JPH1031004A - Method of measuring oxygen concentration, and oxygen concentration sensor - Google Patents

Method of measuring oxygen concentration, and oxygen concentration sensor

Info

Publication number
JPH1031004A
JPH1031004A JP8186289A JP18628996A JPH1031004A JP H1031004 A JPH1031004 A JP H1031004A JP 8186289 A JP8186289 A JP 8186289A JP 18628996 A JP18628996 A JP 18628996A JP H1031004 A JPH1031004 A JP H1031004A
Authority
JP
Japan
Prior art keywords
oxygen
oxygen concentration
case
outside
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8186289A
Other languages
Japanese (ja)
Other versions
JP3301014B2 (en
Inventor
Takayuki Suzuki
隆之 鈴木
Hozumi Nita
穂積 二田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP18628996A priority Critical patent/JP3301014B2/en
Publication of JPH1031004A publication Critical patent/JPH1031004A/en
Application granted granted Critical
Publication of JP3301014B2 publication Critical patent/JP3301014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To dispense with a reference gas and perform a highly precise measurement by equalizing oxygen concentration between the outside and inside of a case by an oxygen filter mechanism for transmitting only oxygen. SOLUTION: Porous electrodes 2, 3 are arranged on the inside and outside with an oxygen ion conductive zirconia sintered body 1 between to constitute an oxygen filter mechanism. Oxygen ion is moved within the sintered body to uniform the oxygen concentration between the outside and inside of a case. The outside of the electrode 3 is protected by a porous plate 4, a limit current type oxygen concentration measuring element 5 is provided within the case, and interrupted from the external atmosphere by a seal 6. When a voltage is applied between the electrodes 5c, 5d of the measuring element 5, the oxygen within the pores of the porous plate 5a is ionized by the electrode 5c, moved, and released as oxygen gas. Since oxygen of the quantity corresponding to the oxygen concentration in the atmosphere is supplied through the porous plate 4, the current between the electrodes 5c, 5d is detected, whereby the oxygen concentration in the atmosphere can be measured. Thus, a reference gas is dispensed with, and a highly precisely measurement can be preformed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、雰囲気中の酸素濃
度を測定する方法、及び、酸素濃度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring an oxygen concentration in an atmosphere and an oxygen concentration sensor.

【0002】[0002]

【従来の技術】ガス中の酸素濃度を測定する方法として
は、磁気式、ガルバニ電池式、ジルコニア式等の測定方
法が知られている。このうち、ジルコニア式酸素濃度測
定法は装置がコンパクトであり、かつ、応答性及び精度
が良いため広く用いられている。
2. Description of the Related Art As a method for measuring the oxygen concentration in a gas, there are known magnetic methods, galvanic cell methods, zirconia methods and the like. Among them, the zirconia oxygen concentration measurement method is widely used because the apparatus is compact and has good responsiveness and accuracy.

【0003】ジルコニア式酸素濃度測定法には、ジルコ
ニア膜の酸素イオン伝導性を利用するものであり、この
測定法には大きく分けて2通りの方法が知られている。
1つは濃淡電池法であり、これは酸素イオン伝導体であ
る安定化ジルコニア膜を挟んで一対のガス透過性電極が
配置されていて、このジルコニア膜の両側の酸素濃度の
差によって生じる電極間電位差を測定して濃度差に換算
するものである。なお、この方法では、酸素濃度が既知
の参照ガスが必要である。
[0003] The zirconia oxygen concentration measurement method utilizes the oxygen ion conductivity of a zirconia membrane, and two main methods are known.
One is a concentration cell method, in which a pair of gas-permeable electrodes is arranged with a stabilized zirconia film, which is an oxygen ion conductor, interposed between the electrodes caused by a difference in oxygen concentration on both sides of the zirconia film. The potential difference is measured and converted into a concentration difference. Note that this method requires a reference gas whose oxygen concentration is known.

【0004】他方は限界電流法である。安定ジルコニア
膜を挟んで1対のガス透過性電極が配置されており、こ
の電極に電圧を印加するとジルコニア膜の陽極側から陰
極側へ酸素イオンが移動する酸素ポンプ作用を利用し、
かつ、小孔を有するカバー、あるいは多孔質体(以下両
者を「酸素ガス拡散律速体」と云う)によって酸素ガス
のセンサへの供給を律速することにより酸素濃度に対応
した電流値を得てこれを酸素濃度に換算するものであ
る。
The other is a limiting current method. A pair of gas-permeable electrodes is arranged with a stable zirconia membrane interposed therebetween. When a voltage is applied to this electrode, an oxygen pump action is used in which oxygen ions move from the anode side to the cathode side of the zirconia membrane,
In addition, a current value corresponding to the oxygen concentration is obtained by controlling the supply of oxygen gas to the sensor by a cover having a small hole or a porous body (hereinafter, both are referred to as “oxygen gas diffusion controlling body”). Is converted to an oxygen concentration.

【0005】なお、限界電流法では濃淡電池法とは異な
り酸素濃度既知の参照ガスが不要であるものの、上述の
酸素ガスの輸送過程を律速するために用いられる酸素ガ
ス拡散律速体の小孔はメタンや水素のように酸素分子よ
り小さい分子により、酸素のセンサへの供給が制限され
てしまうため、燃焼排ガス中のメタンや水素を含む雰囲
気中の計測において、実際の酸素濃度より低い値を示
す。また、限界電流法ではジルコニア膜に充分な酸素イ
オン伝導性を付与するために700℃程度の高温に保つ
必要があるため、測定対象雰囲気中に可燃性ガスがある
場合、センサ表面でこの可燃性ガスが燃焼して酸素が消
費されるために計測誤差が生じやすい。
Although the limiting current method does not require a reference gas having a known oxygen concentration unlike the concentration cell method, the pores of the oxygen gas diffusion-controlling body used to control the oxygen gas transporting process are limited by Since the supply of oxygen to the sensor is limited by molecules smaller than oxygen molecules, such as methane and hydrogen, the measurement in an atmosphere containing methane or hydrogen in the combustion exhaust gas shows a value lower than the actual oxygen concentration . In addition, in the limiting current method, it is necessary to maintain a high temperature of about 700 ° C. in order to impart sufficient oxygen ion conductivity to the zirconia film. Measurement errors are likely to occur because the gas is burned and the oxygen is consumed.

【0006】また、燃焼排ガス関連以外に酸素センサが
用いられる例として、各種半導体の実装工程で用いられ
る窒素リフローソルダリング装置が挙げられる。この装
置には金属の酸化防止の目的で低酸素濃度に保つため、
酸素濃度計が必要とされているが、この分野に限界電流
式センサを応用するとフラックス蒸気中に含まれるハイ
ドロカーボン等の可燃ガスにより誤差が生じる。
As an example of using an oxygen sensor in addition to combustion exhaust gas, there is a nitrogen reflow soldering device used in various semiconductor mounting processes. This device has a low oxygen concentration to prevent metal oxidation,
An oximeter is required, but if a limiting current sensor is applied to this field, an error will occur due to flammable gas such as hydrocarbons contained in the flux vapor.

【0007】また、ソルダリング終了後にフラックス除
去のために用いるイソプロピルアルコール等の有機溶媒
の蒸発が多い場合など、これらの雰囲気中の濃度が高く
なると、ジルコニア式センサの表面で燃焼して酸素を消
費してしまうため計測不能となる。また、活性炭等によ
る吸着式フィルターによって測定対象ガスから干渉成分
を予め除去することにより上記障害を防ぐことも可能で
あるが、この場合、フィルターの能力が飽和しやすく、
そのため交換・洗浄等のメンテナンスにも多くの労力が
必要となる。
Further, when the concentration in these atmospheres becomes high, for example, when the organic solvent such as isopropyl alcohol used for removing the flux is largely evaporated after the soldering, oxygen is consumed by burning on the surface of the zirconia sensor. Measurement becomes impossible. In addition, it is possible to prevent the above-mentioned obstacles by previously removing interference components from the gas to be measured by an adsorption filter using activated carbon or the like, but in this case, the capacity of the filter is likely to be saturated,
Therefore, much labor is required for maintenance such as replacement and cleaning.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記従来技
術の欠点を解決する、すなわち、メンテナンスや参照ガ
スを不要としながら、可燃性ガスの存在下でも精度良く
酸素濃度を測定できる酸素濃度測定方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of the prior art, that is, an oxygen concentration measurement method capable of accurately measuring the oxygen concentration even in the presence of a flammable gas without requiring maintenance or a reference gas. The aim is to provide a method.

【0009】[0009]

【課題を解決するための手段】本発明の酸素濃度測定方
法は請求項1に記載のとおり、酸素のみを透過する酸素
フィルター機構によって内外の酸素濃度を等しくしたケ
ース内部の酸素濃度を測定する構成を有する。このよう
な構成により、可燃性ガス等の影響を受けずに酸素濃度
を測定することができる。
According to a first aspect of the present invention, there is provided an oxygen concentration measuring method for measuring an oxygen concentration inside a case in which the inside and outside oxygen concentrations are equalized by an oxygen filter mechanism that transmits only oxygen. Having. With such a configuration, the oxygen concentration can be measured without being affected by combustible gas or the like.

【0010】[0010]

【発明の実施の形態】本発明において、酸素のみを透過
する酸素フィルター機構は、特定の大きさの分子を通過
することで知られているクラウンエーテル等を有する化
合物を応用したり、特定の直径を有する連続する細孔を
有するゼオライト結晶を高分子膜に混合して形成しても
良いが、少なくともケースの一部を酸素イオン伝導体で
構成し、この酸素イオン伝導体を挟んで電極対を配する
ことによっても構成することができる。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, an oxygen filter mechanism that allows only oxygen to pass is applied to a compound having a crown ether or the like that is known to pass through a molecule of a specific size, or to a specific diameter. May be formed by mixing a zeolite crystal having continuous pores with a polymer membrane, but at least a part of the case is composed of an oxygen ion conductor, and an electrode pair is sandwiched between the oxygen ion conductors. It can also be configured by disposing.

【0011】酸素のみを透過する酸素フィルター機構
を、少なくともケースの一部を酸素イオン伝導体で構成
し、この酸素イオン伝導体を挟んでケースの内外にそれ
ぞれ電極を配することによっても構成すると酸素イオン
伝導体内をケース内外の酸素濃度を均一にする方向に酸
素イオンが移動し、最終的にはケース内外の酸素濃度が
等しくなる。
[0011] An oxygen filter mechanism that allows only oxygen to pass through may be formed by arranging at least a part of the case with an oxygen ion conductor and arranging electrodes inside and outside the case with the oxygen ion conductor interposed therebetween. Oxygen ions move in the ion conductor in a direction to make the oxygen concentration inside and outside the case uniform, and finally the oxygen concentration inside and outside the case becomes equal.

【0012】なお、酸素イオン伝導体としては安定化ジ
ルコニアが知られている。安定化ジルコニアは酸素イオ
ン導電体として働くためには250℃程度以上の温度に
保つ必要があるが、窒素リフローソルダリング装置の内
部環境ガス等の比較的高温のガスが測定対象の場合には
特に加熱する必要がなく、また、酸素フィルター機構表
面での酸素ガスの消費を避けるためにも、可能な限り低
い温度であることが望ましい。なお、メタンガスがこの
ような酸素フィルター機構の表面雰囲気で燃焼する温度
としては400℃程度であり、250℃程度ではフィル
ター機構表面雰囲気の酸素濃度に大きな影響を与えな
い。なお、使用環境温度が250℃程度以下の場合には
ケースにヒータ等の加熱手段を設けることにより対応す
ることが可能となる。
Incidentally, stabilized zirconia is known as an oxygen ion conductor. Stabilized zirconia needs to be maintained at a temperature of about 250 ° C. or higher in order to function as an oxygen ion conductor, but particularly when a relatively high temperature gas such as an internal environmental gas of a nitrogen reflow soldering apparatus is a measurement target. It is desirable that the temperature be as low as possible without heating and in order to avoid consumption of oxygen gas on the surface of the oxygen filter mechanism. The temperature at which methane gas burns in the surface atmosphere of such an oxygen filter mechanism is about 400 ° C., and about 250 ° C. does not significantly affect the oxygen concentration in the filter mechanism surface atmosphere. When the use environment temperature is about 250 ° C. or less, it can be dealt with by providing a heating means such as a heater in the case.

【0013】上記のように電極をショートさせる場合、
ケース内外の酸素濃度の均等化にはある程度時間が必要
である。そこで、電極対に積極的に電圧を印加し、上記
酸素イオンの移動を積極的に行っても良い。この場合に
はケース内外の酸素濃度を比較しながら行うことが必要
である。このための手段として、たとえばケースの内外
の酸素濃度を測定する濃度差電池等の測定手段を別途設
けても良いが、上記電圧の印加を中断すれば濃度差電池
となるため、例えば、間欠的に電圧を印加し、印加して
いないときに電極間電圧を測定することにより、ケース
内部の酸素濃度差を検知することにより、適正な印加電
圧(電流)に制御することにより、ケース内外の酸素濃
度を速やかに一致させることができる。
When the electrodes are short-circuited as described above,
It takes some time to equalize the oxygen concentration inside and outside the case. Therefore, a positive voltage may be applied to the electrode pair to positively move the oxygen ions. In this case, it is necessary to perform the comparison while comparing the oxygen concentrations inside and outside the case. As means for this purpose, for example, a measuring means such as a concentration difference battery for measuring the oxygen concentration inside and outside the case may be separately provided. However, if the application of the voltage is interrupted, the battery becomes a concentration difference battery. By applying a voltage to the electrode and measuring the voltage between the electrodes when the voltage is not applied, the oxygen concentration difference inside the case is detected, and by controlling the applied voltage (current) appropriately, the oxygen inside and outside the case is controlled. The concentrations can be matched quickly.

【0014】本発明において、ケースの酸素フィルター
機構以外の箇所は気密性のものであれば材質を問わな
い。そのため、測定の対象とする環境に応じた材質を選
択できる。またケースは形状も問わないが、内部の空間
はできるだけ小さい方が応答性が良好となる。なお、内
部の空間のデッドスペースが大きい場合には、アルミナ
等のスペーサを併用することが望ましい。
In the present invention, the material of the case other than the oxygen filter mechanism is not limited as long as it is airtight. Therefore, the material can be selected according to the environment to be measured. The shape of the case is not limited, but the response is better if the internal space is as small as possible. When the dead space of the internal space is large, it is desirable to use a spacer such as alumina together.

【0015】ケース内部の酸素濃度を測定する手段とし
ては、濃淡電池式酸素濃度測定素子等の応用も可能であ
るものの参照ガスが得られにくいことから、限界電流式
酸素濃度測定素子を用いることが望ましい。このもの
は、非常にコンパクトにすることができ、かつ、応答性
が良好である。なお、一般に限界電流式酸素濃度測定素
子の場合、その酸素イオン導電体である安定化ジルコニ
アは700℃程度の温度に保たれる必要があるが、ケー
ス内には可燃性ガスがなく、また酸素ガス拡散律速体で
のメタンガスや水素ガスによる妨害もなくなるため、そ
の測定は正確なものとなる。
As a means for measuring the oxygen concentration inside the case, a limiting current type oxygen concentration measuring element can be used because a reference gas is difficult to obtain, although a concentration cell type oxygen concentration measuring element can be applied. desirable. It can be very compact and has good responsiveness. In general, in the case of a limiting current type oxygen concentration measuring element, the stabilized zirconia, which is an oxygen ion conductor, needs to be maintained at a temperature of about 700 ° C. However, there is no flammable gas in the case, and Since there is no interference by methane gas or hydrogen gas in the gas diffusion controlling body, the measurement becomes accurate.

【0016】[0016]

【実施例】以下、本発明の実施例について説明する。 〔実施例1〕図1(a)には、酸素のみを透過する酸素
フィルター機構を有するケース内に酸素濃度測定素子が
設置されている酸素濃度センサの一例の断面を示した。
図中符号1はジルコニア焼結体であり、300℃程度以
上の環境で酸素イオン伝導性を有するものである。なお
このものの内径は3mm、長さは50mmである。この
ジルコニア焼結体1の内側及び外側には多孔質のガス透
過性電極2および3があり、ガス透過性電極3の外側に
は保護のために多孔板が設置されている。このように構
成されたケース内に限界電流式酸素濃度測定素子5が設
置されていて、かつ、ケースにはガラスペーストによっ
てシール6が形成されていて、ケース内部を外部雰囲気
から遮断している。
Embodiments of the present invention will be described below. Embodiment 1 FIG. 1A shows a cross section of an example of an oxygen concentration sensor in which an oxygen concentration measuring element is installed in a case having an oxygen filter mechanism that transmits only oxygen.
In the figure, reference numeral 1 denotes a zirconia sintered body having oxygen ion conductivity in an environment of about 300 ° C. or higher. The inner diameter of this is 3 mm and the length is 50 mm. Inside and outside the zirconia sintered body 1, there are porous gas permeable electrodes 2 and 3, and outside the gas permeable electrode 3, a porous plate is provided for protection. The limiting current type oxygen concentration measuring element 5 is installed in the case configured as described above, and a seal 6 is formed by a glass paste on the case to shield the inside of the case from the outside atmosphere.

【0017】図1(b)にはこの限界電流式酸素濃度測
定素子5の拡大図(断面図)を示す。符号5aを付して
示してあるのは酸素ガス拡散律速体である多孔板であ
る。この多孔板5aの一面の上に多孔質のガス透過性電
極5c、酸素イオン導電体であるジルコニア薄膜5b、
及び、多孔質のガス透過性電極5bがこの順に積層・形
成してある。なお、多孔板5aの他面には白金製のヒー
タ5eがあり、ジルコニア薄膜5bをその酸素イオン伝
導に適した温度(700℃)に保つ。電極5cの端部、
及び電極5dの端部にそれぞれ、またヒータ5eの両端
にはリード線5fが接続されている。
FIG. 1B is an enlarged view (cross-sectional view) of the limiting current type oxygen concentration measuring element 5. Reference numeral 5a denotes a perforated plate which is an oxygen gas diffusion controlling body. On one surface of the porous plate 5a, a porous gas-permeable electrode 5c, a zirconia thin film 5b as an oxygen ion conductor,
The porous gas-permeable electrodes 5b are laminated and formed in this order. A heater 5e made of platinum is provided on the other surface of the perforated plate 5a to keep the zirconia thin film 5b at a temperature (700 ° C.) suitable for its oxygen ion conduction. The end of the electrode 5c,
A lead wire 5f is connected to each end of the electrode 5d and both ends of the heater 5e.

【0018】上記限界電流式酸素濃度測定素子5におい
て、電極5c及び電極5d間に電圧が印加されると、多
孔板5aの電極5c側の気孔にある酸素が電極5cによ
ってイオン化され、ジルコニア薄膜5b内を通過して電
極5d側に向かって移動し、そこで酸素ガスとして放出
される。このとき多孔板4の電極5cへの酸素供給は多
孔板5cの気孔により拡散律速される。このとき、雰囲
気中の酸素濃度に対応する量の酸素が電極5cに供給さ
れるため、電極5c及び電極5dの間に流れる電流を検
知することにより、雰囲気中の酸素濃度を検知すること
ができる。図1に示した酸素濃度センサを300℃の試
験炉(窒素ガス充填)内に入れ、この試験炉内に表1に
その組成を示したガス1〜7を1分ごとに切り替え順次
導入した。
In the limiting current type oxygen concentration measuring element 5, when a voltage is applied between the electrodes 5c and 5d, oxygen in the pores on the electrode 5c side of the porous plate 5a is ionized by the electrode 5c, and the zirconia thin film 5b It passes through the inside and moves toward the electrode 5d, where it is released as oxygen gas. At this time, the supply of oxygen to the electrode 5c of the porous plate 4 is diffusion-controlled by the pores of the porous plate 5c. At this time, since an amount of oxygen corresponding to the oxygen concentration in the atmosphere is supplied to the electrode 5c, the oxygen concentration in the atmosphere can be detected by detecting the current flowing between the electrode 5c and the electrode 5d. . The oxygen concentration sensor shown in FIG. 1 was placed in a test furnace (filled with nitrogen gas) at 300 ° C., and gases 1 to 7 having the compositions shown in Table 1 were switched and introduced into the test furnace every minute.

【0019】そのときのセンサ出力を窒素−酸素混合ガ
スでの酸素濃度に換算した値(以下「出力換算濃度」と
云う)の変化(実施例1)を図2に示す。なお、比較例
1としてこの試験炉に同時に入れた限界電流式酸素濃度
センサ(実施例1の酸素濃度センサのケース内に設置さ
れた限界電流式酸素濃度測定素子5と同じもの)での結
果も共に示す。
FIG. 2 shows a change (Example 1) of a value obtained by converting the sensor output at that time into an oxygen concentration in a nitrogen-oxygen mixed gas (hereinafter referred to as "output converted concentration"). Note that, as Comparative Example 1, the result of the limiting current type oxygen concentration sensor (the same as the limiting current type oxygen concentration measuring element 5 installed in the case of the oxygen concentration sensor of Example 1) simultaneously placed in this test furnace was also used. Both are shown.

【0020】[0020]

【表1】 [Table 1]

【0021】図2により実施例1の酸素濃度センサにお
いては、メタン、プロパン、イソプロピルアルコール等
の可燃性ガスの影響を受けることなく、正確な酸素濃度
測定結果が得られることが判る。
FIG. 2 shows that the oxygen concentration sensor of the first embodiment can obtain an accurate oxygen concentration measurement result without being affected by flammable gas such as methane, propane, and isopropyl alcohol.

【0022】〔実施例2〕上記実施例1の酸素濃度セン
サではガス切り替え時から測定値が安定するまで20秒
以上必要であった。ここで、雰囲気制御用として実際に
用いた場合、上記測定値安定までの時間は、アクション
の遅れ、あるいは、オーバーアクション等の障害を起こ
す可能性がある。ここで、測定値安定までの時間を短縮
するために上記実施例1の酸素濃度センサのケース内の
空隙部にアルミナを充填した酸素濃度センサを作製し
た。その断面図を図3に示す。図中符号7を付したもの
がアルミナ粉末である。
[Embodiment 2] In the oxygen concentration sensor of the embodiment 1, it took 20 seconds or more from the time of gas switching until the measured value became stable. Here, when actually used for atmosphere control, the time until the measured value stabilizes may cause a delay such as an action or an obstacle such as an overaction. Here, in order to shorten the time until the measured value stabilizes, an oxygen concentration sensor was prepared in which the void portion in the case of the oxygen concentration sensor of Example 1 was filled with alumina. FIG. 3 shows a cross-sectional view thereof. The one denoted by reference numeral 7 in the figure is the alumina powder.

【0023】このセンサを用いて実施例1の酸素濃度セ
ンサ同様に評価を行ったところ、すべての試験ガスにお
いて、応答性改善が確認され、ガス切り替え時から測定
値が安定するまでの時間が4秒程度となった(図4参
照。なお図4中比較例2として示されているのは実施例
1における比較例1同様に、評価時に同時に実験炉内に
設置された限界電流式酸素濃度センサによる結果であ
る)。
When this sensor was used for evaluation in the same manner as in the oxygen concentration sensor of Example 1, it was confirmed that the response was improved in all the test gases. (See FIG. 4. In FIG. 4, Comparative Example 2 shows the limiting current type oxygen concentration sensor installed in the experimental furnace at the same time as the evaluation, as in Comparative Example 1 in Example 1.) Results).

【0024】〔実施例3〕上記実施例1及び実施例2の
酸素濃度センサは、酸素濃度が低い場合には良好な応答
性が得られるが、酸素濃度が低濃度と高濃度と間を頻繁
に変化する場合には対応できなかった。このような場合
には、図5に示すようなセンサ(実施例3)を用いるこ
とに対応することができる。実施例1及び実施例2の酸
素濃度センサにおいては、ケースを構成するジルコニア
焼結体に接して設けられた電極2及び電極3は短絡され
ていたが、図5に示すセンサにおいてはこれら電極2及
び電極3は判定回路8に接続されている。
[Embodiment 3] The oxygen concentration sensors of Embodiments 1 and 2 provide good responsiveness when the oxygen concentration is low, but frequently switch between a low oxygen concentration and a high oxygen concentration. Could not be accommodated. In such a case, it is possible to cope with using a sensor (Example 3) as shown in FIG. In the oxygen concentration sensors of Examples 1 and 2, the electrodes 2 and 3 provided in contact with the zirconia sintered body constituting the case were short-circuited. In the sensor shown in FIG. The electrode 3 is connected to the determination circuit 8.

【0025】判定回路はケース内外に酸素濃度差がある
と生じる電極2と電極3との間の電位差を検出し、必要
に応じて酸素ポンプ回路を起動してこれら電極2及び電
極3に電圧を印加して、ケース内外の酸素濃度差を速や
かに解消するものである。なお上記のように電極2及び
電極3を酸素濃度差検出時の電極と酸素ポンプ機構にお
ける電極とを兼用させるには、例えば交互に切り替えて
使うことによって達成でき、この場合、電極対は1つあ
ればよいこととなるため、製作が容易である。
The determination circuit detects a potential difference between the electrode 2 and the electrode 3 which occurs when there is a difference in oxygen concentration between the inside and outside of the case, and activates an oxygen pump circuit as necessary to apply a voltage to these electrodes 2 and 3. By applying the voltage, the difference in oxygen concentration between the inside and outside of the case is quickly eliminated. In addition, as described above, the electrode 2 and the electrode 3 can be used by alternately switching and using the electrode at the time of detecting the oxygen concentration difference and the electrode in the oxygen pump mechanism. In this case, one electrode pair is used. The production is easy because it is sufficient.

【0026】上記において、内部の電極2に正、外部の
電極3に負の電圧を印加すると、ファラデーの法則に従
って酸素ガスが酸素イオンとしてジルコニア焼結体1内
を運ばれ、96500Cで1当量が輸送される。ここで
1A=1C/sec、酸素分子1モルの体積は標準状態
で22.4 lであり、02+4e-=2O2―であるた
め、0.1Aの電流で運ばれる酸素ガスの流量V1は数
1により5.8×10―3ml/sec(標準状態)と
なる。
In the above description, when a positive voltage is applied to the inner electrode 2 and a negative voltage is applied to the outer electrode 3, oxygen gas is carried as oxygen ions in the zirconia sintered body 1 according to Faraday's law, and 1 equivalent at 96500 C Be transported. Here, 1A = 1C / sec, and the volume of one mole of oxygen molecule is 22.4 l in a standard state, and 0 2 + 4e = 2O 2 −. Therefore, the flow rate V of the oxygen gas carried by the current of 0.1 A is V 1 is 5.8 × 10 −3 ml / sec (standard state) according to Equation 1.

【0027】[0027]

【数1】 V1=0.1A×60sec/(4×96500)×22.4×1000[ml/min] =0.348[ml/min] =5.8×10-3[ml/sec]V 1 = 0.1 A × 60 sec / (4 × 96500) × 22.4 × 1000 [ml / min] = 0.348 [ml / min] = 5.8 × 10 -3 [ml / sec] ]

【0028】一方、ケース内部の直径dが3mmで長さ
lが50mmであり、この内部に実施例2同様にアルミ
ナを充填した際の空隙率を3%とすれば、ケース内の容
量V 2は数2により0.01mlである。
On the other hand, the diameter d inside the case is 3 mm and the length is 3 mm.
1 is 50 mm, and aluminum
If the porosity at the time of filling is 3%, the volume in the case
Quantity V TwoIs 0.01 ml according to Equation 2.

【0029】[0029]

【数2】 V2=(πd2l/4)×a =0.01mlV 2 = (πd 2 1/4) × a = 0.01 ml

【0030】したがって、上記V1及びV2よりケース内
外で酸素濃度が10%の濃度差があるときにこれを一致
させるために要する時間は、200msec以下であ
り、50msecずつの測定−電圧印加(酸素ポンプ運
転)のサイクルで実施しても上記濃度差検知後400m
sec後にはケース内外の酸素濃度を等しいものとする
ことができ、実施例1及び実施例2のセンサの場合より
応答性が向上する。なお上記判定回路はCPU、ROM
及びRAM等で構成されたマイクロプロセッサユニット
等で、酸素ポンプ回路は定電流電源回路あるいは定電圧
電源回路等の電源回路により構成することができる。
Therefore, when there is a 10% difference in oxygen concentration between the inside and outside of the case from V 1 and V 2 , the time required to make the difference equal to or less than 200 msec, and the measurement-voltage application (50 msec) 400 m after the above concentration difference detection
After sec, the oxygen concentration inside and outside the case can be equalized, and the responsiveness is improved as compared with the sensors of the first and second embodiments. The determination circuit is a CPU, ROM
And a microprocessor unit or the like constituted by a RAM or the like, and the oxygen pump circuit can be constituted by a power supply circuit such as a constant current power supply circuit or a constant voltage power supply circuit.

【0031】[0031]

【発明の効果】本発明の酸素濃度測定方法は、メンテナ
ンスや参照ガスを不要としながらも可燃性ガスの存在下
でも精度良く酸素濃度を測定できる優れたものであり、
かつ、その測定部の大きさを極めて小さいものとするこ
とができる。
The method for measuring oxygen concentration according to the present invention is excellent in that it can measure oxygen concentration accurately even in the presence of flammable gas, without requiring maintenance or a reference gas.
In addition, the size of the measuring section can be made extremely small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)実施例1の酸素濃度センサの断面を示す
図である。 (b)ケース内部に設置された限界電流式酸素濃度測定
素子の断面を示す図である。
FIG. 1A is a diagram illustrating a cross section of an oxygen concentration sensor according to a first embodiment. (B) It is a figure which shows the cross section of the limiting current type oxygen concentration measuring element installed inside the case.

【図2】実施例1の酸素濃度センサで試験ガスの酸素濃
度を測定したときの状況を示す図である。
FIG. 2 is a diagram illustrating a situation when the oxygen concentration of a test gas is measured by the oxygen concentration sensor according to the first embodiment.

【図3】実施例2の酸素濃度センサの断面を示す図であ
る。
FIG. 3 is a diagram illustrating a cross section of an oxygen concentration sensor according to a second embodiment.

【図4】実施例2の酸素濃度センサで試験ガスの酸素濃
度を測定したときの状況を示す図である。
FIG. 4 is a diagram illustrating a situation when the oxygen concentration of a test gas is measured by the oxygen concentration sensor according to the second embodiment.

【図5】実施例3の酸素濃度センサの断面及びそれに付
属する判定回路及び酸素ポンプ回路を示す図である。
FIG. 5 is a diagram illustrating a cross section of an oxygen concentration sensor according to a third embodiment and a determination circuit and an oxygen pump circuit attached thereto.

【符号の説明】 1 ジルコニア焼結体 2 電極 3 電極 4 多孔板 5 酸素濃度測定素子 5a 多孔板 5b ジルコニア薄膜 5c,5d 電極 5e ヒータ 5f リード線 6 シール 7 アルミナ粉末 8 判定回路 9 酸素ポンプ回路[Description of Signs] 1 Sintered zirconia 2 Electrode 3 Electrode 4 Porous plate 5 Oxygen concentration measuring element 5a Porous plate 5b Zirconia thin film 5c, 5d Electrode 5e Heater 5f Lead wire 6 Seal 7 Alumina powder 8 Judgment circuit 9 Oxygen pump circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酸素のみを透過する酸素フィルター機構
によって内外の酸素濃度を等しくしたケース内部の酸素
濃度を測定することを特徴とする酸素濃度測定方法。
1. An oxygen concentration measuring method, comprising: measuring an oxygen concentration inside a case in which the oxygen concentration inside and outside is equalized by an oxygen filter mechanism that transmits only oxygen.
【請求項2】 上記酸素フィルター機構が、ケースの少
なくとも一部を構成する酸素イオン伝導体とケースの内
外に該伝導体を挟んで配置された電極対とを有すること
を特徴とする請求項1に記載の酸素濃度測定方法。
2. The oxygen filter mechanism according to claim 1, further comprising an oxygen ion conductor constituting at least a part of the case, and an electrode pair disposed inside and outside the case with the conductor interposed therebetween. Oxygen concentration measurement method described in 1.
【請求項3】 上記電極対間に電圧を印加することによ
りケース内外の酸素濃度を等しくさせることを特徴とす
る請求項2に記載の酸素濃度測定方法。
3. The oxygen concentration measuring method according to claim 2, wherein the oxygen concentration inside and outside the case is equalized by applying a voltage between the pair of electrodes.
【請求項4】 上記電極対間の起電力を測定することに
よりケース内外の酸素濃度差を検知し、その結果により
上記印加電圧を制御することを特徴とする請求項3に記
載の酸素濃度測定方法。
4. The oxygen concentration measurement according to claim 3, wherein an oxygen concentration difference between the inside and outside of the case is detected by measuring an electromotive force between the pair of electrodes, and the applied voltage is controlled based on the result. Method.
【請求項5】 酸素のみを透過する酸素フィルター機構
を有するケースと、該ケース内部の酸素濃度を測定する
酸素濃度検知部とを有することを特徴とする酸素濃度セ
ンサ。
5. An oxygen concentration sensor comprising: a case having an oxygen filter mechanism that allows only oxygen to pass therethrough; and an oxygen concentration detection unit that measures the oxygen concentration inside the case.
JP18628996A 1996-07-16 1996-07-16 Oxygen concentration measuring method and oxygen concentration sensor Expired - Fee Related JP3301014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18628996A JP3301014B2 (en) 1996-07-16 1996-07-16 Oxygen concentration measuring method and oxygen concentration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18628996A JP3301014B2 (en) 1996-07-16 1996-07-16 Oxygen concentration measuring method and oxygen concentration sensor

Publications (2)

Publication Number Publication Date
JPH1031004A true JPH1031004A (en) 1998-02-03
JP3301014B2 JP3301014B2 (en) 2002-07-15

Family

ID=16185714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18628996A Expired - Fee Related JP3301014B2 (en) 1996-07-16 1996-07-16 Oxygen concentration measuring method and oxygen concentration sensor

Country Status (1)

Country Link
JP (1) JP3301014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2334785A (en) * 1998-02-27 1999-09-01 Siemens Ag Gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2334785A (en) * 1998-02-27 1999-09-01 Siemens Ag Gas sensor

Also Published As

Publication number Publication date
JP3301014B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
US4859307A (en) Electrochemical gas sensor, and method for manufacturing the same
JP3874947B2 (en) Sulfur dioxide gas sensor
RU2143679C1 (en) Method measuring concentration of gases in gas mixture and electrochemical sensitive element determining gas concentration
JP3272215B2 (en) NOx sensor and NOx measuring method
US6368479B1 (en) Carbon monoxide sensor, method for making the same, and method of using the same
WO1998012550A1 (en) Gas sensor
GB2033085A (en) Method of detecting air/fuel ratio by detecting oxygen in combustion gas
EP1635171B1 (en) Hydrocarbon sensor
JPH09274011A (en) Nitrogen oxide detector
GB2029578A (en) Solid electrolyte cells for gas analysis
JP4248475B2 (en) Ionic liquid electrolyte gas sensor
JPH0213742B2 (en)
JP2003518619A (en) Sensor element of gas sensor for measuring gas components
JPS5965758A (en) Electrochemical device and cell
JP3301014B2 (en) Oxygen concentration measuring method and oxygen concentration sensor
JP2004170135A (en) Air-fuel ratio detection apparatus
JP2007071642A (en) Hydrogen gas detection element and hydrogen gas detector
JP2598771B2 (en) Composite gas sensor
JPH05180798A (en) Solid electrolyte gas sensor
JPS607358A (en) Room temperature operating type gas sensor
TW200525146A (en) Electrochemical sensor
JP2005257387A (en) Hydrogen gas detection element
JPH0798308A (en) Combustion type elementary analyzer
JP2005221428A (en) Reducing gas detecting element, and reducing gas detector
JP3520217B2 (en) Gas sensor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees