JPH10310254A - Stacking method of object to be treated - Google Patents

Stacking method of object to be treated

Info

Publication number
JPH10310254A
JPH10310254A JP14101697A JP14101697A JPH10310254A JP H10310254 A JPH10310254 A JP H10310254A JP 14101697 A JP14101697 A JP 14101697A JP 14101697 A JP14101697 A JP 14101697A JP H10310254 A JPH10310254 A JP H10310254A
Authority
JP
Japan
Prior art keywords
height
base
workpiece
work
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14101697A
Other languages
Japanese (ja)
Inventor
Kentaro Morita
研太郎 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP14101697A priority Critical patent/JPH10310254A/en
Publication of JPH10310254A publication Critical patent/JPH10310254A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Stacking Of Articles And Auxiliary Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain upper surface height after stacking in a specified range by making an allowable height range as a specific range of the maximum variable thickness of an article to be treated and setting boundary height between a position higher by the maximum variable height than its lowest limit height and a position lower by the maximum variable thickness than highest limit height. SOLUTION: An allowable height range HE is made in dimensions of more than two times of the maximum variable thickness Te (=d1+d2), and boundary height Hc is set between a position Ha1 higher by Te than lowest limit height Ha of HE and a position Hb1 lower by Te than highest limit height Hb. A base 1 with no work loaded on it is set so that its upper surface comes to be in a range of more than Ha and not more than the position Hb1, and after a first work W1 is loaded on the upper surface of the base 1, the base 1 is lowered by a distance of a range of more than work minimum thickness Tn and less than a distance Bu between Ha and a setting position Bh of the upper surface of the base 1 added with the work minimum thickness Tn. Consequently, it is possible to efficiently stack objects to be treated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被処理物をベース
上に積み重ねる方法に関し、詳しくは、被処理物の上面
位置を所定の許容高さに維持しつつ、複数の被処理物を
積み重ねる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of stacking objects to be processed on a base, and more particularly to a method of stacking a plurality of objects to be processed while maintaining the upper surface of the object at a predetermined allowable height. About.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】例え
ば、セラミック電子部品の製造工程においては、厚みに
バラツキのあるセラミック基板などの平板状の被処理物
(以下、適宜「ワーク」と略記)をベース上に積載した
後、ワークの表面に電極材料などを印刷塗布し、さら
に、その上に次のワークを積み重ねて印刷塗布を行い、
これを次々と繰り返して、ベース(カセット)上に多数
のワークを積み重ねてゆく工程が必要になる場合があ
る。そして、このような場合に、電極材料の印刷塗布な
どの処理を適切に行うためには、各ワークの上面を所定
の高さにセットすることが必要になる。そこで、従来
は、ワークを積載するたびに、ベースを下降させて、逐
次、ワークの上面を所定の高さにセットする方法が用い
られている。
2. Description of the Related Art For example, in a manufacturing process of a ceramic electronic component, a flat workpiece (hereinafter, abbreviated as "work" as appropriate) such as a ceramic substrate having a variation in thickness is used. After loading on the base, electrode material etc. are printed and applied on the surface of the work, and then the next work is stacked on it and printed and applied,
This may be repeated one after another, and a step of stacking a large number of works on a base (cassette) may be required. In such a case, it is necessary to set the upper surface of each work to a predetermined height in order to appropriately perform processing such as printing and coating of the electrode material. Therefore, conventionally, a method has been used in which the base is lowered every time a work is loaded, and the upper surface of the work is sequentially set at a predetermined height.

【0003】具体的には、図10に示すように、ワーク
Wを積載するベースBの傍らに、ワークWの上面がセッ
トされる所定の高さ位置を水平に通過する投光ビームL
Bを発生させる投光手段Laと、投光ビームLBを受光
する受光手段Lbを、ワークWを挟んで互いに対向する
よう配置することにより形成された位置決め装置が用い
られている。この位置決め装置を用いてワークWを積み
重ねる場合、以下に説明するような方法により、ベース
上にワークWが積み重ねられる。まず、受光手段Lbが
投光ビームを受光している状態で、図10(a)に示す
ように、最初のワークW(W1)をベースBの上面に積
載すると、投光手段Laからの投光ビームLBがワーク
W(W1)により遮られ、受光手段Lbが投光ビームL
Bを受光しなくなる。そこで、アクチュエータ(図示せ
ず)により、10(b)に示すように、受光手段Lbが
投光ビームLBを受光するまで、ベースB及びベースB
上に積載されたワークW(W1)を下降させ、ワークW
(W1)の上面が所定の高さになるようにセットする。
そして、このワークW(W1)の上面に、図10(c)
に示すように、次のワークW(W2)が積載されると、
最初のワークW(W1)を積載したときと同様に、投光
ビームLBがワークW(W2)で遮られ、受光手段Lb
が投光ビームLBを受光しなくなる。そこで、アクチュ
エータにより、10(d)に示すように、受光手段Lb
が投光ビームLBを受光するまで、ベースB及びベース
B上に積載されたワークWを下降させ、最上層のワーク
W(W2)の上面が所定の高さになるようにセットす
る。そして、この操作を繰り返すことにより、複数枚の
ワークWがベースB上に積み重ねられる。
[0003] More specifically, as shown in FIG. 10, beside a base B on which a work W is loaded, a light projecting beam L horizontally passing a predetermined height position where the upper surface of the work W is set.
A positioning device formed by arranging light projecting means La for generating B and light receiving means Lb for receiving light beam LB so as to face each other with work W interposed therebetween is used. When the workpieces W are stacked using this positioning device, the workpieces W are stacked on the base by a method described below. First, when the first workpiece W (W1) is stacked on the upper surface of the base B as shown in FIG. The light beam LB is blocked by the work W (W1), and the light receiving means Lb is
B is no longer received. Therefore, as shown in FIG. 10B, the base B and the base B are moved by the actuator (not shown) until the light receiving means Lb receives the light beam LB.
The work W (W1) loaded on the upper part is lowered, and the work W
(W1) is set so that the upper surface thereof has a predetermined height.
Then, on the upper surface of the work W (W1), FIG.
As shown in, when the next work W (W2) is loaded,
Similarly to the case where the first work W (W1) is loaded, the light beam LB is blocked by the work W (W2), and the light receiving means Lb
Stops receiving the light beam LB. Therefore, as shown in FIG.
The base B and the work W loaded on the base B are lowered until the light beam LB is received, and the uppermost work W (W2) is set so that the upper surface thereof has a predetermined height. Then, by repeating this operation, a plurality of works W are stacked on the base B.

【0004】しかし、上記従来の積み重ね方法の場合、
ベースの下降速度を大きくすることができず、処理効率
が悪いという問題点がある。すなわち、投光手段La,
受光手段Lbなどからなる位置検出センサ及びアクチュ
エータによるフィードバック方式のベース下降駆動制御
系では、ベースの下降速度を大きくし過ぎると、制御系
の応答速度が追従できなくなり、ワークWの上面の位置
が所定の高さから大きくズレてしまい、許容高さの範囲
を外れてしまうことになる。また、ベース下降駆動制御
系に、停止精度の良い高速応答タイプのものを使用して
ベースの下降速度を大きくすることも考えられるが、制
御系が非常に高価になり実用性が損なわれるという問題
点がある。
However, in the case of the above-mentioned conventional stacking method,
There is a problem that the lowering speed of the base cannot be increased and the processing efficiency is poor. That is, the light emitting means La,
In the base lowering drive control system of the feedback system using the position detecting sensor including the light receiving unit Lb and the actuator, if the base lowering speed is too high, the response speed of the control system cannot follow, and the position of the upper surface of the work W becomes a predetermined position. Greatly deviates from the height of the object, and is out of the range of the allowable height. It is also conceivable to use a high-speed response type with good stopping accuracy for the base descent drive control system to increase the descent speed of the base, but the control system becomes very expensive and the practicality is impaired. There is a point.

【0005】本発明は、上記問題点を解決するものであ
り、センサやアクチュエータなどのベース下降駆動制御
系の応答速度に影響されることなく、積み重ね後の被処
理物の上面高さを所定の範囲に維持しつつ、被処理物を
ベース上に効率よく積み重ねることが可能な積み重ね方
法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problem, and it is possible to adjust the upper surface height of the stacked workpieces to a predetermined height without being affected by the response speed of a base lowering drive control system such as a sensor or an actuator. It is an object of the present invention to provide a stacking method capable of efficiently stacking objects to be processed on a base while maintaining the range.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明の被処理物の積み重ね方法は、基準厚みtに
対する厚み寸法公差が+d1及び−d2である被処理物
を積み重ねるたびに、被処理物が積み重ねられるベース
を所定距離だけ下降させることにより、積み重ねられる
被処理物の上面位置を所定の許容高さに維持しつつ、複
数の被処理物を積み重ねる方法であって、(a)許容高さ
範囲HEを、被処理物の最大変動厚みTe(=d1+d
2)の2倍以上とし、この許容高さ範囲HEの下限高さ
Haから最大変動厚みTeだけ上の位置Ha1と、許容
高さ範囲HEの上限高さHbから最大変動厚みTeだけ
下の位置Hb1の間に、境界高さHcを設定するととも
に、前記位置Hb1から下限高さHaの間に被処理物未
積載のベースの上面が位置するように、ベースをセット
するベースセット工程と、(b)ベースセット工程におい
てセットされたベースの上面に被処理物を積載するとと
もに、被処理物を積載したベースを、被処理物最小厚み
Tn(=t−d2)以上で、下限高さHaとベースの上
面のセット位置との間の距離に被処理物最小厚みTnを
加えた距離以下の範囲の距離だけ下降させる初被処理物
積載工程と、(c)初被処理物積載工程におけるベース下
降後の被処理物の上面の高さが境界高さHcに達しない
場合は、積載済の被処理物の上面に次の被処理物を積載
した後、被処理物最小厚みTnだけベースを下降させ、
初被処理物積載工程におけるベース下降後の被処理物の
上面の高さが境界高さHcを越える場合は、積載済の被
処理物の上面に次の被処理物を積載した後、被処理物最
大厚みTm(=t+d1)以上で、境界高さHcと位置
Ha1の間の距離に被処理物最大厚みTmを加えた距離
以下の範囲の距離だけベースを下降させる次被処理物積
載工程と、(d)次被処理物積載工程以降、次被処理物積
載工程のベース下降後の被処理物の上面に次被処理物積
載工程と同様にして後続の被処理物を積載する後続被処
理物積載工程とを具備することを特徴としている。
In order to achieve the above-mentioned object, the method of stacking objects to be processed according to the present invention provides a method of stacking objects to be processed each time the objects having thickness tolerances of + d1 and -d2 with respect to a reference thickness t are stacked. A method of stacking a plurality of workpieces while lowering the base on which the workpieces are stacked by a predetermined distance, while maintaining the upper surface position of the workpieces to be stacked at a predetermined allowable height, comprising: The height range HE is set to the maximum fluctuation thickness Te (= d1 + d
2) or more, and a position Ha1 above the lower limit height Ha of the allowable height range HE by the maximum change thickness Te, and a position below the upper limit height Hb of the allowable height range HE by the maximum change thickness Te. A base setting step of setting the boundary height Hc between Hb1 and setting the base such that the upper surface of the base on which the workpiece is not loaded is located between the position Hb1 and the lower limit height Ha; b) The object to be processed is loaded on the upper surface of the base set in the base setting step, and the base on which the object to be processed is loaded is set at a minimum height Tn (= t−d2) or more and a lower limit height Ha and An initial workpiece loading step of lowering by a distance equal to or less than a distance obtained by adding the workpiece minimum thickness Tn to the set position of the upper surface of the base; and (c) base lowering in the initial workpiece loading step. After the object to be processed If the height of the surface does not reach the boundary height Hc, after loading the next workpiece on the upper surface of the loaded workpiece, the base is lowered by the workpiece minimum thickness Tn,
If the height of the upper surface of the object to be processed after the lowering of the base in the first processing object loading step exceeds the boundary height Hc, the next object to be processed is loaded on the upper surface of the already-processed object, and then processed. A next workpiece loading step of lowering the base by a distance equal to or greater than the maximum workpiece thickness Tm (= t + d1) and equal to or less than a distance obtained by adding the maximum workpiece thickness Tm to the distance between the boundary height Hc and the position Ha1; , (D) after the next processing object loading step, subsequent processing to load a subsequent processing object on the upper surface of the processing object after the base is lowered in the next processing object loading step in the same manner as the next processing object loading step And a loading step.

【0007】また、許容高さ範囲HEの中央に境界高さ
Hcを設定し、ベースセット工程において、ベースをそ
の上面が境界高さHcから最大変動厚みTeだけ下に位
置するようセットし、初被処理物積載工程において、ベ
ースを被処理物最小厚みTnだけ下降させるとともに、
次被処理物積載工程及び後続被処理物積載工程におい
て、ベース下降後の被処理物の上面の高さが境界高さH
cを越える場合は、次の被処理物を積載した後、ベース
を被処理物最大厚みTmだけ下降させることを特徴とし
ている。
Further, a boundary height Hc is set at the center of the allowable height range HE, and in the base setting step, the base is set such that the upper surface thereof is located below the boundary height Hc by the maximum variation thickness Te, In the workpiece loading step, the base is lowered by the workpiece minimum thickness Tn,
In the next workpiece loading step and the subsequent workpiece loading step, the height of the upper surface of the workpiece after the base is lowered is the boundary height H.
When the value exceeds c, the base is lowered by the maximum thickness Tm of the workpiece after the next workpiece is loaded.

【0008】また、境界高さHcを水平に通る投光ビー
ムを発生させる投光手段と、投光ビームを受光する受光
手段を、被処理物を挟んで互いに対向するよう設置し、
各被処理物積載工程においてベース下降動作が終了する
たびに、受光手段による投光ビームの検出の有無に基づ
き、ベース下降後の被処理物の上面の高さと境界高さH
cの上下関係をチェックすることを特徴としている。
Further, a light projecting means for generating a light projecting beam which passes horizontally through the boundary height Hc, and a light receiving means for receiving the light projecting beam are provided so as to be opposed to each other with an object to be processed interposed therebetween.
Each time the base lowering operation is completed in each processing object loading process, the height of the upper surface and the boundary height H of the processing object after the base lowering are determined based on the presence or absence of the detection of the projection beam by the light receiving unit.
It is characterized in that the vertical relationship of c is checked.

【0009】[0009]

【作用】以下、本発明の被処理物の積み重ね方法の作用
を、図面を参照しつつ説明する。図4に示すように、こ
こでの被処理物(ワーク)Wは、基準厚みtに対する厚
み寸法公差が+d1及び−d2のセラミック基板であ
り、ワークWの最大変動厚みTeは(d1+d2)、被
処理物最大厚み(ワーク最大厚み)Tmは(t+d
1),被処理物最小厚み(ワーク最小厚み)Tnは(t
−d2)である。また、図1(a)に示すように、許容高
さ範囲HEは、最大変動厚みTe(=d1+d2)の2
倍以上の寸法となっており、許容高さ範囲HEの下限高
さHaから最大変動厚みTeだけ上の位置(高さ)Ha
1と、許容高さ範囲HEの上限高さHbから最大変動厚
みTeだけ下の位置(高さ)Hb1の間に、境界高さH
cが設定されている。このような条件のもとで、被処理
物を積み重ねる場合の本発明の作用を以下に説明する。
The operation of the method for stacking objects to be processed according to the present invention will be described below with reference to the drawings. As shown in FIG. 4, the workpiece (work) W is a ceramic substrate having a thickness tolerance of + d1 and −d2 with respect to the reference thickness t, and the maximum variation thickness Te of the workpiece W is (d1 + d2). The processing object maximum thickness (work maximum thickness) Tm is (t + d
1), the minimum thickness of the workpiece (the minimum thickness of the work) Tn is (t
−d2). Further, as shown in FIG. 1A, the allowable height range HE is equal to the maximum fluctuation thickness Te (= d1 + d2).
The position (height) Ha, which is twice as large as the lower limit height Ha of the allowable height range HE by the maximum variation thickness Te.
1 and a position (height) Hb1 below the upper limit height Hb of the allowable height range HE by the maximum variation thickness Te, a boundary height H
c is set. The operation of the present invention when stacking the objects to be processed under such conditions will be described below.

