と溶鋼の循環バランスの観点からであり、例え、浸漬管
の浸漬深さを上記の適正な範囲に保持したとしても、昇
熱期のガス流量が3.3NL/(分・t)未満の場合に
は、スラグそのものが槽内に大量に残存してしまうこと
による脱炭期の脱炭効率低下が生じ、4.7NL/(分
・t)を超えるガス流量では、カルシウムアルミネート
生成以前に槽外排出が起こることによるサンプリング性
の悪化が問題となる。更に、脱炭期において、ガス流量
が1.7NL/(分・t)未満の場合には、環流不足に
起因した脱炭酸素効率の低下が問題となり、6.0NL
/(分・t)を超えるガス流量では生成Cr2 3 の早
期排出が問題となる。
Here, the supply amount of the inert gas to be used for the molten steel stirring is 3.3 to 4.7 NL /
(Min.t), 1.7 to 6.0 NL / (min.
t) is desirable. The reason for this is, as in the above, to ensure an appropriate reaction time between Al 2 O 3 and CaO during the heating period, and from the viewpoint of the retention of Cr 2 O 3 and the circulation balance of the molten steel during the decarburization period. Even if the immersion depth of the immersion tube is kept within the above-mentioned appropriate range, if the gas flow rate during the heating period is less than 3.3 NL / (min.t), a large amount of slag itself will remain in the tank. The decarburization efficiency is reduced during the decarburization period due to the residual carbon dioxide, and at a gas flow rate exceeding 4.7 NL / (min · t), sampling performance is deteriorated due to discharge outside the tank before calcium aluminate generation. Is a problem. Furthermore, if the gas flow rate is less than 1.7 NL / (min.t) during the decarburization period, the reduction of decarboxylation efficiency due to insufficient reflux becomes a problem, and 6.0 NL.
If the gas flow rate exceeds / (minute · t), the early discharge of the generated Cr 2 O 3 becomes a problem.

【0009】[0009]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに、図1は本発明の一実施の形
態に係るステンレス鋼の精錬方法を好適に用いることが
できる真空精錬装置の概略構成図、図2はWCAO /WAl
比と脱炭酸素効率の関係を示す図、図3は昇熱期の浸漬
深さと脱炭酸素効率の関係を示す図、図4は脱炭期の浸
漬深さと脱炭酸素効率の関係を示す図、図5は昇熱期に
おける底吹きArガス流量と脱炭酸素効率の関係を示す
図、図6は脱炭期における底吹きArガス流量と脱炭酸
素効率の関係を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. Here, FIG. 1 is a schematic structural view of a vacuum refining apparatus can be suitably used refining method of the stainless steel according to an embodiment of the present invention, FIG 2 is W CAO / W Al
FIG. 3 shows the relationship between the immersion depth and the decarboxylation efficiency during the heating period, and FIG. 4 shows the relationship between the immersion depth and the decarbonation efficiency during the decarburization period. FIG. 5 is a diagram showing the relationship between the flow rate of the bottom blown Ar gas and the decarbonation efficiency during the heating period, and FIG. 6 is a diagram showing the relationship between the flow rate of the bottom blown Ar gas and the decarbonation efficiency during the decarburization period.

