JP4248475B2 - Ionic liquid electrolyte gas sensor - Google Patents

Ionic liquid electrolyte gas sensor Download PDF

Info

Publication number
JP4248475B2
JP4248475B2 JP2004285955A JP2004285955A JP4248475B2 JP 4248475 B2 JP4248475 B2 JP 4248475B2 JP 2004285955 A JP2004285955 A JP 2004285955A JP 2004285955 A JP2004285955 A JP 2004285955A JP 4248475 B2 JP4248475 B2 JP 4248475B2
Authority
JP
Japan
Prior art keywords
gas sensor
electrode
separator
ionic liquid
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004285955A
Other languages
Japanese (ja)
Other versions
JP2006098269A (en
Inventor
智弘 井上
裕樹 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP2004285955A priority Critical patent/JP4248475B2/en
Publication of JP2006098269A publication Critical patent/JP2006098269A/en
Application granted granted Critical
Publication of JP4248475B2 publication Critical patent/JP4248475B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

この発明は液体電解質を用いたガスセンサの材料に関する。   The present invention relates to a material for a gas sensor using a liquid electrolyte.

電気化学式ガスセンサとして、プロトン導電体などの固体電解質を用いたもの(特許文献1)や硫酸などの液体電解質を用いたもの(特許文献2)が用いられている。プロトン導電体を用いたものでは、低湿でプロトン導電体が電解質として機能しなくなるので、水溜から水蒸気を補充する必要がある。そして水溜の水が消費され尽くすと、ガスセンサは寿命を迎えるので、大きな水溜が必要である。水溜から失われる水蒸気を少なくするため、プロトン導電体上の作用極へ導入できるガスの量に制限があり、低濃度のガスを検出するのが難しくなる。また液体電解質を用いたガスセンサでは、電解質が失われるのを補充するため、電解液の液溜が必要で、やはりガスセンサが大形化する。また硫酸などの電解液は漏れ出すと危険である。硫酸は低融点の物質ではあるが、例えば100℃以上では分解するので、ガスセンサを用いることができず、高温側での動作温度に制限がある。
USP5650,054 USP5126,035
As an electrochemical gas sensor, one using a solid electrolyte such as a proton conductor (Patent Document 1) or one using a liquid electrolyte such as sulfuric acid (Patent Document 2) is used. In the case of using a proton conductor, the proton conductor does not function as an electrolyte at low humidity, so it is necessary to replenish water vapor from a water reservoir. When the water in the water reservoir is exhausted, the gas sensor reaches the end of its life, so a large water reservoir is required. In order to reduce the water vapor lost from the water reservoir, there is a limit to the amount of gas that can be introduced into the working electrode on the proton conductor, making it difficult to detect low concentration gas. In addition, in a gas sensor using a liquid electrolyte, in order to supplement the loss of the electrolyte, a liquid reservoir for the electrolytic solution is necessary, and the gas sensor is also increased in size. Also, electrolytes such as sulfuric acid are dangerous if they leak out. Although sulfuric acid is a substance having a low melting point, it decomposes at, for example, 100 ° C. or higher, so a gas sensor cannot be used, and the operating temperature on the high temperature side is limited.
USP5650,054 USP 5126,035

この発明の基本的課題は、液溜が不要でコンパクトな、電気化学式ガスセンサを提供することにある。   A basic object of the present invention is to provide a compact electrochemical gas sensor that does not require a liquid reservoir.

この発明のイオン性液体電解質ガスセンサは、水溜や液体電解質のリザーバなどの液溜を備えず、かつ多孔質のセパレータにイオン性液体を支持させると共に、該セパレータに作用極と対極とからなる少なくとも一対の電極を接続し、さらに前記一対の電極の前記セパレータの反対側に、それぞれ金属板を設けると共に、これらの金属板を前記一対の電極側に向けて押圧するための手段を設けることにより、これらの電極の間でイオン導電性が得られるように接続し、たものである。 The ionic liquid electrolyte gas sensor according to the present invention does not include a liquid reservoir such as a water reservoir or a liquid electrolyte reservoir, supports the ionic liquid on a porous separator, and at least a pair of the separator having a working electrode and a counter electrode. By providing a metal plate on each side of the pair of electrodes opposite to the separator, and by providing means for pressing the metal plates toward the pair of electrodes, These electrodes are connected so as to obtain ionic conductivity.

イオン性液体は常温で液体状にあるイオン性の物質で、常温で溶融している有機物塩であり、例えば陽イオンにはブチルピリジウムイオンやエチルメチルイミダゾリウムイオン、ヘキシルトリメチルアンモニウムイオンなどがあり、これらは+1価の有機物イオンであり、陰イオンにはBF ,CFSO ,(CFSO),PF などがある。なお陽イオンと陰イオンとの組み合わせは、適宜に変更できる。 An ionic liquid is an ionic substance that is in a liquid state at room temperature, and is an organic salt that melts at room temperature.For example, cations include butylpyridium ion, ethylmethylimidazolium ion, and hexyltrimethylammonium ion. These are +1 valent organic ions, and the anions include BF 4 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N , and PF 6 . In addition, the combination of a cation and an anion can be changed suitably.

また好ましくは、前記金属板として、メタル缶の底部の板状の部分と封孔体の底部の板状の部分とを用い、前記セパレータと作用極と対極とをこれらの間に挟み込んで、メタル缶と封孔体とをカシメ付けることにより、作用極と対極とを封孔体とメタル缶からセパレータへ向けて押圧する。 Preferably , as the metal plate, a plate-like portion at the bottom of the metal can and a plate-like portion at the bottom of the sealing body are used, and the separator, the working electrode, and the counter electrode are sandwiched between these, By caulking the can and the sealing body, the working electrode and the counter electrode are pressed from the sealing body and the metal can toward the separator.

好ましくは、前記各電極とこれに対応する金属板との間と、各々多孔質の導電膜を設ける。   Preferably, a porous conductive film is provided between each electrode and the corresponding metal plate.

また好ましくは、前記一対の電極の少なくとも一方を、プロトンもしくは水酸イオン導電性の固体電解質膜を介して、前記セパレータに接触させる。   Preferably, at least one of the pair of electrodes is brought into contact with the separator via a proton or hydroxide ion conductive solid electrolyte membrane.