【0010】まず、ベースセット工程において、ワーク
未積載のベース1を、その上面が、下限高さHa以上
で、位置Hb1以下の範囲となるようにセットする。そ
して、図1(b)に示すように、初被処理物積載工程(初
ワーク積載工程)で、ベース1の上面に最初のワークW
(W1)を積載した後、図1(c)に示すように、ワーク
最小厚みTn(=t−d2)以上で、下限高さHaとベ
ース1の上面のセット位置Bhの間の距離(ベース1の
上面の下限高さからの突出寸法)Buにワーク最小厚み
Tnを加えた距離以下の範囲の距離だけベース1を下降
させる。なお、図1(c)においては、ワークW(W1)
の上面の高さが境界高さHcに達しない場合を点線で示
しており、ワークW(W1)の上面の高さが境界高さH
cを越える場合を2点鎖線で示している。このとき、ワ
ークW(W1)の厚みがワーク最小厚みTnであって
も、ベース1の上面のセット位置Bhが下限高さHa以
上にあるとともに、ワーク最小厚みTnにベース1の上
面の下限高さからの突出寸法Buを加えた寸法以上にベ
ース1が下降することはないため、ベース下降後のワー
クW(W1)の上面は、必ず下限高さHa以上となる。
逆に、ワークW(W1)の厚みがワーク最大厚みTmで
あっても、ベース1の上面のセット位置Bhと、上限高
さHbの間には、最大変動厚みTe以上の距離があると
ともに、ベース1が少なくともワーク最小厚みTnだけ
は下降するので、ベース下降後のワークW(W1)の上
面の上昇分は最大変動厚みTe以下となる。したがっ
て、いずれの場合も、ベース下降後のワークW(W1)
の上面は、図1(c)に示すように、必ず上限高さHb以
下となる。
First, in a base setting step, the base 1 on which no work is loaded is set so that the upper surface thereof is in a range not less than the lower limit height Ha and not more than the position Hb1. Then, as shown in FIG. 1 (b), in the first workpiece loading step (first workpiece loading step), the first workpiece W is placed on the upper surface of the base 1.
After loading (W1), as shown in FIG. 1 (c), the distance between the lower limit height Ha and the set position Bh on the upper surface of the base 1 (base) when the work has a minimum thickness Tn (= t−d2) or more. The base 1 is lowered by a distance equal to or less than a distance obtained by adding the minimum thickness Tn of the workpiece to Bu) of the upper surface of the base 1 from the lower limit height. In FIG. 1C, the work W (W1)
The case where the height of the upper surface of the workpiece W does not reach the boundary height Hc is indicated by a dotted line, and the height of the upper surface of the work W (W1) is the boundary height Hc.
The case exceeding c is indicated by a two-dot chain line. At this time, even if the thickness of the work W (W1) is the minimum work thickness Tn, the set position Bh of the upper surface of the base 1 is equal to or higher than the lower limit height Ha, and the lower limit height of the upper surface of the base 1 is set to the minimum work thickness Tn. Since the base 1 does not descend beyond the dimension obtained by adding the protruding dimension Bu, the upper surface of the workpiece W (W1) after the base descends always becomes equal to or greater than the lower limit height Ha.
Conversely, even if the thickness of the workpiece W (W1) is the maximum workpiece thickness Tm, there is a distance equal to or greater than the maximum variation thickness Te between the set position Bh on the upper surface of the base 1 and the upper limit height Hb. Since the base 1 is lowered at least by the minimum work thickness Tn, the rising amount of the upper surface of the work W (W1) after lowering the base is equal to or less than the maximum fluctuation thickness Te. Therefore, in any case, the work W (W1) after the base descends
The upper surface of is always below the upper limit height Hb, as shown in FIG. 1 (c).

【0011】また、次被処理物積載工程(次ワーク積載
工程)では、図1(c)において点線で示すように、ベー
ス下降後のワークWの上面の高さが境界高さHcに達し
ない場合、積載済のワークW(W1)の上面に、次のワ
ークW(W2)を積載した後、ワーク最小厚みTnだけ
ベース1を下降させる。このとき、積載済のワークW
(W1)の上面と上限高さHbの間には、最大変動厚み
Te以上の距離があるとともに、ワークW(W1)がワ
ーク最大厚みTmの場合でも、ワーク最小厚みTnだけ
ベース1が下降しており、ベース下降後のワークW(W
1)の上面の上昇は最大変動厚みTe以下に抑えられる
ので、下降後のワークW(W1)の上面は必ず上限高さ
Hb以下となる。また、図1(c)において2点鎖線で示
すように、ベース下降後のワークW(W1)の上面の高
さが境界高さHcを越える場合、積載済のワークW(W
1)の上面に次のワークW(W2)を積載した後、ワー
ク最大厚みTm以上で、境界高さHcと位置Ha1の間
の距離にワーク最大厚みTmを加えた距離以下の範囲の
距離だけベース1を下降させる。そして、境界高さHc
に限りなく近いところに位置するワークW(W1)の上
面に、ワーク最小厚みTnのワークW(W2)が積まれ
たとき、ベース下降後のワークW(W2)の上面が最低
位置となるが、ベース1の最大限の下降距離が境界高さ
Hcと位置Ha1の間の距離であることから、下降後の
ワークW(W2)の上面は必ず下限高さHa以上とな
る。また、上限高さHbに位置するワーク上面に、ワー
ク最大厚みTmのワークW(W2)が積まれたとき、ベ
ース下降後のワークW(W2)の上面が最高位置となる
が、ベース1は、最低限、ワーク最大厚みTm以上の距
離だけ下降させられるので、上限高さHbでワーク最大
厚みTmのワークWが積まれても、ベース下降後のワー
クW(W2)の上面は必ず上限高さHb以下となる。す
なわち、図1(d)に示すように、次に積まれるワークW
(W2)のベース下降後の上面は必ず上限許容高さ範囲
HEの範囲内となる。
In the next workpiece loading step (the next workpiece loading step), the height of the upper surface of the workpiece W after the base is lowered does not reach the boundary height Hc, as shown by a dotted line in FIG. In this case, after the next work W (W2) is loaded on the upper surface of the loaded work W (W1), the base 1 is lowered by the minimum work thickness Tn. At this time, the loaded work W
Between the upper surface of (W1) and the upper limit height Hb, there is a distance equal to or greater than the maximum fluctuation thickness Te, and even when the work W (W1) has the maximum work thickness Tm, the base 1 descends by the minimum work thickness Tn. Work W (W
Since the rise of the upper surface of 1) is suppressed to the maximum fluctuation thickness Te or less, the upper surface of the work W (W1) after the lowering is always less than the upper limit height Hb. Further, as shown by a two-dot chain line in FIG. 1C, when the height of the upper surface of the work W (W1) after the base descends exceeds the boundary height Hc, the loaded work W (W1)
After the next work W (W2) is loaded on the upper surface of 1), the distance is equal to or greater than the maximum work thickness Tm and equal to or less than the distance between the boundary height Hc and the position Ha1 plus the maximum work thickness Tm. Lower the base 1. And the boundary height Hc
When the work W (W2) having the minimum work thickness Tn is stacked on the upper surface of the work W (W1) located as close as possible, the upper surface of the work W (W2) after the base is lowered becomes the lowest position. Since the maximum descending distance of the base 1 is the distance between the boundary height Hc and the position Ha1, the upper surface of the workpiece W (W2) after descending is always equal to or more than the lower limit height Ha. When the work W (W2) having the maximum work thickness Tm is stacked on the upper surface of the work located at the upper limit height Hb, the upper surface of the work W (W2) after the base descends is the highest position. Since the work can be lowered by a distance equal to or more than the maximum work thickness Tm, the upper surface of the work W (W2) after the base is lowered must always be at the upper limit even if the work W having the work maximum thickness Tm is stacked at the upper limit height Hb. Hb or less. That is, as shown in FIG.
The upper surface after the base lowering of (W2) is always within the upper limit allowable height range HE.

【0012】次ワーク積載工程以降、次ワーク積載工程
のベース下降後のワークWの上面に、次ワーク積載工程
と同様にして後続のワークWを積み重ねることにより、
下降後のワークWの上面は、必ず、下限高さHaと上限
高さHbの間の許容高さ範囲HEの範囲内となる。この
ように、本発明は、前段のワーク積載後のベース下降終
了時に、ベースの厚み寸法公差を考慮し、前もって次の
ワーク積載後のベースの適切な下降量が決定されるベー
ス下降駆動方式を採用しているので(言い換えると、い
わゆるフィードバックループ形式のベース下降駆動制御
方式を採用していないので)、ベース下降駆動制御系の
応答速度に影響されることなく、迅速かつ正確にベース
を下降させることができる。
After the next work loading step, the subsequent work W is stacked on the upper surface of the work W after the base is lowered in the next work loading step in the same manner as in the next work loading step.
The upper surface of the workpiece W after the lowering is always within the allowable height range HE between the lower limit height Ha and the upper limit height Hb. As described above, the present invention provides a base lowering drive system in which, at the end of the lowering of the base after the preceding work is loaded, the appropriate lowering amount of the base after the next work is loaded is determined in advance in consideration of the thickness tolerance of the base. The base is lowered quickly and accurately without being influenced by the response speed of the base lowering drive control system because the base lowering drive control system of the so-called feedback loop type is not used. be able to.