【0010】図1に示すように、転炉より出鋼されたク
ロム濃度が5%以上の取鍋1内溶鋼2に対し、槽の下部
に設けられた直胴円筒型の浸漬管4を浸漬したうえで、
浸漬管4内を減圧すると共に、取鍋1の底部に設けられ
たポーラスプラグ3から、不活性ガスである攪拌用Ar
ガス(底吹きArガス)9を供給する。更に、槽内にア
ルミニウム(Al)を添加して、吹酸ランス5から酸素
ジェット6による吹酸を行って、溶鋼温度の昇熱と脱炭
精錬を行うものである。ここで、昇熱用のアルミニウム
(WAl;kg)に対し、更に、0.8WAl〜4.0WAl
(kg)相当のCaOを投入している。これによってカ
ルシウムアルミネート化合物が形成され、スラグの液相
率が向上し、図2に示すように、脱炭酸素効率が上が
る。また、昇熱期間中の浸漬管4の溶鋼2への浸漬深さ
を、200〜400mmの範囲とすることにより、Al
酸化物とCaOを適度に接触させ、カルシウムアルミネ
ートの生成を促進させ、図3に示すように脱炭酸素効率
を向上させている。昇熱終了後の脱炭期においては、浸
漬管4の溶鋼2への浸漬深さを500〜700mmの範
囲とし、Cr2 3 の鋼中炭素との反応による還元を促
進させることにより、図4に示すように脱炭酸素効率を
高位に維持している。更に、溶鋼攪拌に用いる攪拌用A
rガス9の供給量を、図5、図6に示すように、昇熱期
では、3.3〜4.7NL/(分・t)、脱炭期では、
1.7〜6.0NL/(分・t)として、脱炭酸素効率
を上げている。なお、図1において、符号7は槽内スラ
グを示し、符号8は取鍋上スラグを示す。
As shown in FIG. 1, a straight cylindrical immersion pipe 4 provided at the lower part of a tank is immersed in molten steel 2 in a ladle 1 having a chromium concentration of 5% or more and produced from a converter. After doing
The pressure in the immersion tube 4 is reduced, and the Ar gas for stirring, which is an inert gas, is passed through the porous plug 3 provided at the bottom of the ladle 1.
A gas (bottom blown Ar gas) 9 is supplied. Further, aluminum (Al) is added into the tank, and blowing acid is performed by blowing oxygen from the blowing acid lance 5 with an oxygen jet 6, thereby raising the temperature of the molten steel and performing decarburization refining. Here, aluminum for temperature heat; to (W Al kg), further, 0.8W Al ~4.0W Al
(Kg) of CaO is supplied. As a result, a calcium aluminate compound is formed, the liquid phase ratio of the slag is improved, and as shown in FIG. 2, the decarbonation efficiency is increased. Further, by setting the immersion depth of the immersion pipe 4 in the molten steel 2 during the heating period to be in the range of 200 to 400 mm,
The oxide and CaO are appropriately contacted to promote the formation of calcium aluminate, and as shown in FIG. 3, the decarboxylation efficiency is improved. In the decarburization period after the completion of the heating, the immersion pipe 4 is immersed in the molten steel 2 at a depth of 500 to 700 mm to promote the reduction of Cr 2 O 3 by reaction with carbon in the steel. As shown in FIG. 4, the decarboxylation efficiency is maintained at a high level. Further, A for stirring used for molten steel stirring
As shown in FIG. 5 and FIG. 6, the supply amount of the r gas 9 is 3.3 to 4.7 NL / (min · t) in the heating period, and
The decarboxylation efficiency is increased to 1.7 to 6.0 NL / (minute · t). In addition, in FIG. 1, the code | symbol 7 shows the slag in a tank, and the code | symbol 8 shows a slag on a ladle.

【0011】[0011]