イオン性液体は広い温度範囲で液体で、蒸気圧がないので難燃性である。イオン性液体は蒸発により失われることがないので、電解質の補充のための液溜が不要で、また導電性が湿度や水蒸気に依存しないので、加湿用の水溜も不要である。このため液溜のないコンパクトなガスセンサにできる。加湿用の水溜のあるガスセンサの場合、水溜から水が失われるとセンサの寿命が尽きるが、この発明ではそのような制限がない。また水溜を用いると、水蒸気が失われることを制限するために、作用極へのガスの供給を制限する必要がある。ところでイオン性液体は導電率が10〜1000S/cm程度と高く、水蒸気の損失を考慮する必要がないので、この発明では、作用極へのガスの供給を少なくして、出力を小さくする必要がない。   Ionic liquids are liquid over a wide temperature range and are flame retardant because they have no vapor pressure. Since the ionic liquid is not lost by evaporation, a liquid reservoir for replenishing the electrolyte is unnecessary, and since the conductivity does not depend on humidity or water vapor, a water reservoir for humidification is also unnecessary. Therefore, a compact gas sensor without a liquid reservoir can be obtained. In the case of a gas sensor having a water reservoir for humidification, if the water is lost from the water reservoir, the life of the sensor is exhausted, but the present invention has no such limitation. When a water reservoir is used, it is necessary to limit the supply of gas to the working electrode in order to limit the loss of water vapor. By the way, since the ionic liquid has a high conductivity of about 10 to 1000 S / cm and it is not necessary to consider the loss of water vapor, in the present invention, it is necessary to reduce the supply of gas to the working electrode and reduce the output. Absent.

イオン性液体は広い温度範囲で液体で高い導電性を示すので、低温から高温までの広い温度範囲でガスセンサを使用できる。例えば−40℃程度から100℃以上の温度範囲でガスセンサを用いることも可能である。さらに分解電圧が高いので、作用極と対極間に大きな電圧を加えることが可能になり、メタンなどの難分解性のガスの検出が可能になる。   Since the ionic liquid is a liquid in a wide temperature range and exhibits high conductivity, the gas sensor can be used in a wide temperature range from a low temperature to a high temperature. For example, the gas sensor can be used in a temperature range of about −40 ° C. to 100 ° C. or more. Furthermore, since the decomposition voltage is high, it is possible to apply a large voltage between the working electrode and the counter electrode, and it is possible to detect a hardly decomposable gas such as methane.

ここで、作用極及び対極のセパレータとは反対側に金属板を設けて、これらの金属板をセパレータ側へと押圧すると、金属板と作用極や対極ならびに作用極や対極とセパレータとの接続を簡単に得ることができる。
さらに、メタル缶と封孔体との間に、セパレータと作用極と対極とを収容し、メタル缶と封孔体とをカシメ付けると、簡便な構造で、外部への出力の取り出しが容易で、部材間の接続が確実なガスセンサが得られる。
Here, when a metal plate is provided on the side opposite to the separator of the working electrode and the counter electrode, and these metal plates are pressed toward the separator side, the connection between the metal plate and the working electrode or the counter electrode and the working electrode or the counter electrode and the separator is established. Can be easily obtained.
Furthermore, if the separator, working electrode and counter electrode are accommodated between the metal can and the sealing body, and the metal can and the sealing body are caulked, the output can be easily taken out with a simple structure. A gas sensor with reliable connection between members can be obtained.

一方の電極と一方の金属板との間や、他方の電極と他方の金属板との間に、多孔質の導電膜を設けると、作用極や対極へのガスの分配が容易になる。なお導電膜を疎水性にすると、結露時に電極やセパレータに水が進入するのを防止できる。
少なくとも一方の電極とセパレータとの間に、プロトン導電性や水酸イオン導電性の固体電解質膜をサンドイッチすると、電極反応に必要な水素イオンや水酸イオンをイオン性液体まで輸送することができる。このためイオン性液体を電極に直接接触させても、イオン性液体が電極反応に関係する水素イオンや水酸イオンの伝導経路とならない場合でも、電極反応が効率的に進行する。
When a porous conductive film is provided between one electrode and one metal plate or between the other electrode and the other metal plate, gas distribution to the working electrode and the counter electrode is facilitated. If the conductive film is made hydrophobic, water can be prevented from entering the electrode and the separator during dew condensation.
When a proton conductive or hydroxide ion conductive solid electrolyte membrane is sandwiched between at least one electrode and the separator, hydrogen ions and hydroxide ions necessary for the electrode reaction can be transported to the ionic liquid. For this reason, even if the ionic liquid is brought into direct contact with the electrode, the electrode reaction proceeds efficiently even if the ionic liquid does not serve as a conduction path for hydrogen ions or hydroxide ions related to the electrode reaction.

発明者はまた、70℃などの高温に長期間放置すると、イオン性液体が流動して固体電解質膜を侵し、これに伴って対極の活性が低下して、感度が低下することがあることを見出した。このような現象は通常は問題となるものではないが、対極をMnO,ZnO,NiOOHなどの金属酸化物電極とすると、高温を経験することによる感度低下を少なくできる。 The inventor has also found that, when left at a high temperature such as 70 ° C. for a long time, the ionic liquid flows and corrodes the solid electrolyte membrane, and as a result, the activity of the counter electrode is lowered and the sensitivity may be lowered. I found it. Such a phenomenon is not usually a problem, but if the counter electrode is a metal oxide electrode such as MnO 2 , ZnO, NiOOH, etc., the decrease in sensitivity due to experiencing high temperatures can be reduced.