【0013】なお、本発明では、ワークWの上面の許容
高さ範囲HEを、最大変動厚みTe(=d1+d2)の
2倍以上の寸法としているが、これは、図2に示すよう
に、仮に、ワークWの上面が境界高さHcに位置するワ
ークWの上に、ワーク最大厚みTmのワークWが積載さ
れ、かつ、ベースがワーク最小厚みTnだけ下降した場
合、下降後のワークWの上面が、境界高さHcから最大
変動厚みTeだけ上に位置することになり、また、仮
に、ワークWの上面が境界高さHcに位置するワークW
の上に、ワーク最小厚みTnのワークWが積載され、か
つ、ベースがワーク最大厚みTmだけ下降した場合、ベ
ース下降後のワークWの上面は境界高さHcから最大変
動厚みTeだけ下に位置することになり、結果として、
ワーク上面のセット位置が、最大変動厚みTeの2倍の
寸法まで変動することが避けられないことによる。な
お、このことは、境界高さHcが、下限高さHaから最
大変動厚みTeだけ上の位置(高さ)Ha1と、許容高
さ範囲の上限高さHbから最大変動厚みTeだけ下の位
置(高さ)Hb1の間に設定される理由でもある。
In the present invention, the allowable height range HE of the upper surface of the work W is set to be at least twice as large as the maximum variation thickness Te (= d1 + d2). However, as shown in FIG. When the work W having the maximum work thickness Tm is stacked on the work W whose upper surface is located at the boundary height Hc and the base is lowered by the work minimum thickness Tn, the upper surface of the work W after the lowering is obtained. Is located above the boundary height Hc by the maximum variation thickness Te, and the work W whose upper surface is located at the boundary height Hc is assumed.
When the work W having the minimum work thickness Tn is loaded on the base material and the base is lowered by the maximum work thickness Tm, the upper surface of the work W after the base is lowered is positioned below the boundary height Hc by the maximum change thickness Te. And as a result,
This is because it is inevitable that the set position of the upper surface of the work fluctuates up to twice the maximum fluctuation thickness Te. This means that the boundary height Hc is a position (height) Ha1 above the lower limit height Ha by the maximum variation thickness Te and a position below the maximum variation thickness Te from the upper limit height Hb of the allowable height range. This is also the reason that the height is set between Hb1.

【0014】また、初ワーク積載工程において、許容高
さ範囲HEの中央に境界高さHcを設定し、ベースセッ
ト工程において、ベースをその上面が境界高さHcから
最大変動厚みTeだけ下がったところに位置するようセ
ットし、初ワーク積載工程において、ベースをワーク最
小厚みTnだけ下降させるとともに、次ワーク積載工程
及び後続被処理物積載工程(後続ワーク積載工程)にお
いて、ベース下降後の被処理物の上面の高さが境界高さ
Hcを越える場合は、次の被処理物(ワーク)を積載し
た後、ベースをワーク最大厚みTmだけ下降させるよう
にした場合、ベース下降後のワークの上面が、ベースセ
ット工程でセットされたベースの上面の高さを下回った
り、境界高さHcから最大変動厚みTeだけ上の高さを
越えたりすることを確実に防止することができる。その
結果、ベース下降後のワークの上面を、最大変動厚みT
eの2倍の高さの範囲内に常に維持することが可能にな
るとともに、ベース下降距離が2種類だけの簡潔な下降
駆動制御態様となり、制御を容易にして、信頼性を向上
させることが可能になる。
In the initial work loading step, the boundary height Hc is set at the center of the allowable height range HE, and in the base setting step, the upper surface of the base is lowered from the boundary height Hc by the maximum variation thickness Te. In the first work loading step, the base is lowered by the minimum work thickness Tn, and in the next work loading step and the subsequent work loading step (subsequent work loading step), the workpiece after the base is lowered When the height of the upper surface exceeds the boundary height Hc, after the next object to be processed (work) is loaded, the base is lowered by the maximum work thickness Tm. Below the height of the upper surface of the base set in the base setting step, or exceeding the height above the boundary height Hc by the maximum variation thickness Te. It can be reliably prevented. As a result, the upper surface of the work after the lowering of the base is moved to the maximum fluctuation thickness T.
e, it is possible to always maintain the height within a range of twice as high as the height e, and it is possible to provide a simple descent drive control mode in which the base descent distance is only two types, thereby facilitating control and improving reliability. Will be possible.

【0015】また、図3に示すように、境界高さHcの
位置を水平に走る投光ビームLBを発生させる投光手段
Laと、投光ビームLBを受光する受光手段Lbを、ワ
ークWを挟んで互いに対向するよう設置し、各ワーク積
載工程においてベース下降動作が終了する毎に、受光手
段Lbによる投光手段Laからの投光ビームLBの検出
の有無に基づき、ベース下降後の被処理物の上面の高さ
と境界高さHcの上下関係をチェックするようにした場
合、ベース下降動作が終了するとベース下降後のワーク
Wの上面の位置が定まり、図3に実線で示すように、ワ
ークWで遮られることなく投光ビームLBが受光手段L
bにより検出される場合は、ワークWの上面の高さが境
界高さHcに達していないと判定され、図3に一点鎖線
で示すように、ワークWで遮られて投光ビームLBが受
光手段Lbにより検出されない場合は、ワークWの上面
の高さが境界高さHcを越えていると判定される。した
がって、この形態の場合には、通常の投・受光手段の位
置検出センサ設置だけでベース下降後のワークWの上面
の高さと境界高さHcの上下関係のチェックを簡単に行
うことができる。
As shown in FIG. 3, a light projecting means La for generating a light projecting beam LB running horizontally at a position of a boundary height Hc and a light receiving means Lb for receiving the light projecting beam LB include a work W. Each time the base lowering operation is completed in each work loading process, the light receiving unit Lb detects the light projection beam LB from the light projecting unit La and determines whether the processing after the base lowering is completed. When the vertical relationship between the height of the upper surface of the object and the boundary height Hc is checked, when the base lowering operation is completed, the position of the upper surface of the work W after the base lowering is determined, and as shown by a solid line in FIG. The light beam LB is not blocked by W
b, it is determined that the height of the upper surface of the work W has not reached the boundary height Hc, and as shown by the dashed line in FIG. If not detected by the means Lb, it is determined that the height of the upper surface of the work W exceeds the boundary height Hc. Therefore, in this case, it is possible to easily check the vertical relationship between the height of the upper surface of the workpiece W after the base is lowered and the boundary height Hc only by installing the position detection sensor of the ordinary light emitting / receiving means.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を示し
て、本発明の特徴とするところをさらに詳しく説明す
る。図5は本発明の一実施形態にかかる被処理物(この
実施形態ではセラミック基板(但し被処理物の種類はこ
れに限られるものではない。))の積み重ね方法を実施
するために用いた積載装置の要部構成を示す概略図であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, features of the present invention will be described in more detail by showing embodiments of the present invention. FIG. 5 shows a stack used for carrying out a method of stacking an object to be processed (in this embodiment, a ceramic substrate (however, the type of the object to be processed is not limited to this)) according to an embodiment of the present invention. It is the schematic which shows the principal part structure of a device.

【0017】この実施形態で用いた積載装置は、被処理
物(ワーク)Wを積載するベース1の傍らに、ワークW
を挟んで互いに対向するように設置された、水平方向に
投光ビームLBを発生させる投光手段La、投光手段L
aからの投光ビームLBを受光する受光手段Lb、及び
ベース1を昇降させるアクチュエータ2を備えている。
なお、アクチュエータ2としては、モータ駆動式の通常
構成のものが用いられている。また、ワークWは、図4
に示すように、ワークWは基準厚みtに対する厚み寸法
公差が+d1及び−d2であり、ワークWの最大変動厚
みTeが(d1+d2)、ワーク最大厚みTmが(t+
d1),ワーク最小厚みTnが(t−d2)のセラミッ
ク基板である。
The loading device used in this embodiment includes a work W on the side of a base 1 on which a workpiece W is loaded.
Light projecting means La and light projecting means L installed to face each other with the
A light receiving means Lb for receiving the light beam LB emitted from a, and an actuator 2 for raising and lowering the base 1 are provided.
In addition, as the actuator 2, a motor driven type having a normal configuration is used. Also, the work W is shown in FIG.
As shown in the figure, the thickness tolerance of the work W with respect to the reference thickness t is + d1 and −d2, the maximum fluctuation thickness Te of the work W is (d1 + d2), and the maximum work thickness Tm is (t +
d1) A ceramic substrate having a minimum work thickness Tn of (t−d2).

【0018】この実施形態においては、図6に示すよう
に、積み重ねられるワークWの最上面位置の許容高さ範
囲HEは、下限高さHaと上限高さHbの寸法が最大変
動厚みTeの2倍となっている。また、許容高さ範囲H
Eの中央には、境界高さHcが設定されており、境界高
さHcの上側の上方許容高さ範囲E1(=Te)と、境
界高さHcの下側の下方許容高さ範囲E2(=Te)が
等しくなっている(HE=E1+E2)。そして、投光
手段Laと受光手段Lbは、投光手段Laからの投光ビ
ームLBが、境界高さHcの位置を水平に通過して受光
手段Lbに入射するように、すなわち、投光ビームLB
の光軸が境界高さHcに位置するように配設されてい
る。
In this embodiment, as shown in FIG. 6, the allowable height range HE of the uppermost position of the stacked workpieces W is such that the lower limit height Ha and the upper limit height Hb are equal to the maximum variation thickness Te. Doubled. Also, the allowable height range H
A boundary height Hc is set at the center of E, and an upper allowable height range E1 (= Te) above the boundary height Hc and a lower allowable height range E2 below the boundary height Hc (E2 ( = Te) are equal (HE = E1 + E2). The light projecting means La and the light receiving means Lb are arranged so that the light projecting beam LB from the light projecting means La passes horizontally through the position of the boundary height Hc and enters the light receiving means Lb, ie, the light projecting beam Lb. LB
Are arranged such that the optical axis of the light emitting device is located at the boundary height Hc.

【0019】また、ベース1は、図7(a)に示すよう
に、ワーク未積載の上面が許容高さ範囲HEの下限高さ
Haの位置にくるようにセットされるとともに、この状
態で最初のワークWが積載された後、アクチュエータ2
によりベース1がワーク最小厚みTn(図4)だけ下降
させられるよう構成されている。そして、以後は、ベー
ス下降後のワークWの上面の高さが境界高さHcに達し
ない場合には、積載済のワークWの上面に次のワークW
を積載した後、ワーク最小厚みTnだけベース1を下降
させ、ベース下降後のワークWの上面の高さが境界高さ
Hcを越えている場合には、次のワークWを積載した
後、ベース1をワーク最大厚みTmだけ下降させるよう
にアクチュエータ2が動作する。
Further, as shown in FIG. 7A, the base 1 is set so that the upper surface on which no work is loaded is positioned at the lower limit height Ha of the allowable height range HE. After the workpiece W is loaded, the actuator 2
Thereby, the base 1 can be lowered by the minimum work thickness Tn (FIG. 4). Thereafter, when the height of the upper surface of the work W after the base lowering does not reach the boundary height Hc, the next work W is placed on the upper surface of the loaded work W.
After the base is lowered, the base 1 is lowered by the minimum work thickness Tn. If the height of the upper surface of the work W after the base lowers exceeds the boundary height Hc, the base W is mounted after the next work W is mounted. The actuator 2 operates so as to lower 1 by the maximum work thickness Tm.

【0020】なお、ベース下降後のワークWの上面の高
さと境界高さHcの上下関係は、ベース下降動作が終了
する毎に、受光手段Lbによる投光手段Laからの投光
ビームLBの検出の有無に基づきチェックされる。そし
て、ベース下降動作が終了すると、ベース下降後のワー
クWの上面の位置が定まり、ワークWの上面の高さが境
界高さHcに達していなければ、投光ビームLBがワー
クWで遮られることなく受光手段Lbへ入射して検出さ
れ、ワークWの上面の高さが境界高さHcを越えていれ
ば、投光ビームLBがワークWで遮られて受光手段Lb
へ入射しないため検出されることがない。すなわち、受
光手段Lbで投光ビームLBが検出されれば、次のワー
クWが積載された後、ベース1がワーク最小厚みTnだ
け下降し、受光手段Lbで投光ビームLBが検出されな
ければ、次のワークWが積載された後、ベース1がワー
ク最大厚みTmだけ下降するように構成されている。
The vertical relationship between the height of the upper surface of the workpiece W and the boundary height Hc after the lowering of the base is determined by detecting the light beam LB from the light emitting means La by the light receiving means Lb every time the base lowering operation is completed. Is checked based on the presence or absence of Then, when the base lowering operation is completed, the position of the upper surface of the work W after the base lowering is determined. If the height of the upper surface of the work W does not reach the boundary height Hc, the light beam LB is blocked by the work W. If the height of the upper surface of the work W exceeds the boundary height Hc, the light beam LB is blocked by the work W and the light beam Lb is detected.
It is not detected because it does not enter. That is, if the light projecting beam LB is detected by the light receiving means Lb, the base 1 is lowered by the minimum work thickness Tn after the next work W is loaded, and the light projecting beam LB is not detected by the light receiving means Lb. After the next work W is loaded, the base 1 is configured to descend by the work maximum thickness Tm.

【0021】次に、上記構成を有する積載装置によりワ
ークを積み重ねる場合の動作について説明する。 ベースセット工程 図7(a)に示すように、ベース1の上面が下限高さHa
の位置にくるようにベース1をセットする。 初ワーク積載工程 続いて、図7(b)に示すように、ベース1の上面に最初
(初段)のワークW(W1)を積載する。ワークW(W
1)を積載したベース1は、図7(c)に示すように、ワ
ーク最小厚みTnだけ下降する。このとき、ワークW
(W1)がワーク最小厚みTnのものであれば、下降後
のワークW(W1)の上面の位置は下限高さHaの位置
となり、ワーク最大厚みTmのものであれば、下降後の
ワークW(W1)の上面の位置は境界高さHcとなる。
したがって、ベース下降後、ワークW(W1)の上面の
位置が許容高さ範囲HEを外れることはない。
Next, a description will be given of the operation when the work is stacked by the loading device having the above-described configuration. Base setting step As shown in FIG. 7A, the upper surface of the base 1 has a lower limit height Ha.
Set the base 1 so that it comes to the position. Initial Work Loading Step Subsequently, as shown in FIG. 7B, the first (first stage) work W (W1) is loaded on the upper surface of the base 1. Work W (W
As shown in FIG. 7 (c), the base 1 loaded with 1) is lowered by the minimum work thickness Tn. At this time, the work W
If (W1) has the minimum work thickness Tn, the position of the upper surface of the lowered work W (W1) is the position of the lower limit height Ha. The position of the upper surface of (W1) is the boundary height Hc.
Therefore, after the base is lowered, the position of the upper surface of the work W (W1) does not deviate from the allowable height range HE.

【0022】次ワーク積載工程 積載済のワークW(W1)の上面に、次(2段目)のワ
ークW(W2)を積載した後、図7(d)に示すように、
ワーク最小厚みTnだけベースを下降させる。上述のよ
うに、初段のワークW(W1)の上面が境界高さHcを
越えていなかったので、ベース下降後の2段目のワーク
W(W2)の上面の位置は、境界高さHcを越えること
はあっても上限高さHbを越えることはない。また、上
述のように、初段のワークW(W1)の上面は、下限高
さHa以上であったので、ベース下降後の2段目のワー
クW(W2)の上面の位置も、下限高さHaを下回るこ
とはない。したがって、ベース下降後、2段目のワーク
W(W2)の上面の位置が許容高さ範囲HEを外れるこ
とはない。但し、ワーク下降後の2段目のワークW(W
2)の上面は、図7(d)に示すように、境界高さHcの
上側にある場合も下側にある場合もある。
Next Work Loading Step After the next (second stage) work W (W2) is loaded on the upper surface of the loaded work W (W1), as shown in FIG.
The base is lowered by the minimum work thickness Tn. As described above, since the upper surface of the first-stage work W (W1) did not exceed the boundary height Hc, the position of the upper surface of the second-stage work W (W2) after the base was lowered is determined by the boundary height Hc. Although it does, it does not exceed the upper limit height Hb. Further, as described above, since the upper surface of the first stage work W (W1) is equal to or greater than the lower limit height Ha, the position of the upper surface of the second stage work W (W2) after lowering the base is also lower limit height. It does not fall below Ha. Therefore, after the base is lowered, the position of the upper surface of the second stage work W (W2) does not deviate from the allowable height range HE. However, the second stage work W (W
The upper surface of 2) may be above or below the boundary height Hc as shown in FIG. 7D.

【0023】後続ワーク積載工程 一般化のために、ワークWがn段目のワークnである場
合について説明する。図8(a)に示すように、ワーク
nの上面が境界高さHcを越え、上方許容高さ範囲E1
にある(投光ビームLBが遮られている)場合のワーク
nの上面の高さをHn(=E2+α+Ha)とすると、
ワークnの上面の高さHnが境界高さHcを越えている
ので、続くワーク(n+1)を積載した後、ベース1
は、図8(b)に示すように、ワーク最大厚みTm(=
t+d1)(図4)だけ下降する。以下、ベース下降後
のワーク(n+1)の上面の高さ範囲を検討する。
Subsequent Work Loading Process For generalization, a case where the work W is the work n in the n-th stage will be described. As shown in FIG. 8A, the upper surface of the work n exceeds the boundary height Hc and the upper allowable height range E1.
If the height of the upper surface of the workpiece n is Hn (= E2 + α + Ha) in the case where the light beam LB is interrupted,
Since the height Hn of the upper surface of the work n exceeds the boundary height Hc, after loading the subsequent work (n + 1), the base 1
As shown in FIG. 8B, the work maximum thickness Tm (=
(t + d1) (FIG. 4). Hereinafter, the height range of the upper surface of the work (n + 1) after the base is lowered will be considered.

【0024】ベース下降後のワーク(n+1)の上面が
最も低くなるのは、ワーク(n+1)の厚みが、ワーク
最小厚みTnのときであり、この場合のワーク(n+
1)の上面の位置は、ワークnの上面の高さHnにワー
ク(n+1)のワーク最小厚みTn(図4)を加えたも
のからワーク最大厚みTm(図4)を引いた位置(高
さ)、すなわち、Hn+Tn−Tm=Hn+(t−d
2)−(t+d1)=Hn−(d1+d2)=Hn−T
e=Hn−E2となる。一方、Hn=Ha+E2+αか
ら、Hn−E2=Ha+αとなり、下限高さHaを下回
ることはない。また、ベース下降後のワーク(n+1)
の上面の位置が最も高くなるのは、ワーク(n+1)の
厚みが、ワーク最大厚みTmのときであり、この場合の
ワーク(n+1)の上面の位置は、ワークnの上面の高
さHnにワーク(n+1)のワーク最大厚みTmを加え
たものからワーク最大厚みTmを引いた位置(高さ)、
すなわち、Hn+Tm−Tm=Hnとなり、元の高さが
維持されて、上限高さHbを越えることはない。したが
って、ワークnの上面が境界高さHcを越えていた場合
にも、次のワーク(n+1)の、ベース下降後の上面
は、図8(b)に斜線で示すように必ず許容高さ範囲H
E内に維持される。
The upper surface of the work (n + 1) after the base descends is the lowest when the thickness of the work (n + 1) is the minimum work thickness Tn. In this case, the work (n +)
The position of the upper surface of 1) is obtained by subtracting the maximum work thickness Tm (FIG. 4) from the product of the height Hn of the upper surface of the work n and the minimum work thickness Tn of the work (n + 1) (FIG. 4). ), That is, Hn + Tn−Tm = Hn + (t−d
2)-(t + d1) = Hn- (d1 + d2) = Hn-T
e = Hn-E2. On the other hand, from Hn = Ha + E2 + α, Hn−E2 = Ha + α, and does not fall below the lower limit height Ha. Work (n + 1) after base descent
Is the highest when the thickness of the work (n + 1) is the maximum work thickness Tm. In this case, the position of the upper surface of the work (n + 1) is determined by the height Hn of the upper surface of the work n. The position (height) obtained by subtracting the maximum work thickness Tm from the sum of the maximum work thickness Tm of the work (n + 1),
That is, Hn + Tm-Tm = Hn, the original height is maintained, and does not exceed the upper limit height Hb. Therefore, even when the upper surface of the work n exceeds the boundary height Hc, the upper surface of the next work (n + 1) after the base is lowered must be within the allowable height range as shown by hatching in FIG. 8B. H
Maintained within E.

【0025】また、図9(a)に示すように、ワークn
の上面が境界高さHcを下回り、下方許容高さ範囲E2
にある(投光ビームLBが遮られていない)場合の、ワ
ークnの上面の高さをHn(=Hb−E1−β)とする
と、ワークnの上面が境界高さHcを下回っているの
で、続くワーク(n+1)を積載した後、ベース1は、
図9(b)に示すように、ワーク最小厚みTn(図4)
だけ下降する。以下、ベース下降後のワーク(n+1)
の上面の高さ範囲を検討する。
Further, as shown in FIG.
Is below the boundary height Hc, and the lower allowable height range E2
If the height of the upper surface of the work n is Hn (= Hb-E1-β) in the case where the projection beam LB is not interrupted, the upper surface of the work n is lower than the boundary height Hc. After loading the following work (n + 1), the base 1
As shown in FIG. 9B, the minimum work thickness Tn (FIG. 4)
Just descend. Hereinafter, the work (n + 1) after the base descends
Consider the height range of the upper surface of.

【0026】ベース下降後のワーク(n+1)の上面の
位置が最も低くなるのは、ワーク(n+1)がワーク最
小厚みTn(=t−d2)のときであり、この場合のワ
ーク(n+1)の上面の位置は、ワークnの上面の高さ
Hnにワーク(n+1)のワーク最小厚みTnを加えた
ものからワーク最小厚みTnを引いた位置(高さ)、す
なわち、Hn+Tn−Tn=Hnとなり、元の高さが維
持されて、下限高さHaを下回ることはない。また、ベ
ース下降後のワーク(n+1)の上面の位置が最も高く
なるのは、ワーク(n+1)がワーク最大厚みTm(図
4)のときであり、この場合のワーク(n+1)の上面
の位置は、ワークnの上面の高さHnにワーク(n+
1)のワーク最大厚みTmを加えたものからワーク最小
厚みTn(図4)を引いた位置(高さ)、すなわち、H
n+Tm−Tn=Hn+(d1+d2)=Hn+Te=
Hn+E1=Hb−βとなり、Hnは上限高さHbを越
えることはない。したがって、ワークnの上面が境界高
さHcを下回っていた場合にも、次のワーク(n+1)
の、ベース下降後の上面は、図9(b)に斜線で示すよ
うに必ず許容高さ範囲HE内に維持される。
The position of the upper surface of the work (n + 1) after the base descends is the lowest when the work (n + 1) has the minimum work thickness Tn (= t−d2). The position of the upper surface is a position (height) obtained by subtracting the minimum work thickness Tn from the sum of the height Hn of the upper surface of the work n and the minimum work thickness Tn of the work (n + 1), that is, Hn + Tn−Tn = Hn. The original height is maintained and does not fall below the lower limit height Ha. The position of the upper surface of the work (n + 1) after the base descends is the highest when the work (n + 1) has the maximum work thickness Tm (FIG. 4). In this case, the position of the upper surface of the work (n + 1) is obtained. Means that the work (n +
The position (height) obtained by subtracting the minimum work thickness Tn (FIG. 4) from the sum of the maximum work thickness Tm of 1), that is, H
n + Tm-Tn = Hn + (d1 + d2) = Hn + Te =
Hn + E1 = Hb-β, and Hn does not exceed the upper limit height Hb. Therefore, even when the upper surface of the work n is lower than the boundary height Hc, the next work (n + 1)
9B is always maintained within the allowable height range HE, as indicated by hatching in FIG. 9B.

【0027】そして、先の次ワーク積載工程で説明した
ように、2段目のワークW(W2)を積んでベース1が
下降した後は、図8(a)に示すように、ワークnの上
面が境界高さHcを越えて上方許容高さ範囲E1にある
か、図9(a)に示すように、ワークnの上面が境界高
さHcを下回って下方許容高さ範囲E2にあるかのいず
れかであるから、3段目以降の後続のワークWのベース
下降後の上面は、積み段数にかかわらず、必ず許容高さ
範囲HE内となることは自明である。より具体的には、
本発明の方法によれば、寸法公差+0.05mm,−
0.05mmのセラミック基板が、許容高さ範囲0.2
mm内でベース1の上面に積み重ねられることを確認し
ている。
After the second stage work W (W2) is loaded and the base 1 is lowered as described in the preceding next work loading step, as shown in FIG. Whether the upper surface is in the upper allowable height range E1 beyond the boundary height Hc or, as shown in FIG. 9A, whether the upper surface of the work n is lower than the boundary height Hc and is in the lower allowable height range E2. It is obvious that the upper surface of the subsequent work W after the third stage after the lowering of the base is always within the allowable height range HE regardless of the number of stacked stages. More specifically,
According to the method of the present invention, the dimensional tolerance +0.05 mm, −
0.05mm ceramic substrate has an allowable height range of 0.2
It has been confirmed that they can be stacked on the upper surface of the base 1 within mm.

【0028】上述のように、本発明は、前段のワーク積
載後のベース下降終了時に、ベースの厚み寸法公差を考
慮し、前もって次のワーク積載後のベースの適切な下降
量が決定される方式を採用しているので(言い換える
と、いわゆるフィードバックループ形式のベース下降駆
動制御方式を採用していないので)、ベース下降駆動制
御系の応答速度に影響されることなく、迅速かつ正確に
ベースを下降させることが可能になり、常に、ワーク上
面高さを許容範囲内に制御することができる。また、ベ
ース下降距離が2種類だけの簡潔な下降駆動制御態様で
あるため、実施が容易である。さらに、ベース下降後の
ワークWの上面の高さと境界高さHcの上下関係のチェ
ックが、投・受光手段からなる位置検出センサだけで確
実に行うことができる点でも実用性が高い。
As described above, according to the present invention, at the end of the lowering of the base after the preceding work is loaded, a proper amount of lowering of the base after the next work is loaded is determined in advance in consideration of the thickness tolerance of the base. (In other words, the so-called feedback loop-type base lowering drive control method is not used), so that the base can be lowered quickly and accurately without being affected by the response speed of the base lowering drive control system. It is possible to always control the height of the upper surface of the work within an allowable range. Further, since the base descent distance is a simple descent drive control mode having only two types, implementation is easy. Furthermore, the practicality is high in that the vertical relationship between the height of the upper surface of the workpiece W after the base is lowered and the boundary height Hc can be reliably checked only by the position detection sensor including the projecting / receiving means.

【0029】なお、上記実施形態では、許容高さ範囲H
Eを最大変動厚みTeの2倍とした場合について説明し
たが、本発明は、許容高さ範囲が最大変動厚みTeの2
倍以上の場合に、何ら制約を受けることなく適用するこ
とが可能である。また、本発明の被処理物の積み重ね方
法を実施するのに用いられる積載装置は、上記実施形態
で用いた、図5に示す積載装置に限らず、その他の種々
の構成を有する積載装置を用いることが可能である。本
発明はさらにその他の点においても上記実施形態に限定
されるものではなく、被処理物(ワーク)の材質や基準
厚み、あるいは厚み寸法公差、ベース下降後の被処理物
の上面の高さと境界高さHcの上下関係のチェック機構
の具体的構成などに関し、本発明の要旨の範囲内におい
て、種々の応用、変形を加えることが可能である。
In the above embodiment, the allowable height range H
Although the case where E is twice as large as the maximum variation thickness Te has been described, the present invention provides that the allowable height range is 2 times the maximum variation thickness Te.
In the case of more than twice, it is possible to apply without any restrictions. Further, the loading device used to carry out the method of stacking objects to be processed according to the present invention is not limited to the loading device shown in FIG. 5 and used in the above embodiment, but may be a loading device having various other configurations. It is possible. The present invention is not limited to the above-described embodiment in other respects as well. The material and reference thickness of the workpiece (work), the thickness dimension tolerance, the height and the boundary of the upper surface of the workpiece after the base is lowered. Various applications and modifications can be made to the specific configuration of the mechanism for checking the vertical relationship of the height Hc within the scope of the present invention.

【0030】[0030]

【発明の効果】上述したように、本発明の被処理物の積
み重ね方法は、本発明は、前段の被処理物積載後のベー
ス下降終了時に、ベースの厚み寸法公差を考慮し、前も
って次の被処理物積載後のベースの適切な下降量が決定
される方式を採用しているので(言い換えると、いわゆ
るフィードバックループ形式のベース下降駆動制御方式
を採用していないので)、ベース下降駆動制御系の応答
速度に影響されることなく、迅速かつ正確にベースを下
降させることが可能になり、常に、被処理物上面高さを
許容範囲内に制御しながら効率よく被処理物を積み重ね
ることができる。
As described above, according to the method of stacking objects to be processed of the present invention, the present invention considers the thickness tolerance of the base at the end of the lowering of the base after loading the object to be processed in the preceding stage and takes the following into consideration. Since a method of determining an appropriate amount of lowering of the base after the workpiece is loaded is adopted (in other words, a so-called feedback loop type base lowering drive control method is not adopted), the base lowering drive control system The base can be quickly and accurately lowered without being affected by the response speed of the workpiece, and the workpiece can be stacked efficiently while always controlling the height of the workpiece upper surface within an allowable range. .

【0031】また、初被処理物積載工程において、許容
高さ範囲HEの中央に境界高さHcを設定し、ベースセ
ット工程において、ベースをその上面が境界高さHcか
ら最大変動厚みTeだけ下がったところに位置するよう
セットし、初被処理物積載工程において、ベースを被処
理物最小厚みTnだけ下降させるとともに、次被処理物
積載工程及び後続被処理物積載工程において、ベース下
降後の被処理物の上面の高さが境界高さHcを越える場
合は、次の被処理物を積載した後、ベースを被処理物最
大厚みTmだけ下降させるようにした場合、ベース下降
後の被処理物の上面が、ベースセット工程でセットされ
たベースの上面の高さを下回ったり、境界高さHcから
最大変動厚みTeだけ上の高さを越えたりすることを確
実に防止することができる。その結果、ベース下降後の
被処理物の上面を、最大変動厚みTeの2倍の高さの範
囲内に常に維持することが可能になるとともに、ベース
下降距離が2種類だけの簡潔な下降駆動制御態様とな
り、制御を容易にして、信頼性を向上させることができ
る。
Further, in the first workpiece loading step, a boundary height Hc is set at the center of the allowable height range HE, and in the base setting step, the upper surface of the base is lowered from the boundary height Hc by the maximum variation thickness Te. In the first workpiece loading step, the base is lowered by the minimum workpiece thickness Tn, and in the next workpiece loading step and the subsequent workpiece loading step, the base is lowered. If the height of the upper surface of the workpiece exceeds the boundary height Hc, the next workpiece is loaded, and then the base is lowered by the maximum workpiece thickness Tm. Is reliably prevented from being lower than the height of the upper surface of the base set in the base setting step, or exceeding the height above the boundary height Hc by the maximum variation thickness Te. It can be. As a result, it is possible to always maintain the upper surface of the object to be processed after the base is lowered within a range of a height twice as large as the maximum variation thickness Te, and to perform simple lowering driving with only two types of base lowering distances. It becomes a control mode, control can be facilitated, and reliability can be improved.

【0032】また、受光手段による投光手段からの投光
ビームの検出の有無に基づき、ベース下降後の被処理物
の上面の高さと境界高さHcの上下関係をチェックする
ようにした場合、被処理物の上面の高さと境界高さHc
の上下関係のチェックを簡単に行うことが可能になり、
本発明をより実効あらしめることができる。
Further, when the vertical relationship between the height of the upper surface of the object to be processed after the base is lowered and the boundary height Hc is checked based on the presence or absence of detection of the light projecting beam from the light projecting means by the light receiving means, The height of the upper surface of the object and the boundary height Hc
It is possible to easily check the hierarchical relationship of
The present invention can be made more effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の被処理物(ワーク)の積み重ね方法に
よりワークを積み重ねる際のワーク上面やベースなどの
位置関係を示す模式図である。
FIG. 1 is a schematic diagram showing a positional relationship of a work upper surface, a base, and the like when a work is stacked by a method of stacking objects to be processed (work) according to the present invention.

【図2】本発明の被処理物の積み重ね方法における許容
高さ範囲の限度を説明するための模式図である。
FIG. 2 is a schematic diagram for explaining a limit of an allowable height range in the method of stacking objects to be processed according to the present invention.

【図3】本発明の被処理物の積み重ね方法におけるワー
ク(被処理物)の上面の高さと境界高さの上下関係のチ
ェック状況を示す模式図である。
FIG. 3 is a schematic diagram showing a check state of a vertical relationship between a height of an upper surface of a work (workpiece) and a boundary height in the method of stacking workpieces according to the present invention.

【図4】本発明の方法により積み重ねられる被処理物を
示す正面図である。
FIG. 4 is a front view showing workpieces stacked by the method of the present invention.

【図5】本発明の被処理物の積み重ね方法に用いられる
積載装置の要部構成を示す概略図である。
FIG. 5 is a schematic view illustrating a main configuration of a loading device used in the method of stacking objects to be processed according to the present invention.

【図6】本発明の実施形態におけるワーク(被処理物)
の上面の許容高さ範囲を示す模式図である。
FIG. 6 shows a work (object to be processed) in the embodiment of the present invention.
FIG. 4 is a schematic diagram showing an allowable height range of the upper surface of FIG.

【図7】本発明の実施形態におけるベースセット工程か
ら次ワーク積載工程までの状況を示す部分工程図であ
る。
FIG. 7 is a partial process diagram showing a situation from a base setting process to a next work loading process in the embodiment of the present invention.

【図8】本発明の実施形態における後続ワーク積載工程
のワーク積載状況を示す部分工程図である。
FIG. 8 is a partial process diagram showing a workpiece loading state in a subsequent workpiece loading process in the embodiment of the present invention.

【図9】本発明の実施形態における後続ワーク積載工程
の他のワーク積載状況を示す部分工程図である。
FIG. 9 is a partial process diagram showing another work loading state of the subsequent work loading process in the embodiment of the present invention.

【図10】従来の被処理物の積み重ね方法を示す説明図で
ある。
FIG. 10 is an explanatory view showing a conventional method of stacking objects to be processed.

【符号の説明】[Explanation of symbols]

1 ベース Bh ベースの上面のセット位置 Bu ベースの上面の下限高さからの突出寸法 Ha1 下限高さHaから最大変動厚みTeだけ
上の位置 Hb1 上限高さHbから最大変動厚みTeだけ
下の位置 d1,d2 被処理物(ワーク)の寸法公差 Ha 下限高さ Hb 上限高さ Hc 境界高さ HE 許容高さ範囲 La 投光手段 Lb 受光手段 LB 投光ビーム t 被処理物(ワーク)の基準厚み Te 最大変動厚み Tm 被処理物最大厚み(ワーク最大厚み) Tn 被処理物最小厚み(ワーク最小厚み) W 被処理物(ワーク)
1 Base Bh Set position of upper surface of base Bu Projection dimension of upper surface of base from lower limit height Ha1 Position above maximum lower limit height Ha by maximum variation thickness Te Hb1 Position below maximum upper limit height Hb by maximum variation thickness Te d1 , D2 dimensional tolerance of workpiece (work) Ha lower limit height Hb upper limit height Hc boundary height HE allowable height range La light projecting means Lb light receiving means LB light projecting beam t reference thickness Te of work (work) Maximum fluctuation thickness Tm Maximum thickness of workpiece (Work maximum thickness) Tn Minimum thickness of workpiece (Minimum thickness of workpiece) W Workpiece (Work)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基準厚みtに対する厚み寸法公差が+d1
及び−d2である被処理物をベース上に積み重ねるたび
に、ベースを所定距離だけ下降させることにより、積み
重ねられる被処理物の上面位置を所定の許容高さに維持
しつつ、複数の被処理物を積み重ねる方法であって、 (a)許容高さ範囲HEを、被処理物の最大変動厚みTe
(=d1+d2)の2倍以上とし、 この許容高さ範囲HEの下限高さHaから最大変動厚み
Teだけ上の位置Ha1と、許容高さ範囲HEの上限高
さHbから最大変動厚みTeだけ下の位置Hb1の間
に、境界高さHcを設定するとともに、 前記位置Hb1から下限高さHaの間に被処理物未積載
のベースの上面が位置するように、ベースをセットする
ベースセット工程と、 (b)ベースセット工程においてセットされたベースの上
面に被処理物を積載するとともに、被処理物を積載した
ベースを、被処理物最小厚みTn(=t−d2)以上
で、下限高さHaとベースの上面のセット位置との間の
距離に被処理物最小厚みTnを加えた距離以下の範囲の
距離だけ下降させる初被処理物積載工程と、 (c)初被処理物積載工程におけるベース下降後の被処理
物の上面の高さが境界高さHcに達しない場合は、積載
済の被処理物の上面に次の被処理物を積載した後、被処
理物最小厚みTnだけベースを下降させ、 初被処理物積載工程におけるベース下降後の被処理物の
上面の高さが境界高さHcを越える場合は、積載済の被
処理物の上面に次の被処理物を積載した後、被処理物最
大厚みTm(=t+d1)以上で、境界高さHcと位置
Ha1の間の距離に被処理物最大厚みTmを加えた距離
以下の範囲の距離だけベースを下降させる次被処理物積
載工程と、 (d)次被処理物積載工程以降、次被処理物積載工程のベ
ース下降後の被処理物の上面に次被処理物積載工程と同
様にして後続の被処理物を積載する後続被処理物積載工
程とを具備することを特徴とする被処理物の積み重ね方
法。
1. A thickness dimension tolerance with respect to a reference thickness t is + d1.
And -d2, by lowering the base by a predetermined distance each time the objects to be processed are stacked on the base, thereby maintaining the upper surface position of the objects to be stacked at a predetermined allowable height. (A) setting the allowable height range HE to the maximum variation thickness Te of the object to be processed.
(= D1 + d2) or more, and a position Ha1 above the lower limit height Ha of the allowable height range HE by the maximum variation thickness Te, and a position Ha1 below the upper limit height Hb of the allowable height range HE by the maximum variation thickness Te. A base setting step of setting a boundary height Hc between the position Hb1 and setting the base such that the upper surface of the base on which the workpiece is not loaded is located between the position Hb1 and the lower limit height Ha. (B) The object to be processed is loaded on the upper surface of the base set in the base setting step, and the base on which the object to be processed is loaded is set to a minimum height Tn (= t−d2) or more and a lower limit height An initial workpiece loading step of lowering by a distance equal to or less than a distance obtained by adding the minimum workpiece thickness Tn to the distance between Ha and the set position of the upper surface of the base; Base descent If the height of the upper surface of the workpiece does not reach the boundary height Hc, the next workpiece is loaded on the upper surface of the loaded workpiece, and then the base is lowered by the minimum thickness Tn of the workpiece. If the height of the upper surface of the workpiece after the base is lowered in the first workpiece loading step exceeds the boundary height Hc, the next workpiece is loaded on the upper face of the loaded workpiece, The next workpiece loading step of lowering the base by a distance equal to or greater than the workpiece maximum thickness Tm (= t + d1) and less than or equal to the distance between the boundary height Hc and the position Ha1 plus the workpiece maximum thickness Tm (D) After the next workpiece loading step, the subsequent workpieces to be loaded on the upper surface of the workpiece after the base of the next workpiece loading step is lowered in the same manner as the next workpiece loading step. A method for stacking objects to be processed, comprising a step of loading the objects to be processed.
【請求項2】許容高さ範囲HEの中央に境界高さHcを
設定し、ベースセット工程において、ベースをその上面
が境界高さHcから最大変動厚みTeだけ下に位置する
ようセットし、初被処理物積載工程において、ベースを
被処理物最小厚みTnだけ下降させるとともに、次被処
理物積載工程及び後続被処理物積載工程において、ベー
ス下降後の被処理物の上面の高さが境界高さHcを越え
る場合は、次の被処理物を積載した後、ベースを被処理
物最大厚みTmだけ下降させることを特徴とする請求項
1記載の被処理物の積み重ね方法。
2. A boundary height Hc is set at the center of the allowable height range HE, and in a base setting step, the base is set so that its upper surface is located below the boundary height Hc by a maximum variation thickness Te. In the workpiece loading step, the base is lowered by the minimum workpiece thickness Tn, and in the next workpiece loading step and the subsequent workpiece loading step, the height of the upper surface of the workpiece after the base lowers is the boundary height. 2. The method according to claim 1, wherein when the height exceeds Hc, the base is lowered by the maximum thickness Tm of the workpiece after loading the next workpiece.
【請求項3】境界高さHcを水平に通る投光ビームを発
生させる投光手段と、投光ビームを受光する受光手段
を、被処理物を挟んで互いに対向するよう設置し、各被
処理物積載工程においてベース下降動作が終了するたび
に、受光手段による投光ビームの検出の有無に基づき、
ベース下降後の被処理物の上面の高さと境界高さHcの
上下関係をチェックすることを特徴とする請求項1又は
2記載の被処理物の積み重ね方法。
3. A light projecting means for generating a light projecting beam which passes horizontally through a boundary height Hc and a light receiving means for receiving the light projecting beam are installed so as to face each other with an object to be processed interposed therebetween. Each time the base lowering operation is completed in the object loading process, based on the presence or absence of the detection of the projection beam by the light receiving unit,
3. The method according to claim 1, wherein a vertical relationship between the height of the upper surface of the workpiece after the base is lowered and the boundary height Hc is checked.
JP14101697A 1997-05-14 1997-05-14 Stacking method of object to be treated Withdrawn JPH10310254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14101697A JPH10310254A (en) 1997-05-14 1997-05-14 Stacking method of object to be treated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14101697A JPH10310254A (en) 1997-05-14 1997-05-14 Stacking method of object to be treated

Publications (1)

Publication Number Publication Date
JPH10310254A true JPH10310254A (en) 1998-11-24

Family

ID=15282244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14101697A Withdrawn JPH10310254A (en) 1997-05-14 1997-05-14 Stacking method of object to be treated

Country Status (1)

Country Link
JP (1) JPH10310254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108373046A (en) * 2017-01-31 2018-08-07 日本电产株式会社 Member assembling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108373046A (en) * 2017-01-31 2018-08-07 日本电产株式会社 Member assembling device

Similar Documents

Publication Publication Date Title
US6888096B1 (en) Laser drilling method and laser drilling device
KR101923274B1 (en) Die bonder and bonding method
US6381002B1 (en) Process for controlling a gap between a mask and a workpiece in proximity exposure and a proximity exposure device
CN1194601C (en) Element and device mounting method
JPH10310254A (en) Stacking method of object to be treated
US6236904B1 (en) Substrate conveying system
JP2009200117A (en) Bonding device and manufacturing method
JPH0474000A (en) Board supplying device
US20040089958A1 (en) Conductor wafer and substrate
JP4026904B2 (en) Substrate transport apparatus and exposure apparatus
JP2000164506A (en) Exposure method and aligner
JP3850308B2 (en) Method and apparatus for digital control of galvano scanner
JP2001203254A (en) Substrate transporting apparatus and aligner provided therewith
JP2615171B2 (en) Semiconductor manufacturing equipment
JP3377153B2 (en) Control method and apparatus for XY stage
JPS60154535A (en) Wire bonding device
EP0420551B1 (en) Conveying apparatus
JP3198309B2 (en) Exposure apparatus, exposure method and work processing method
JP2003031991A (en) Method and device for detecting circuit board for circuit board working machine
KR20030016903A (en) Wafer stage for exposure equipment
KR100246857B1 (en) An equipment for diffusion process and a method for aligning wafer by that equipment
JP2000252194A (en) Aligner and manufacture of device
JPH07106355A (en) Work transfer device of resin molding device
JPH10104748A (en) Device and method for exposure
JPS61226719A (en) Focus correcting structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803