【実施例】実施例は150トン規模の真空精錬装置を用
いて行った。転炉にて〔%C〕が0.6〜0.7%、
〔%Cr〕が16.0〜16.5%含まれる溶鋼を溶製
した後、図1に示した形状の真空精錬装置にて昇熱、吹
酸脱炭を実施した。この場合、送酸速度としては、昇熱
期から脱炭期の〔%C〕=0.15%までの間は、2
3.3Nm3 /(h・t)一定とし、その後、〔%C〕
=0.05%までは10.5Nm3 /(h・t)まで一
定の頻度にて送酸速度を順次低下させる送酸速度制御を
行いつつ、〔%C〕=0.05%にて吹止めた。
EXAMPLES Examples were carried out using a 150-ton vacuum refining apparatus. In the converter, [% C] is 0.6 to 0.7%,
After smelting molten steel containing 16.0 to 16.5% of [% Cr], heat was raised and blowing acid decarburization was performed using a vacuum refining apparatus having the shape shown in FIG. In this case, the acid transfer rate is 2% during the period from the heating period to the decarburizing period [% C] = 0.15%.
3.3 Nm 3 / (ht) constant, then [% C]
= 0.05%, while performing acid feed rate control to gradually reduce the acid feed rate at a constant frequency up to 10.5 Nm 3 / (ht), blowing at [% C] = 0.05% stopped.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】表1、2に本発明の実施例を比較例と共に
示す。事例1〜12は本発明による実施例である。これ
に対し、事例13はWCAO /WAl比が0.8未満である
ため、カルシウムアルミネートの生成が促進されず、そ
れ故スラグが固化状のままであるため、結果として、サ
ンプリング性が悪く脱炭酸素効率も低い。事例14はC
aO過剰であることに起因してスラグ量が多量となり、
その結果、脱炭期における酸素ジェットの脱炭阻害が生
じる。事例15、16はそれぞれ昇熱期の浸漬深さが2
00mm未満及び400mmを超える場合の事例である
が、200mm未満ではサンプリング性も悪く脱炭期の
脱炭酸素効率も低い。これに対し、400mmを超える
場合には、サンプリング性は良好であるものの、槽内ス
ラグの排出不足に起因した脱炭酸素効率低下(カバーリ
ングによる脱炭阻害)が問題となる。また、事例17、
18は脱炭期での浸漬深さが500mm未満及び700
mmを超えてしまう場合を示したものである。500m
m未満の場合では、Cr23 リッチなスラグの早期管
外流出によるスラグ固化(サンプリング性悪化)及び脱
炭酸素効率の低下が見られ、700mmを超える場合に
は、溶鋼循環の悪化に起因した脱炭酸素効率低下が問題
となる。更に、事例19、20は昇熱期における底吹き
Ar流量が3.3NL/(分・t)未満及び4.7NL
/(分・t)を超過した場合の事例であり、3.3NL
/(分・t)未満時にはスラグの多量槽内残存に起因し
た脱炭酸素効率低下が、4.7NL/(分・t)超過時
にはカルシウムアルミネート生成不足によるサンプリン
グ性悪化が問題となる。また、事例21、22は脱炭期
の底吹きAr流量が1.7NL/(分・t)未満及び
6.0NL/(分・t)超過時の場合の事例であり、そ
れぞれ、1.7NL/(分・t)未満の場合では環流不
足が、6.0NL/(分・t)超過時には生成Cr2
3 の早期管外流出に起因した脱炭酸素効率の低下が認め
られる。
Tables 1 and 2 show examples of the present invention together with comparative examples. Cases 1 to 12 are examples according to the present invention. On the other hand, in case 13, since the W CAO / W Al ratio was less than 0.8, the formation of calcium aluminate was not promoted, and the slag remained in a solid state. Poor decarbonation efficiency. Case 14 is C
The amount of slag becomes large due to excess aO,
As a result, decarburization inhibition of the oxygen jet occurs during the decarburization period. Cases 15 and 16 show that the immersion depth during the heating period was 2
This is the case where it is less than 00 mm and more than 400 mm. If it is less than 200 mm, the sampling property is poor and the decarboxylation efficiency in the decarburization stage is low. On the other hand, if it exceeds 400 mm, although the sampling property is good, there is a problem of a decrease in decarbonation efficiency (inhibition of decarburization by covering) due to insufficient discharge of slag in the tank. Case 17,
No. 18 has an immersion depth of less than 500 mm and 700
mm. 500m
When the diameter is less than m, slag solidification (sampling property deterioration) and decarbonation efficiency decrease due to early outflow of slag rich in Cr 2 O 3 are observed, and when it exceeds 700 mm, it is caused by deterioration of molten steel circulation. The reduced decarbonation efficiency becomes a problem. Further, in Examples 19 and 20, the bottom blown Ar flow rate during the heating period was less than 3.3 NL / (min.t) and 4.7 NL.
/(Min.t), 3.3 NL
If it is less than /(min.t), the decarbonation efficiency decreases due to the slag remaining in the large amount tank, and if it exceeds 4.7 NL / (min.t), the sampling property deteriorates due to insufficient production of calcium aluminate. Cases 21 and 22 are cases in which the bottom blown Ar flow rate during the decarburization period is less than 1.7 NL / (min.t) and more than 6.0 NL / (min.t), respectively, and is 1.7 NL, respectively. / (Min · t) is less than the reflux limit, and 6.0 NL / (min · t) is greater than the generated Cr 2 O.
3 ) Decrease in decarbonation efficiency due to early extravasation.