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

図1〜図12に、実施例とその変形とを示す。なお各変形例において、特に指摘した点以外は図1の実施例と同様にし、同じ用語や同じ符号は同じものを表す。図1は実施例のガスセンサ2を示し、4はセンサ本体で、5,6は多孔質の疎水性導電膜で、8は拡散制御板であり、拡散孔10から疎水性導電膜5を介して、センサ本体4の作用極側へガスを供給する。12は封孔体で、開口14から導入したガスを開口16から、拡散制御板8側へ供給する。18はフィルタ材で、封孔体12中に収容して、被毒性のガスなどを除去し、活性炭やゼオライト、あるいはシリカゲルなどを用いる。20はメタルハウジングで、22はガスケットである。   1 to 12 show an embodiment and its modifications. In addition, in each modification, it is the same as that of the Example of FIG. 1 except the point pointed out especially, and the same term and the same code | symbol represent the same thing. FIG. 1 shows a gas sensor 2 according to an embodiment, 4 is a sensor body, 5 and 6 are porous hydrophobic conductive films, 8 is a diffusion control plate, and the diffusion holes 10 through the hydrophobic conductive film 5. The gas is supplied to the working electrode side of the sensor body 4. A sealing body 12 supplies the gas introduced from the opening 14 to the diffusion control plate 8 side from the opening 16. A filter material 18 is accommodated in the sealing body 12 to remove toxic gases and the like, and activated carbon, zeolite, silica gel or the like is used. 20 is a metal housing and 22 is a gasket.

メタルハウジング20や封孔体12には例えばステンレスなどを用い、疎水性導電膜6はセンサ本体4とメタルハウジング20の底面との間に位置し、これらを電気的に接続し、これと同時にセンサ本体4の対極側に酸素などを供給する。疎水性導電膜5はセンサ本体4と封孔体12とを電気的に接続し、拡散孔10からのガスを、センサ本体4の作用極側に供給する。疎水性導電膜5,6には、例えば厚さ10〜40μm程度のカーボンペーパーやカーボンシートなどを、PTFE(ポリテトラフルオロエチレン)で処理して疎水化したものなどを用いる。疎水性導電膜5,6は、作用極や対極にガスを分配すると共に、高湿中での作用極や対極等の結露を防止する。さらにCOや水素,アルコール等の還元性ガスを検出する場合、対極側の疎水性導電性膜6は、対極に酸素を供給するためのバッファとなる。なお結露を特に問題としない場合、疎水性導電膜5,6に代えて、単なる多孔質の導電膜を用いても良い。例えばPTFEで処理していないカーボンシートやカーボンペーパー等は、多孔質の導電膜として用いることができる。   For example, stainless steel or the like is used for the metal housing 20 and the sealing body 12, and the hydrophobic conductive film 6 is located between the sensor body 4 and the bottom surface of the metal housing 20 to electrically connect them. Oxygen or the like is supplied to the counter electrode side of the main body 4. The hydrophobic conductive film 5 electrically connects the sensor body 4 and the sealing body 12 and supplies gas from the diffusion hole 10 to the working electrode side of the sensor body 4. For the hydrophobic conductive films 5 and 6, for example, carbon paper or carbon sheet having a thickness of about 10 to 40 μm is treated with PTFE (polytetrafluoroethylene) to be hydrophobized. The hydrophobic conductive films 5 and 6 distribute gas to the working electrode and the counter electrode, and prevent condensation on the working electrode and the counter electrode in high humidity. Further, when detecting a reducing gas such as CO, hydrogen, or alcohol, the hydrophobic conductive film 6 on the counter electrode side serves as a buffer for supplying oxygen to the counter electrode. If condensation is not particularly problematic, a simple porous conductive film may be used instead of the hydrophobic conductive films 5 and 6. For example, a carbon sheet or carbon paper that has not been treated with PTFE can be used as a porous conductive film.

これらの結果、メタルハウジング20が対極側の外部端子となり、封孔体12の外側の表面が作用極側の外部端子となる。封孔体12とメタルハウジング20はガスケット22で絶縁され、ガスケット22による押圧力で、封孔体12からセンサ本体4を介してメタルハウジング20までの接続が保たれる。拡散制御板8はここではステンレスやチタンの薄板などとするが、気体選択性透過膜などとしてもよい。またこの発明のガスセンサでは、水溜や液溜などは不要である。   As a result, the metal housing 20 becomes an external terminal on the counter electrode side, and the outer surface of the sealing body 12 becomes an external terminal on the working electrode side. The sealing body 12 and the metal housing 20 are insulated by the gasket 22, and the connection from the sealing body 12 to the metal housing 20 through the sensor body 4 is maintained by the pressing force of the gasket 22. Here, the diffusion control plate 8 is a thin plate of stainless steel or titanium, but may be a gas selective permeable membrane or the like. Further, the gas sensor of the present invention does not require a water reservoir or a liquid reservoir.

図1の実施例では、作用極を封孔体12側に、対極をメタルハウジング20側に配置したが、これらの配置を逆転しても良い。図2のガスセンサ32では、メタルハウジング21に拡散孔34を設けて、作用極へガスを供給し、封孔体13は開口のない気密なものとする。そしてフィルタを設ける必要がある場合、例えば拡散孔34の外側に配置する。   In the embodiment of FIG. 1, the working electrode is disposed on the sealing body 12 side and the counter electrode is disposed on the metal housing 20 side. However, these arrangements may be reversed. In the gas sensor 32 of FIG. 2, a diffusion hole 34 is provided in the metal housing 21 to supply gas to the working electrode, and the sealing body 13 is airtight without an opening. And when it is necessary to provide a filter, it arrange | positions outside the diffusion hole 34, for example.