【0015】[0015]

【発明の効果】本発明により、Al昇熱時及び吹酸脱炭
時におけるクロム酸化ロスを制御し、還元材原単位の極
めて少ないステンレス鋼の吹酸脱炭精錬が可能となっ
た。
According to the present invention, it is possible to control the chromium oxidation loss at the time of raising the temperature of Al and during the decarburization of the blowing acid, and to perform the refining of the bleaching acid decarburized stainless steel having a very small unit of reducing material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係るステンレス鋼の精
錬方法を好適に用いることができる真空精錬装置の概略
構成図である。
FIG. 1 is a schematic configuration diagram of a vacuum refining apparatus that can suitably use a method for refining stainless steel according to one embodiment of the present invention.

【図2】WCAO /WAl比と脱炭酸素効率の関係を示す図
である。
FIG. 2 is a graph showing the relationship between the W CAO / W Al ratio and the efficiency of decarbonation.

【図3】昇熱期の浸漬深さと脱炭酸素効率の関係を示す
図である。
FIG. 3 is a graph showing the relationship between the immersion depth during the heating period and the efficiency of decarbonation.

【図4】脱炭期の浸漬深さと脱炭酸素効率の関係を示す
図である。
FIG. 4 is a diagram showing the relationship between the immersion depth in the decarburization period and the decarboxylation efficiency.

【図5】昇熱期における底吹きArガス流量と脱炭酸素
効率の関係を示す図である。
FIG. 5 is a graph showing the relationship between the flow rate of bottom-blown Ar gas and the efficiency of decarbonation during the heating period.

【図6】脱炭期における底吹きArガス流量と脱炭酸素
効率の関係を示す図である。
FIG. 6 is a diagram showing the relationship between the flow rate of bottom-blown Ar gas and the efficiency of decarbonation during the decarburization period.

【符号の説明】[Explanation of symbols]

1 取鍋 2 溶鋼 3 ポーラスプラグ 4 浸漬管 5 吹酸ランス 6 酸素ジェッ
ト 7 槽内スラグ 8 取鍋上スラ
グ 9 攪拌用Arガス
DESCRIPTION OF SYMBOLS 1 Ladle 2 Molten steel 3 Porous plug 4 Immersion pipe 5 Blowing acid lance 6 Oxygen jet 7 Slag in tank 8 Slag on ladle 9 Ar gas for stirring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅野 浩至 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Kanno 1-1-1, Hibata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Nippon Steel Corporation Yawata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 転炉より出鋼されたクロム濃度が5%以
上の取鍋内溶鋼に対し、槽の下部に設けられた直胴円筒
型の浸漬管を浸漬したうえで、該浸漬管内を減圧し、そ
の後、前記槽内にアルミニウム(Al)を添加して吹酸
を行うことにより、溶鋼温度の昇熱と脱炭精錬を行うス
テンレス鋼の精錬方法において、 前記昇熱用のアルミニウム(WAl;kg)に対し、更
に、0.8WAl〜4.0WAl(kg)相当のCaOを投
入し、吹酸脱炭精錬を行うことを特徴とするステンレス
鋼の精錬方法。
1. A straight cylindrical cylindrical immersion pipe provided at the lower part of a tank is immersed in molten steel in a ladle having a chromium concentration of 5% or more, which is produced from a converter. In the method for refining stainless steel, in which the pressure is reduced and then aluminum (Al) is added into the tank and the acid is blown out, thereby raising the temperature of the molten steel and performing decarburization refining, the aluminum (W Al ; kg), CaO equivalent to 0.8 W Al to 4.0 W Al (kg) is further added, and blowing acid decarburization refining is performed.
【請求項2】 前記昇熱期間中の前記浸漬管の溶鋼への
浸漬深さを、200〜400mmの範囲とし、かつ、前
記昇熱終了後の脱炭期においては、前記浸漬管の溶鋼へ
の浸漬深さを500〜700mmの範囲として吹酸脱炭
精錬を行うことを特徴とする請求項1記載のステンレス
鋼の精錬方法。
2. The immersion depth of the immersion pipe in the molten steel during the heat-up period is set in a range of 200 to 400 mm, and in the decarburization period after the completion of the heat-up, the immersion pipe is immersed in the molten steel. 2. The method for refining stainless steel according to claim 1, wherein the blasting of the stainless steel is performed by setting the immersion depth of the steel to 500 to 700 mm.
JP13429997A 1996-11-20 1997-05-07 Method for refining stainless steel Withdrawn JPH10310818A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP13429997A JPH10310818A (en) 1997-05-07 1997-05-07 Method for refining stainless steel
US09/101,859 US6190435B1 (en) 1996-11-20 1997-11-20 Method of vacuum decarburization/refining of molten steel
CN97192437A CN1070927C (en) 1996-11-20 1997-11-20 Method of vacuum decarburization refining of molten steel and apparatus therefor
DE69716582T DE69716582T2 (en) 1996-11-20 1997-11-20 METHOD AND DEVICE FOR VACUUM DECOLARING / FINISHING LIQUID STEEL
KR1019980705517A KR100334947B1 (en) 1996-11-20 1997-11-20 Method of vacuum decarburization /refining of molten steel and apparatus thereor
PCT/JP1997/004234 WO1998022627A1 (en) 1996-11-20 1997-11-20 Method of vacuum decarburization/refining of molten steel and apparatus therefor
EP97913417A EP0881304B1 (en) 1996-11-20 1997-11-20 Method of vacuum decarburization/refining of molten steel and apparatus therefor
US09/712,303 US6468467B1 (en) 1996-11-20 2000-11-14 Method and apparatus for vacuum decarburization refining of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13429997A JPH10310818A (en) 1997-05-07 1997-05-07 Method for refining stainless steel

Publications (1)

Publication Number Publication Date
JPH10310818A true JPH10310818A (en) 1998-11-24

Family

ID=15125047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13429997A Withdrawn JPH10310818A (en) 1996-11-20 1997-05-07 Method for refining stainless steel

Country Status (1)

Country Link
JP (1) JPH10310818A (en)

Similar Documents

Publication Publication Date Title
JPH10310818A (en) Method for refining stainless steel
JPH0153329B2 (en)
KR100270109B1 (en) The denitriding method of molten metal
JPH06228629A (en) Method for refining high purity stainless steel
JP2724035B2 (en) Vacuum decarburization of molten steel
JP2897639B2 (en) Refining method for extremely low sulfur steel
JPH01100216A (en) Ladle refining method for molten steel
JPH05214430A (en) Method for vacuum-refining molten steel
JPS5831012A (en) Preferential desiliconizing method for molten iron by blowing of gaseous oxygen
JP2006152368A (en) Method for melting low carbon high manganese steel
JP3769779B2 (en) Method for melting ultra-low carbon Cr-containing steel
JP3168437B2 (en) Vacuum refining method
JPH11140530A (en) Production of ultra-low nitrogen stainless steel
JP6828498B2 (en) Desulfurization method of molten steel
JPH08109410A (en) Finish decarburization refining of stainless steel
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JP3914611B2 (en) Decarburizing and refining method for stainless steel
JP3785257B2 (en) Method for degassing stainless steel
JP2724030B2 (en) Melting method of ultra low carbon steel
JPS63266017A (en) Method for refining molten steel while raising temperature in ladle
JPH0925509A (en) Method for melting extra-low nitrogen chromium-containing steel
JPH09111331A (en) Ladle reining apparatus
JPH11158536A (en) Method for melting extra-low carbon steel excellent in cleanliness
JPS6213403B2 (en)
JPH0565521A (en) Production of extremely low carbon steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803