図3に、センサ本体4とその周囲の配置を示す。40は多孔質のセパレータで、ガラスウールやシリカゲルなどのディスクや、多孔質のPTFEシートなどを用い、イオン性液体を保持できるものであれば良く、ガスセンサが高温でも動作できるように、耐熱性の高いものが好ましい。そしてセパレータ40はイオン性液体を収容して保持し、厚さは例えば10μm〜1mmとする。42は作用極で、例えばPtとRuとの混合触媒をカーボンに担持させ、Nafion(Nafionはデュポン社の登録商標)などのプロトン導電体とPTFEなどのバインダーとを加えた、膜状の電極である。対極43は、触媒にPt担持のカーボンを用いる他は、作用極42と同様の電極で、電極42,43はPtなどの薄膜電極を用いても良い。作用極42や対極43の厚さは例えば1〜40μm程度とし、厚さ1〜40μm程度のプロトン導電体膜44,44を介して、セパレータ40の表裏両面に配置する。プロトン導電体膜44には、Nafion膜などを用い、プロトン導電体に代えて水酸イオン導電体などを用いても良い。   FIG. 3 shows the sensor body 4 and the surrounding arrangement. Reference numeral 40 denotes a porous separator that uses a disk such as glass wool or silica gel, a porous PTFE sheet, etc., as long as it can hold an ionic liquid, and has a heat resistance so that the gas sensor can operate even at high temperatures. A high one is preferred. The separator 40 accommodates and holds the ionic liquid and has a thickness of 10 μm to 1 mm, for example. 42 is a working electrode, for example, a film-like electrode in which a mixed catalyst of Pt and Ru is supported on carbon, and a proton conductor such as Nafion (Nafion is a registered trademark of DuPont) and a binder such as PTFE are added. is there. The counter electrode 43 is an electrode similar to the working electrode 42 except that Pt-supported carbon is used as a catalyst, and the electrodes 42 and 43 may be thin film electrodes such as Pt. The working electrode 42 and the counter electrode 43 have a thickness of about 1 to 40 μm, for example, and are disposed on both front and back surfaces of the separator 40 via proton conductor films 44 and 44 having a thickness of about 1 to 40 μm. As the proton conductor film 44, a Nafion film or the like may be used, and a hydroxide ion conductor or the like may be used instead of the proton conductor.

図4のガスセンサ52では、気密膜54を用いて、疎水性導電膜5側からセンサ本体4の対極側への、水素の回り込みを阻止する。これによって、分子量が小さいため対極側へ回り込みやすい、水素への感度を増加させる。気密膜54には、疎水性導電膜5に対応する部分をくり抜いた接着シートなどを用いる。   In the gas sensor 52 of FIG. 4, the airtight film 54 is used to prevent hydrogen from flowing from the hydrophobic conductive film 5 side to the counter electrode side of the sensor body 4. This increases the sensitivity to hydrogen, which has a low molecular weight and is likely to wrap around the counter electrode. As the airtight film 54, an adhesive sheet or the like in which a portion corresponding to the hydrophobic conductive film 5 is cut out is used.

センサ本体4の動作を示すと、疎水性導電膜5から作用極42へ供給された水素やCOなどのガスは、電極触媒で分解されて、水素イオンに変化する。このイオンは、作用極42に混入したプロトン導電体から、プロトン導電体膜44を介して、セパレータ40に保持したイオン性液体中へと移動する。対極43側では、セパレータ40のイオン性液体中から、プロトン導電体膜44を介して、対極43のプロトン導電体へと水素イオンが移動し、電極触媒により酸素と化合して、水蒸気などに変化する。これによって生じる電流を、封孔体12からメタルハウジング20への電流として検出する。   When the operation of the sensor body 4 is shown, a gas such as hydrogen or CO supplied from the hydrophobic conductive film 5 to the working electrode 42 is decomposed by the electrode catalyst and changed to hydrogen ions. The ions move from the proton conductor mixed in the working electrode 42 into the ionic liquid held in the separator 40 through the proton conductor film 44. On the counter electrode 43 side, hydrogen ions move from the ionic liquid of the separator 40 to the proton conductor of the counter electrode 43 through the proton conductor film 44, and are combined with oxygen by the electrode catalyst to change into water vapor or the like. To do. A current generated thereby is detected as a current from the sealing body 12 to the metal housing 20.

イオン性液体中でプロトンがどのようにして移動するのかは不明であるが、実施例では−10℃から60℃程度の広い温度範囲で、CO濃度や水素濃度に比例する出力が得られた。またガスセンサの特性は安定で、製造後20週間程度経過しても変化は見られなかった。   It is unclear how protons move in the ionic liquid, but in the examples, outputs proportional to the CO concentration and hydrogen concentration were obtained in a wide temperature range of about -10 ° C to 60 ° C. Further, the characteristics of the gas sensor were stable, and no change was observed even after about 20 weeks from the production.

図1のガスセンサの特性を図5〜図11に示す。セパレータには多孔質のPTFEシート(厚さ20μm)を用い、イオン性液体にはエチルメチルイミダゾリウムイオンと(CFSO)イオンとから成るものを用いた。また封孔体とメタルハウジングの間を流れる電流を増幅回路で増幅したものを出力として示し、出力は両極間の電流が0の際に1Vとなるように、増幅回路を調整してある。 The characteristics of the gas sensor of FIG. 1 are shown in FIGS. A porous PTFE sheet (thickness 20 μm) was used as a separator, and an ionic liquid composed of ethylmethylimidazolium ions and (CF 3 SO 2 ) 2 N - ions was used. An output obtained by amplifying the current flowing between the sealing body and the metal housing is shown as an output, and the output is adjusted so that the output is 1 V when the current between the two electrodes is zero.

図5〜図7は低濃度用のガスセンサの特性を示し、拡散孔の直径を大きくしてセンサ出力を大きくしてある。出力はガス濃度に比例し、1ppm程度のCOや1ppm程度のエタノールでも検出できる。   5 to 7 show the characteristics of a low concentration gas sensor, in which the sensor output is increased by increasing the diameter of the diffusion hole. The output is proportional to the gas concentration and can be detected even with about 1 ppm of CO or about 1 ppm of ethanol.

図8〜図10に、30〜1000ppmのCOに対する、20週間の経時特性を示す。この例では拡散孔を小さくして、1000ppm程度でも出力が飽和しないようにしてある。また放置雰囲気は室温で、相対湿度は40%程度である。図8〜図10から明らかなように、20週間放置してもセンサ特性には大きな変化は見られない。   8 to 10 show the 20-week aging characteristics with respect to 30 to 1000 ppm of CO. In this example, the diffusion hole is made small so that the output is not saturated even at about 1000 ppm. Further, the standing atmosphere is room temperature and the relative humidity is about 40%. As is apparent from FIGS. 8 to 10, the sensor characteristics do not change greatly even after being left for 20 weeks.

図11に、−10℃から60℃の範囲での400ppmのCOに対するセンサ出力を示す。センサの種類は図8と同様である。−10℃から60℃で、センサ出力は温度により単調に変化し、広い温度範囲でガスを検出できる。   FIG. 11 shows the sensor output for 400 ppm CO in the range of −10 ° C. to 60 ° C. The type of sensor is the same as in FIG. From -10 ° C to 60 ° C, the sensor output changes monotonously with temperature, and gas can be detected in a wide temperature range.

図12に、参照極を設けた3極のガスセンサ62を示す。63は作用極で、(Pt+RuO)/C+PTFE+プロトン導電体の電極に、プロトン導電体膜などを重ねたものである。40はイオン性液体を収容したセパレータ、64は作用極、65は参照極である。対極64はPt/C+PTFE+プロトン導電体などの電極膜を、薄いプロトン導電体膜上に形成したものである。66は絶縁性の端子板で、対極64に対応して導電板68を、参照極65に対応して導電板70を設ける。他の点では図1の実施例と同様で、作用極63と対極64とをセパレータ40の同じ側に、例えば同心に設けても良い。 FIG. 12 shows a tripolar gas sensor 62 provided with a reference electrode. Reference numeral 63 denotes a working electrode, which is a (Pt + RuO 2 ) / C + PTFE + proton conductor electrode laminated with a proton conductor film or the like. 40 is a separator containing an ionic liquid, 64 is a working electrode, and 65 is a reference electrode. The counter electrode 64 is obtained by forming an electrode film such as Pt / C + PTFE + proton conductor on a thin proton conductor film. Reference numeral 66 denotes an insulating terminal plate, which is provided with a conductive plate 68 corresponding to the counter electrode 64 and a conductive plate 70 corresponding to the reference electrode 65. Otherwise, the working electrode 63 and the counter electrode 64 may be provided on the same side of the separator 40, for example, concentrically.

図13,図14に、第4の変形例のガスセンサを示す。センサ本体4や疎水性導電膜5,6は、実施例のものと同様である。これらを一対の金属板72,73の間に挟み込み、その上下に合成樹脂膜76,77を配置し、合成樹脂膜76,77を熱圧着する。すると熱圧着時の収縮力で、金属板72〜金属板73までの接続が得られ、作用極へは、合成樹脂膜76に設けた開口78から拡散孔10を介してガスが供給される。さらに金属板72,73に合成樹脂膜76,77から突き出すリード74,75を設けると、出力の取り出しが容易になる。また合成樹脂膜76,77は、例えば熱可塑性の合成樹脂膜を用い、例えば気密なものとする。さらにセンサ本体4や疎水性導電膜5,6ならびに金属板72,73の直径は例えば5〜20mm程度とする。   13 and 14 show a gas sensor of a fourth modification. The sensor body 4 and the hydrophobic conductive films 5 and 6 are the same as those in the embodiment. These are sandwiched between a pair of metal plates 72, 73, and synthetic resin films 76, 77 are arranged above and below them, and the synthetic resin films 76, 77 are thermocompression bonded. Then, the contraction force at the time of thermocompression bonding provides a connection from the metal plate 72 to the metal plate 73, and gas is supplied to the working electrode from the opening 78 provided in the synthetic resin film 76 through the diffusion hole 10. Furthermore, when the leads 74 and 75 protruding from the synthetic resin films 76 and 77 are provided on the metal plates 72 and 73, the output can be easily taken out. The synthetic resin films 76 and 77 are made of, for example, a thermoplastic synthetic resin film and are airtight, for example. Furthermore, the diameters of the sensor body 4, the hydrophobic conductive films 5, 6 and the metal plates 72, 73 are, for example, about 5 to 20 mm.

図15に第5の変形例を示す。この変形例では、拡散孔10付きの金属板82と、金属板83との間に、センサ本体4および疎水性導電膜5,6をサンドイッチする。そして、例えば円形の金属板82,83の側面とサンドイッチされたセンサ本体4や疎水性導電膜5,6の側面、及び金属板82,83の外周部を覆うように、熱可塑性樹脂のリング84を設ける。このガスセンサの製造では、センサ本体4,疎水性導電膜5,6,金属板82,83を、熱可塑性樹脂のリングにセットし、このリングを加熱する。加熱により熱可塑性樹脂84が収縮して、金属板82を疎水性導電膜5側へ押圧し、金属板83を疎水性導電膜6側へ押圧する圧力が得られ、これらの間の接続が確保されると共に、金属板82,83は外部端子となる。   FIG. 15 shows a fifth modification. In this modification, the sensor body 4 and the hydrophobic conductive films 5 and 6 are sandwiched between the metal plate 82 with the diffusion hole 10 and the metal plate 83. For example, a ring 84 of thermoplastic resin is provided so as to cover the sensor body 4 sandwiched with the side surfaces of the circular metal plates 82 and 83, the side surfaces of the hydrophobic conductive films 5 and 6, and the outer peripheral portions of the metal plates 82 and 83. Is provided. In manufacturing the gas sensor, the sensor body 4, the hydrophobic conductive film 5, 6, and the metal plates 82 and 83 are set in a ring made of thermoplastic resin, and the ring is heated. The thermoplastic resin 84 contracts by heating, and the pressure which presses the metal plate 82 to the hydrophobic conductive film 5 side and the metal plate 83 to the hydrophobic conductive film 6 side is obtained, and the connection between these is ensured. In addition, the metal plates 82 and 83 become external terminals.

図16に、対極として金属酸化物電極を用いた例を示す。イオン性液体を支持したセパレータ40に,金属酸化物電極93を接触させ、セパレータの金属酸化物電極93の例えば反対面に、プロトン導電体膜44,作用極42,疎水性導電膜5を積層する。セパレータ40やイオン性液体、プロトン導電体膜44,作用極42,疎水性導電膜5の材質や配置、作用は、図3のガスセンサと同様である。またプロトン導電体膜44は設けなくても良いが、その場合はガスへの応答速度がやや低下する。金属酸化物電極93は、例えば疎水性導電膜などの導電性で好ましくは多孔質の支持体上に、MnO,ZnO,NiOOHなどの金属酸化物を支持させたもので、例えば金属酸化物のペーストを支持体に練り込むと良い。また金属酸化物電極93は固体電解質を添加しない電極が好ましく、金属酸化物電極93とセパレータ40との間には、固体電解質膜を介在させないことが好ましい。金属酸化物電極93は、イオン性液体から輸送されてきた水素イオンなどのイオン種を還元して、水などの反応物を生成する。実施例では、金属酸化物電極93にMnO電極を用い、図8の場合等と同様に拡散孔が大きな高濃度用のガスセンサとして、70℃で4週間エージングして、高温耐久性を評価した。 FIG. 16 shows an example in which a metal oxide electrode is used as a counter electrode. The metal oxide electrode 93 is brought into contact with the separator 40 supporting the ionic liquid, and the proton conductor film 44, the working electrode 42, and the hydrophobic conductive film 5 are laminated on, for example, the opposite surface of the metal oxide electrode 93 of the separator. . The material, arrangement, and operation of the separator 40, the ionic liquid, the proton conductor film 44, the working electrode 42, and the hydrophobic conductive film 5 are the same as those of the gas sensor of FIG. The proton conductor film 44 may not be provided, but in that case, the response speed to the gas is slightly reduced. The metal oxide electrode 93 is obtained by supporting a metal oxide such as MnO 2 , ZnO, or NiOOH on a conductive and preferably porous support such as a hydrophobic conductive film. It is good to knead the paste on the support. The metal oxide electrode 93 is preferably an electrode to which no solid electrolyte is added, and it is preferable that no solid electrolyte membrane is interposed between the metal oxide electrode 93 and the separator 40. The metal oxide electrode 93 generates a reactant such as water by reducing ionic species such as hydrogen ions transported from the ionic liquid. In the examples, a MnO 2 electrode was used as the metal oxide electrode 93, and as a high concentration gas sensor having a large diffusion hole as in the case of FIG. 8, etc., aging was performed at 70 ° C. for 4 weeks to evaluate high temperature durability. .

図17,図18は金属酸化物電極を用いたセンサの特性(各4個)を示し、図17は初期特性を、図18は70℃で4週間放置後の特性を示す。図19,図20は、図3の構造のガスセンサ(高濃度用)の特性で、図19は初期特性を、図20は70℃で4週間放置後の特性を示す。対極をMnOとし、対極とセパレータとの間にプロトン導電体膜44を介在させなくても、初期特性は同様であった。70℃を4週間経験すると、図3のガスセンサでは図19から図20へのように感度が低下したが、MnOを対極材料としたセンサでは感度に変化は見られなかった。また拡散孔を小さくした低濃度用のガスセンサでは、図3のガスセンサでも、70℃経験の影響はより小さかった。 FIGS. 17 and 18 show the characteristics (four each) of the sensor using metal oxide electrodes, FIG. 17 shows the initial characteristics, and FIG. 18 shows the characteristics after being left at 70 ° C. for 4 weeks. 19 and 20 show the characteristics of the gas sensor (for high concentration) having the structure of FIG. 3, FIG. 19 shows the initial characteristics, and FIG. 20 shows the characteristics after being left at 70 ° C. for 4 weeks. Even if the counter electrode was MnO 2 and the proton conductor film 44 was not interposed between the counter electrode and the separator, the initial characteristics were the same. When the temperature of 70 ° C. was experienced for 4 weeks, the sensitivity of the gas sensor of FIG. 3 decreased as shown in FIGS. 19 to 20, but the sensitivity of the sensor using MnO 2 as a counter electrode material was not changed. Further, in the gas sensor for low concentration with a small diffusion hole, the influence of 70 ° C. experience was smaller even in the gas sensor of FIG.

70℃を4週間経験したセンサを分解すると、プロトン導電体膜44が黄色に変色しており、これはイオン性液体がプロトン導電体膜44に侵入して、プロトン導電体をスルホン酸基の周囲などの位置で分解したことを示唆している。このことは、対極にプロトン導電体を用いない、図16のセンサでは感度が低下しなかったことに対応する。また作用極側のプロトン導電体は、イオン性液体で分解されても特性への影響が少なかった(図17,図18)。ここではMnO対極の特性を示したが、NiOOHやZnOなどの他の金属酸化物対極でも同様である。 When the sensor that has experienced 70 ° C. for 4 weeks is disassembled, the proton conductor film 44 turns yellow, which means that the ionic liquid penetrates the proton conductor film 44 and causes the proton conductor to surround the sulfonic acid group. It suggests that it was disassembled at such a position. This corresponds to the fact that the sensitivity of the sensor of FIG. 16 in which no proton conductor is used for the counter electrode did not decrease. Further, the proton conductor on the working electrode side had little influence on the characteristics even when it was decomposed by the ionic liquid (FIGS. 17 and 18). Although the characteristics of the MnO 2 counter electrode are shown here, the same applies to other metal oxide counter electrodes such as NiOOH and ZnO.

液体電解質をイオン性液体とすることにより以下の効果が得られる。
(1) 導電性を得るために水蒸気が必要でなく、蒸気圧がないので失われることがない。このため液溜が不要で、ガスセンサをコンパクトにできる。
(2) 液溜の水が失われることによる寿命の制限が無く、また作用極へ導入するガスの量を大きくできるので、低濃度のガスでも検出できる。
(3) −40℃程度まで凝固せず、300℃程度まで導電体として使用できるので、動作温度範囲が広い。
(4) 4V程度までの電圧を加えても分解しないので、大きなバイアス電圧を加えてメタンの検出などを容易にできる。
(5) 疎水性導電膜5,6により、センサを結露雰囲気に放置した際にセパレータや電極に結露するのを防止でき、また電極へのガスの分配が容易になる。
(6) 電極にプロトン導電体を混入し、電極とセパレータとの間にプロトン導電体膜を設けることにより、電極とイオン性液体との間でのプロトンの移動が容易になる。なおプロトン導電体に代えて、水酸イオン導電体を電極に添加しても良く、電極とセパレータとの間に水酸イオン導電体の膜を設けても良い。
By using the liquid electrolyte as an ionic liquid, the following effects can be obtained.
(1) No water vapor is required to obtain conductivity, and there is no vapor pressure, so it is not lost. For this reason, a liquid reservoir is unnecessary and a gas sensor can be made compact.
(2) There is no limit of life due to the loss of water in the liquid reservoir, and the amount of gas introduced into the working electrode can be increased, so even low concentration gas can be detected.
(3) Since it does not solidify to about −40 ° C. and can be used as a conductor up to about 300 ° C., the operating temperature range is wide.
(4) Since it does not decompose even when a voltage up to about 4V is applied, it is possible to easily detect methane by applying a large bias voltage.
(5) The hydrophobic conductive films 5 and 6 can prevent dew condensation on the separator and the electrode when the sensor is left in a dewed atmosphere, and facilitate gas distribution to the electrode.
(6) Proton transfer is facilitated between the electrode and the ionic liquid by mixing a proton conductor into the electrode and providing a proton conductor film between the electrode and the separator. Instead of the proton conductor, a hydroxide ion conductor may be added to the electrode, or a hydroxide ion conductor film may be provided between the electrode and the separator.

実施例のガスセンサの断面図Sectional view of the gas sensor of the embodiment 最初の変形例のガスセンサの断面図Sectional view of the first modified gas sensor 実施例でのセパレータからその上下の疎水性導電膜までの断面図Sectional drawing from the separator in the examples to the upper and lower hydrophobic conductive films 第2の変形例のガスセンサの断面図Sectional drawing of the gas sensor of the 2nd modification 実施例のガスセンサの特性図でCO 0.3〜30ppmへの出力を示すThe characteristic diagram of the gas sensor of the example shows the output to CO 0.3 to 30 ppm 実施例のガスセンサの特性図でH2 0.3〜30ppmへの出力を示すThe characteristic diagram of the gas sensor of the example shows the output to 0.3 to 30 ppm of H2. 実施例のガスセンサの特性図でエタノール H2 0.3〜30ppmへの出力を示すThe characteristic diagram of the gas sensor of the example shows the output to ethanol H2 0.3 to 30 ppm 高濃度用のガスセンサの初期的な特性を示す図Diagram showing initial characteristics of gas sensor for high concentration 図8の測定から5週間経過後の特性を示す図The figure which shows the characteristic after 5 weeks from the measurement of FIG. 図8の測定から20週間経過後の特性を示す図The figure which shows the characteristic after 20-week progress from the measurement of FIG. 実施例のガスセンサの−10℃〜60℃での温度特性を示す図The figure which shows the temperature characteristic in -10 degreeC-60 degreeC of the gas sensor of an Example. 第3の変形例のガスセンサを分解して示す図The figure which decomposes | disassembles and shows the gas sensor of a 3rd modification. 第4の変形例のガスセンサの断面図Sectional drawing of the gas sensor of a 4th modification 第4の変形例のガスセンサの平面図The top view of the gas sensor of the 4th modification 第5の変形例のガスセンサの断面図Sectional drawing of the gas sensor of a 5th modification 第6の変形例のガスセンサでのセパレータの周囲の断面図Sectional drawing of the circumference | surroundings of the separator in the gas sensor of a 6th modification 第6の変形例のガスセンサの特性図で、高温経験前のCO 30〜1000ppmへの出力を示すIt is a characteristic view of the gas sensor of the 6th modification, and shows the output to CO 30-1000ppm before high temperature experience 実施例の高濃度用ガスセンサの特性図で、70℃4週間放置後のCO 30〜1000ppmへの出力を示すIt is a characteristic view of the gas sensor for high concentration of an example, and shows an output to CO 30 to 1000 ppm after being left at 70 ° C. for 4 weeks. 実施例の高濃度用ガスセンサの特性図で、高温経験前のCO 30〜1000ppmへの出力を示すIt is a characteristic view of the gas sensor for high concentration of the example, and shows an output to 30 to 1000 ppm of CO before high temperature experience. 第6の変形例のガスセンサの特性図で、70℃4週間放置後のCO 30〜1000ppmへの出力を示すIn the characteristic figure of the gas sensor of the 6th modification, it shows the output to CO 30-1000 ppm after leaving at 70 ° C for 4 weeks.

符号の説明Explanation of symbols

2,32,52,62 ガスセンサ
4 センサ本体
5,6 疎水性導電膜
8 拡散制御板
10,34 拡散孔
12,13 封孔体
14,16 開口
18 フィルタ材
20,21 メタルハウジング
22 ガスケット
40 セパレータ
42 作用極
43 対極
44 プロトン導電体膜
54 気密膜
63 作用極
64 対極
65 参照極
66 端子板
68,70 導電板
72,73 金属板
74,75 リード
76,77 合成樹脂膜
78 開口
82,83 金属板
84 熱可塑性樹脂リング
93 金属酸化物電極
2, 32, 52, 62 Gas sensor 4 Sensor body 5, 6 Hydrophobic conductive film 8 Diffusion control plates 10, 34 Diffusion holes 12, 13 Sealing bodies 14, 16 Opening 18 Filter material 20, 21 Metal housing 22 Gasket 40 Separator 42 Working electrode 43 Counter electrode 44 Proton conductor film 54 Airtight film
63 Working electrode 64 Counter electrode 65 Reference electrode 66 Terminal plate 68, 70 Conductive plate 72, 73 Metal plate 74, 75 Lead 76, 77 Synthetic resin film 78 Opening 82, 83 Metal plate 84 Thermoplastic resin ring 93 Metal oxide electrode

Claims (4)

多孔質のセパレータにイオン性液体を支持させると共に、該セパレータに作用極と対極とからなる少なくとも一対の電極を接続しかつ前記一対の電極の前記セパレータの反対側に、それぞれ金属板を設けると共に、これらの金属板を前記一対の電極側に向けて押圧するための手段を設けることにより、該一対の電極の間でイオン導電性が得られるように接続し、さらに液溜を備えない、イオン性液体電解質ガスセンサ。 The porous separator supports the ionic liquid, and at least a pair of electrodes composed of a working electrode and a counter electrode is connected to the separator, and a metal plate is provided on each side of the pair of electrodes opposite to the separator. By providing means for pressing these metal plates toward the pair of electrodes, the ion plate is connected so as to obtain ionic conductivity between the pair of electrodes, and further has no liquid reservoir. Liquid electrolyte gas sensor. 前記金属板として、メタル缶の底部の板状の部分と封孔体の底部の板状の部分とを用い、前記セパレータと作用極と対極とをこれらの間に挟み込んで、メタル缶と封孔体とをカシメ付けることにより、作用極と対極とを封孔体とメタル缶からセパレータへ向けて押圧するようにしたことを特徴とする、請求項1のイオン性液体電解質ガスセンサ。 As the metal plate, a plate-like portion at the bottom of the metal can and a plate-like portion at the bottom of the sealing body are used, and the separator, the working electrode, and the counter electrode are sandwiched between the metal can and the sealing hole. The ionic liquid electrolyte gas sensor according to claim 1 , wherein the working electrode and the counter electrode are pressed from the sealing body and the metal can toward the separator by caulking the body. 前記各電極とこれに対応する金属板との間と、各々多孔質の導電膜を設けたことを特徴とする、請求項1または2のイオン性液体電解質ガスセンサ。 The ionic liquid electrolyte gas sensor according to claim 1 or 2, wherein a porous conductive film is provided between each of the electrodes and the corresponding metal plate. 前記一対の電極の少なくとも一方を、プロトンもしくは水酸イオン導電性の固体電解質膜を介して、前記セパレータに接触させたことを特徴とする、請求項1〜3のいずれかのイオン性液体電解質ガスセンサ。
The ionic liquid electrolyte gas sensor according to any one of claims 1 to 3 , wherein at least one of the pair of electrodes is brought into contact with the separator via a proton or hydroxide ion conductive solid electrolyte membrane. .
JP2004285955A 2004-09-30 2004-09-30 Ionic liquid electrolyte gas sensor Expired - Fee Related JP4248475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004285955A JP4248475B2 (en) 2004-09-30 2004-09-30 Ionic liquid electrolyte gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285955A JP4248475B2 (en) 2004-09-30 2004-09-30 Ionic liquid electrolyte gas sensor

Publications (2)

Publication Number Publication Date
JP2006098269A JP2006098269A (en) 2006-04-13
JP4248475B2 true JP4248475B2 (en) 2009-04-02

Family

ID=36238225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285955A Expired - Fee Related JP4248475B2 (en) 2004-09-30 2004-09-30 Ionic liquid electrolyte gas sensor

Country Status (1)

Country Link
JP (1) JP4248475B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102451564B1 (en) * 2021-10-04 2022-10-06 (주)세성 Portable electrochemical gas sensor with improved sensor life

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0704972D0 (en) * 2007-03-15 2007-04-25 Varney Mark S Neoteric room temperature ionic liquid gas sensor
JP4934514B2 (en) * 2007-06-11 2012-05-16 国立大学法人九州大学 Membrane sensor
JP4986902B2 (en) * 2008-03-24 2012-07-25 フィガロ技研株式会社 Electrochemical alcohol sensor
DE102008044240B4 (en) 2008-12-01 2013-12-05 Msa Auer Gmbh Electrochemical gas sensor with an ionic liquid as the electrolyte, which contains at least one mono-, di- or trialkylammonium cation
CN103926298B (en) 2008-12-01 2017-06-20 Msa欧洲有限责任公司 Electrochemical gas sensor with ionic liquid electrolyte systems
EP2506001B1 (en) * 2011-03-28 2013-11-20 Stichting IMEC Nederland Electrochemical Ethylene Sensor and Method for Monitoring Ethylene
US9518952B2 (en) * 2011-10-05 2016-12-13 Utc Fire & Security Corporation Gas sensor
JP6004535B2 (en) * 2012-12-28 2016-10-12 フィガロ技研株式会社 Gas detector
US9835581B2 (en) * 2013-09-26 2017-12-05 Honeywell International, Inc. Gas sensor using an ionic liquid electrolyte
JP6644445B2 (en) * 2015-09-17 2020-02-12 フィガロ技研株式会社 Electrochemical gas sensor
EP3403081B1 (en) 2016-01-12 2024-04-17 Honeywell International Inc. Electrochemical sensor
JP6739360B2 (en) * 2017-01-13 2020-08-12 株式会社フジクラ Carbon dioxide sensor
JP7499452B2 (en) * 2021-02-26 2024-06-14 パナソニックIpマネジメント株式会社 Electrochemical gas sensor and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102451564B1 (en) * 2021-10-04 2022-10-06 (주)세성 Portable electrochemical gas sensor with improved sensor life

Also Published As

Publication number Publication date
JP2006098269A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
JP4248475B2 (en) Ionic liquid electrolyte gas sensor
CA2309646C (en) A gas sensor
US6746587B2 (en) Electrochemical gas sensor
US8815065B2 (en) Electrochemical gas sensor and mounting structure therefor
JP4141381B2 (en) Proton conductor gas sensor
EP1210593A2 (en) A gas sensor and its method of manufacture
JP2005134248A (en) Electrochemical gas sensor
JP4251970B2 (en) Gas sensor
JP6332911B2 (en) Electrochemical gas sensor
CN112522728B (en) Trace oxygen generation module and pure oxygen generation system thereof
JP2017161457A (en) Electrochemical sensor
US9400257B2 (en) Sensors and sensor housing systems
WO2022181249A1 (en) Electrochemical gas sensor and electrochemical gas sensor manufacturing method
JP6474285B2 (en) Constant potential electrolytic gas sensor
JP6576053B2 (en) Constant potential electrolytic gas sensor
US20170088957A1 (en) Electrochemical gas generator for ammonia with the use of ionic liquids and use of the gas generator
JP2008101923A (en) Electrochemical sensor
JP6212768B2 (en) Electrochemical gas sensor
JP2016211958A (en) Electrochemical gas sensor
JP2014199234A (en) Electrochemical gas sensor and method for manufacturing electrochemical sensor
CN214991887U (en) Trace oxygen generation module and pure oxygen generation system thereof
CN108680617B (en) Hydrogen sensor
JP6576054B2 (en) Constant potential electrolytic gas sensor
JP6473351B2 (en) Constant potential electrolytic gas sensor
JP2013519072A (en) Stand-alone water detector with hydrogen source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150123

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees