JP2005221428A - Reducing gas detecting element, and reducing gas detector - Google Patents

Reducing gas detecting element, and reducing gas detector Download PDF

Info

Publication number
JP2005221428A
JP2005221428A JP2004030924A JP2004030924A JP2005221428A JP 2005221428 A JP2005221428 A JP 2005221428A JP 2004030924 A JP2004030924 A JP 2004030924A JP 2004030924 A JP2004030924 A JP 2004030924A JP 2005221428 A JP2005221428 A JP 2005221428A
Authority
JP
Japan
Prior art keywords
electrode
detection
reducing gas
solid electrolyte
reference electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004030924A
Other languages
Japanese (ja)
Other versions
JP4532923B2 (en
Inventor
Toru Maekawa
亨 前川
Akihisa Tsumeishi
晃久 詰石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2004030924A priority Critical patent/JP4532923B2/en
Publication of JP2005221428A publication Critical patent/JP2005221428A/en
Application granted granted Critical
Publication of JP4532923B2 publication Critical patent/JP4532923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reducing gas detecting element of simple structure enhanced in stability of a detection output, and requiring no reference gas. <P>SOLUTION: In this reducing gas detecting element, a detecting electrode 4 and a reference electrode 3 are joined respectively to an oxide ion conductive solid electrolyte 2, and the reference electrode 3 is coated with a gas nonpermeable coating film 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体電解質を用いた還元性ガス検知素子及び前記還元性ガス検知素子を用いた還元性ガス検知装置に関するものである。   The present invention relates to a reducing gas detection element using a solid electrolyte and a reducing gas detection device using the reducing gas detection element.

固体電解質を用いる電気化学式ガス検出素子は、一般に、固体電解質に検知極と対極とが一体に接合された構造からなり、その構成が全て固体からなるために、長期安定性にすぐれ、常温より高い温度で作動させる必要がある場合に特に好適である。また、このような検知素子は、その検知方式によって、電圧検出型と電流検出型とに分類される。   An electrochemical gas detection element using a solid electrolyte generally has a structure in which a detection electrode and a counter electrode are integrally joined to a solid electrolyte, and since the structure is all solid, it has excellent long-term stability and is higher than room temperature. It is particularly suitable when it is necessary to operate at temperature. Moreover, such a detection element is classified into a voltage detection type and a current detection type according to the detection method.

電圧検出型は、濃淡電池型ともいわれ、固体電解質の片面に検知極を、他面に対極をそれぞれ固着させ、検知極に未知濃度(分圧)の検知ガスを供給し、対極に既知濃度(分圧)の基準ガスを供給するとともに、これらのガスを互いに隔離すると、濃淡電池が形成され、その起電力を測定すれば、数1(1)に示すいわゆるネルンスト式にしたがって検知ガスの濃度(分圧)を知ることができるという原理にもとづくものである。   The voltage detection type is also called a concentration cell type. The detection electrode is fixed to one side of the solid electrolyte, the counter electrode is fixed to the other side, a detection gas having an unknown concentration (partial pressure) is supplied to the detection electrode, and a known concentration ( When a reference gas (partial pressure) is supplied and these gases are separated from each other, a concentration cell is formed. When the electromotive force is measured, the concentration of the detection gas (in accordance with the so-called Nernst equation shown in Equation (1)) This is based on the principle that the partial pressure can be known.

具体例としては、酸化物イオン導電性の安定化酸化ジルコニウムを固体電解質とし、空気を基準ガスとし、500〜1000℃で作動する酸素濃度検知素子がよく知られている。(特許文献1参照)   As a specific example, an oxygen concentration detection element that operates at 500 to 1000 ° C. using oxide oxide conductive stabilized zirconium oxide as a solid electrolyte and air as a reference gas is well known. (See Patent Document 1)

電流検出型は、定電位電解型とも限界電流型ともいわれ、検知極と対極との間に、検知ガスの濃度に応じた限界電流が流れるように、一定電圧を印加した際に、検知極と対極との間に流れる電流を検出することによって、検知極に供給されるガスの濃度を検知するものである。具体例としては、安定化酸化ジルコニウムの片面に白金からなる検知極を、他面にやはり白金からなる対極をそれぞれ接合した素子の検知極側に、未知濃度の酸素含有ガスを供給し、一定の電圧を印加した際、化1(2)(3)式に示す反応が起こり、その際流れる電流から、検知ガスの酸素濃度を検知する方法が提案されている。   The current detection type is said to be a constant potential electrolysis type or a limit current type.When a constant voltage is applied between the detection electrode and the counter electrode so that a limit current corresponding to the concentration of the detection gas flows, The concentration of gas supplied to the detection electrode is detected by detecting the current flowing between the counter electrode and the counter electrode. As a specific example, an oxygen-containing gas having an unknown concentration is supplied to the detection electrode side of an element in which a detection electrode made of platinum is bonded to one side of stabilized zirconium oxide and a counter electrode made of platinum is bonded to the other side. When a voltage is applied, the reaction shown in the chemical formula 1 (2) and (3) occurs, and a method for detecting the oxygen concentration of the detection gas from the current flowing at that time has been proposed.

適用すべき固体電解質としては、通常は、検知ガス種に対応するイオンが伝導し得る材料を選択する必要がある。例えば、上記のように、検知ガスが酸素の場合には、酸化物イオン導電性の電解質が用いられ、検知ガスが水素の場合には、セリウム酸バリウム系あるいはセリウム酸ストロンチウム系などの水素イオン導電性の電解質が選択される。   As the solid electrolyte to be applied, it is usually necessary to select a material that can conduct ions corresponding to the detection gas species. For example, as described above, when the detection gas is oxygen, an oxide ion conductive electrolyte is used. When the detection gas is hydrogen, hydrogen ion conductivity such as barium cerate or strontium cerate is used. Sex electrolyte is selected.

特開2003−279531号公報JP 2003-279531 A

検知ガスが水素及び各種炭化水素ガスなどの還元性ガスの場合には、上記のように、水素イオン導電性の固体電解質を用いるのが、従来必須であるとされていたが、水素イオン導電性のセリウム酸バリウム系あるいはセリウム酸ストロンチウム系電解質は、検知ガス雰囲気中に二酸化炭素が含まれる場合には、不安定であることに難点がある。   In the case where the detection gas is a reducing gas such as hydrogen and various hydrocarbon gases, as described above, it has conventionally been essential to use a hydrogen ion conductive solid electrolyte. These barium cerate-based or strontium cerate-based electrolytes have a drawback in that they are unstable when carbon dioxide is contained in the detection gas atmosphere.

また、検知素子を濃淡電池型とする際には、検知ガスと同一であって、しかも既知濃度の基準ガスを使用する必要があるが、このような措置は、実用上、極めて煩雑であり、現実的ではない。   In addition, when the sensing element is a concentration cell type, it is necessary to use a reference gas that is the same as the sensing gas and has a known concentration, but such a measure is practically extremely complicated, Not realistic.

さらには、固体電解質が一般に、高温でしか充分なイオン導電度を示さないという理由から、検知素子に、例えば白金抵抗体を接合し、この部分に電流を流すというような、温度制御が可能な加熱措置を施す必要があるが、従来のように、固体電解質の両面に検知極と対極を接合し、検知ガスと基準ガスとを固体電解質を介して隔離するという構造にした場合には、気密性を確保するための構造が複雑になるばかりか、加熱措置を施す余地が乏しくなる点も問題となっていた。   Furthermore, because the solid electrolyte generally exhibits sufficient ionic conductivity only at high temperatures, it is possible to control the temperature, for example, by bonding a platinum resistor to the sensing element and passing a current through this portion. Although it is necessary to take a heating measure, as in the conventional case, when the detection electrode and the counter electrode are joined to both sides of the solid electrolyte and the detection gas and the reference gas are isolated via the solid electrolyte, In addition to the complexity of the structure for ensuring safety, there is also a problem in that there is little room for heat treatment.

以上の理由から、例えば、溶融アルミニウム中の水素検出素子の如き特殊用途を除いた、一般用途向けに適した還元性ガス用固体電解質型検知素子は、未だに実用化されていない。   For the above reasons, for example, a solid oxide sensing element for reducing gas suitable for general use, excluding special uses such as a hydrogen sensing element in molten aluminum, has not been put into practical use.

上記実状に鑑み本発明の目的は、検知出力の安定性が高く、より簡単な構造で、しかも基準ガスを必要としない還元性ガス検出素子を提供することにある。   In view of the above circumstances, an object of the present invention is to provide a reducing gas detection element that has high detection output stability, a simpler structure, and does not require a reference gas.

本発明は、充分安定な酸化物イオン導電性固体電解質を適用するとともに、この固体電解質に検知極と対極を接合し、対極をガラス状ガス非透過性被膜で被覆することによって、基準ガスを特に用いなくても、還元性ガスの検知を可能にする構成の還元性ガス検知素子を提供するものである。さらには、このような固体電解質−電極接合体を、アルミナの如き絶縁性セラミック基板の片面に、他面に加熱用金属抵抗体を接合するという構造を採用することによって、還元性ガス検知装置をより小型化するものである。   The present invention applies a sufficiently stable oxide ion conductive solid electrolyte, joins a detection electrode and a counter electrode to the solid electrolyte, and coats the counter electrode with a glass-like gas-impermeable film, thereby making the reference gas particularly The present invention provides a reducing gas detection element having a configuration that enables detection of reducing gas even if it is not used. Further, by adopting a structure in which such a solid electrolyte-electrode assembly is joined to one surface of an insulating ceramic substrate such as alumina and a heating metal resistor is joined to the other surface, a reducing gas detection device is provided. The size is further reduced.

本発明は、水素、炭化水素ガス等の還元性ガスに適した固体電解質型検知素子について、実験を含めた検討を鋭意進めた結果得られた新しい知見に基づいてなされたものである。   The present invention has been made on the basis of new knowledge obtained as a result of diligent investigations including experiments on solid electrolyte type detection elements suitable for reducing gases such as hydrogen and hydrocarbon gases.

本発明にかかる還元性ガス検知素子の典型的模式構造を図1に示す。
1は、絶縁性セラミック基板であり、その材料としては、アルミナあるいはシリカ−アルミナ等が好適である。前記セラミック基板の片面に、酸化イットリウム(Y)もしくは酸化カルシウム(CaO)によって安定化された酸化ジルコニウム(ZrO)からなる従来公知の酸化物イオン導電性の固体電解質2が一体に接合されている。固体電解質材料としては酸化セリウム(CeO)系でも良い。固体電解質の接合方法としては、ペレット状もしくはシート状固体電解質を従来公知のセラミック系接着材によって接着・加熱する方法あるいは固体電解質材料粉末としかるべき結合材とを混合したものを塗布・加熱する方法などが有効である。
A typical schematic structure of a reducing gas detecting element according to the present invention is shown in FIG.
Reference numeral 1 denotes an insulating ceramic substrate, and the material thereof is preferably alumina or silica-alumina. A conventionally known oxide ion conductive solid electrolyte 2 made of zirconium oxide (ZrO 2 ) stabilized by yttrium oxide (Y 2 O 3 ) or calcium oxide (CaO) is integrally joined to one surface of the ceramic substrate. Has been. The solid electrolyte material may be cerium oxide (CeO 2 ). As a solid electrolyte joining method, a method of adhering and heating a pellet-like or sheet-like solid electrolyte with a conventionally known ceramic adhesive, or a method of applying and heating a mixture of solid electrolyte material powder and an appropriate binder Etc. are effective.

固体電解質2の上には、検知極4及び対極(基準極)3が相互に隔離されるように、一体に接合されている。両電極とも、白金、パラジウム、ロジウム、ルテニウム、金などの貴金属もしくは、これらの貴金属の合金によって構成される。両電極ともスパッタリング法、ペースト法等当該分野で公知とされる方法によって接合される。対極(基準極)3は、ガス非透過性被覆層5によって被覆されている。このガス非透過性被覆層5の材料は、一般に市販されている、加熱によって溶融するガラス系材料が好適である。絶縁性セラミック基板1の固体電解質層2とは反対の面には、本検知素子の作動温度を維持するためのたとえば白金からなる加熱用金属抵抗体層6が、当該分野において公知のスパッタリング法、ペースト法等によって接合されている。加熱用金属抵抗体は、シート状とし、セラミック接着材により接着してもよい。   On the solid electrolyte 2, the detection electrode 4 and the counter electrode (reference electrode) 3 are integrally joined so as to be isolated from each other. Both electrodes are made of a noble metal such as platinum, palladium, rhodium, ruthenium, gold, or an alloy of these noble metals. Both electrodes are joined by a method known in the art such as a sputtering method or a paste method. The counter electrode (reference electrode) 3 is covered with a gas impermeable coating layer 5. The material of the gas impermeable coating layer 5 is preferably a glass-based material that is commercially available and melts by heating. On the surface opposite to the solid electrolyte layer 2 of the insulating ceramic substrate 1, a heating metal resistor layer 6 made of, for example, platinum for maintaining the operating temperature of the present sensing element is formed by a sputtering method known in the art, Joined by a paste method or the like. The heating metal resistor may be in the form of a sheet and bonded with a ceramic adhesive.

なお、上記のような各部材の接合構成あるいは接合順序については、さらに、さまざまな選択肢がある。まず、作動温度を高温にするために、外部加熱機構が別途に用意できる場合には、加熱用金属抵抗体を検知素子に一体接合しなくてもすむ。また、この場合には、絶縁性セラミック基板を用いなくて、固体電解質に検知極及び対極(基準極)を接合するとともに、対極(基準極)にガス非透過性被膜を被覆した接合体を製作し、この接合体を検知素子として、そのまま、使用することも可能である。さらには、この接合体を絶縁性セラミック基板に接合することも効果的である。一方、この接合体の製作にあたっては、固体電解質の同一面に検知極及び基準極を接合する(図1参照)のみならず、固体電解質の片面に検知極を、他面に対極(基準極)を接合する(図2参照)ことも有効な場合がある。なお、この接合体を絶縁性セラミック基板に接合する際、固体電解質の同一面に検知極及び対極(基準極)の双方を接合した型の場合には、固体電解質面と絶縁性セラミック基板とが隣り合うように接合するのに対し、固体電解質の片面に検知極を、他面に対極(基準極)を接合した型の場合には、検知極、固体電解質及び対極(基準極)のすべてが、絶縁性セラミック基板に隣り合う向きにして接合しなければならない。また、これら接合体を絶縁性セラミック基板に接合する際には、固体電解質−検知極−対極(基準極)の接合体を絶縁性セラミック基板に接合した後に、ガス非透過性被膜を対極(基準極)に被覆するという工程を選択した方が、対極(基準極)への検知ガスの接触を完全に防止するという観点からは、有利なことが多い。   In addition, there are various options for the joining configuration or joining order of each member as described above. First, if an external heating mechanism can be prepared separately to increase the operating temperature, the heating metal resistor need not be integrally joined to the sensing element. Also, in this case, without using an insulating ceramic substrate, a sensing electrode and a counter electrode (reference electrode) are bonded to the solid electrolyte, and a bonded body in which the counter electrode (reference electrode) is covered with a gas-impermeable film is manufactured. However, the joined body can be used as it is as a detection element. Furthermore, it is also effective to join this joined body to an insulating ceramic substrate. On the other hand, in the production of this joined body, not only the detection electrode and the reference electrode are joined to the same surface of the solid electrolyte (see FIG. 1), but also the detection electrode on one side of the solid electrolyte and the counter electrode (reference electrode) on the other surface. It may also be effective to join (see FIG. 2). When joining this bonded body to the insulating ceramic substrate, in the case of a type in which both the detection electrode and the counter electrode (reference electrode) are bonded to the same surface of the solid electrolyte, the solid electrolyte surface and the insulating ceramic substrate are In the case of a type in which the detection electrode is joined to one side of the solid electrolyte and the counter electrode (reference electrode) is joined to the other surface, the detection electrode, solid electrolyte, and counter electrode (reference electrode) are all connected. It must be bonded in the direction adjacent to the insulating ceramic substrate. When these assemblies are bonded to the insulating ceramic substrate, the solid electrolyte-detecting electrode-counter electrode (reference electrode) assembly is bonded to the insulating ceramic substrate, and then the gas non-permeable coating is applied to the counter electrode (reference electrode). It is often advantageous from the viewpoint of completely preventing the detection gas from contacting the counter electrode (reference electrode).

上記の構造からなる還元性ガス検知素子は、その全体が検知ガス雰囲気中におかれ、外部電源から、加熱用金属抵抗体6に電流を通すか、外部加熱機構によって、しかるべき作動温度(通常は400〜600℃)になるように加熱した上で、検知極と対極(基準極)との間の電圧を測定すると、その電圧と還元性検知ガス濃度の対数との間に直線性がみられる。換言すると、検知極−対極(基準極)電圧を測定することによって、還元性ガス濃度を検知することが可能となる。このガス検知素子によって、検知可能な還元性ガスは、水素、一酸化炭素、及びメタン、プロパン、ブタン等の炭化水素である。   The reducing gas detection element having the above structure is entirely placed in a detection gas atmosphere, and an appropriate operating temperature (usually normal current is passed from an external power source to the heating metal resistor 6 or by an external heating mechanism. When the voltage between the detection electrode and the counter electrode (reference electrode) is measured after heating to 400 to 600 ° C., there is linearity between the voltage and the logarithm of the reducing detection gas concentration. It is done. In other words, it is possible to detect the reducing gas concentration by measuring the detection electrode-counter electrode (reference electrode) voltage. Reducing gases that can be detected by this gas detection element are hydrogen, carbon monoxide, and hydrocarbons such as methane, propane, and butane.

本発明による検知素子の系は、従来の厳密な意味での濃淡電池系ではないので、前記(1)式のネルンスト式をそのまま適用することはできないために、その反応メカニズム及び検知メカニズムには不分明なところはある。
ひとつの推測としては、例えば、検知ガスとして水素を対象にし、検知極及び対極(基準極)として白金を用いた際には、検知極が、化2(4)式の平衡反応にもとづく水素濃度に応じた平衡電位を示し、対極(基準極)の表面において、酸素が吸着された形(Pt(O))になるために、対極(基準極)が、化2(5)式の平衡反応による平衡電位を示し、両極の平衡電位の差が電圧として検出されることが考えられる。
Since the sensing element system according to the present invention is not a conventional concentration battery system in the strict sense, the Nernst equation (1) cannot be applied as it is. There is an obvious place.
One presumption is that, for example, when hydrogen is used as the detection gas and platinum is used as the detection electrode and the counter electrode (reference electrode), the detection electrode has a hydrogen concentration based on the equilibrium reaction of Formula 2 (4). The equilibration potential according to the formula (2) is obtained because the counter electrode (reference electrode) is in a form in which oxygen is adsorbed on the surface of the counter electrode (reference electrode) (Pt (O)). It is conceivable that the difference between the equilibrium potentials of both electrodes is detected as a voltage.

以下、本発明の特長を述べる。
本発明によって、まず、検知ガスが水素、炭化水素等の還元性ガスであるにもかかわらず、固体電解質として、従来常識とされていたが、安定性に乏しい水素イオン導電体を用いる替わりに、より安定で、酸素濃度検出素子の分野では実用に供されている酸化物イオン導電体の適用が可能になり、検知素子としても安定性が向上する。また、検知極と対極(基準極)とを固体電解質に接合するとともに、対極(基準極)をガス非透過性被膜により被覆し、検知ガスと対極(基準極)との接触を防止することによって、特に基準ガスを用いることなく、検知ガスを検知素子全体に接触させても、検知ガスの検知を可能にしたことは、検知素子の構造をより簡単にするとともに、検知方法の簡易化をもたらす。さらには、加熱用金属抵抗体を検知素子に一体に接合した場合には、加熱機構を含めた検知装置の小型化を図ることが可能になる。
The features of the present invention will be described below.
According to the present invention, first, although the detection gas is a reducing gas such as hydrogen or hydrocarbon, it has been conventionally known as a solid electrolyte, but instead of using a hydrogen ion conductor with poor stability, Oxide ion conductors that are more stable and practically used in the field of oxygen concentration detection elements can be applied, and the stability of the detection elements is improved. In addition, the detection electrode and the counter electrode (reference electrode) are joined to the solid electrolyte, and the counter electrode (reference electrode) is covered with a gas-impermeable film to prevent contact between the detection gas and the counter electrode (reference electrode). In particular, the detection gas can be detected even when the detection gas is brought into contact with the entire detection element without using a reference gas, thereby making the structure of the detection element simpler and simplifying the detection method. . Furthermore, when the heating metal resistor is integrally joined to the detection element, it is possible to reduce the size of the detection device including the heating mechanism.

図2に示すように、まず、直径25mm角、厚さ0.4mmのイットリウム安定化酸化ジルコニウムからなる固体電解質の両面にスパッタリング法により、薄膜(1μm厚)の白金を固着させた。次に、この固体電解質−白金接合体を、レーザー加工機で切断し、横1.0mm、縦0.5mm、厚さ1.0mmの寸法からなる複数の小片に切り出した。この小片において、白金の片方が検知極、他方が対極(基準極)となる。次に横1.5mm、縦2mm、厚さ0.4mmの絶縁性アルミナ基板の片面に、検知極−固体電解質−対極(基準極)接合体の小片を、セラミック接着剤により接着した。次に、白金からなる検知極及び対極(基準極)の双方に、白金リード線をいわゆる白金ペーストによって接続した。次に、対極(基準極)のみをガラス系被覆材により被覆した。このガラス系被覆層がガス非透過性被覆層となる。次に、上記の絶縁性アルミナ基板の検知極−固体電解質−対極(基準極)接合面と反対の面に、加熱用白金抵抗体層をスパッタリング法により接合するとともに、その両端に白金リード線を取りつけた。かくして、還元性ガス検知素子が得られる。尚、スパッタリング法により得られた検知極及び対極は、多孔質で反応性の高いものとなっている。   As shown in FIG. 2, first, a thin film (1 μm thick) platinum was fixed to both surfaces of a solid electrolyte made of yttrium-stabilized zirconium oxide having a diameter of 25 mm square and a thickness of 0.4 mm by sputtering. Next, the solid electrolyte-platinum joined body was cut with a laser processing machine and cut into a plurality of small pieces having dimensions of 1.0 mm in width, 0.5 mm in length, and 1.0 mm in thickness. In this small piece, one of platinum serves as a detection electrode and the other serves as a counter electrode (reference electrode). Next, a small piece of a sensing electrode-solid electrolyte-counter electrode (reference electrode) assembly was adhered to one side of an insulating alumina substrate having a width of 1.5 mm, a length of 2 mm, and a thickness of 0.4 mm using a ceramic adhesive. Next, a platinum lead wire was connected to both a detection electrode and a counter electrode (reference electrode) made of platinum with a so-called platinum paste. Next, only the counter electrode (reference electrode) was covered with a glass-based coating material. This glass-based coating layer becomes a gas-impermeable coating layer. Next, a heating platinum resistor layer is joined to the surface opposite to the sensing electrode-solid electrolyte-counter electrode (reference electrode) joining surface of the insulating alumina substrate by sputtering, and platinum lead wires are attached to both ends thereof. I installed it. Thus, a reducing gas detection element is obtained. The detection electrode and the counter electrode obtained by the sputtering method are porous and highly reactive.

この還元性ガス検知素子を、加熱用金属抵抗体に外部電源から電流を流して、600℃に保持するとともに、種々のガス種、濃度の雰囲気中に設置し、検知極と対極(基準極)との電圧(電位差)を測定したところ、図2に示す特性が得られた。すなわち、各種還元性ガス(水素、一酸化炭素、メタン、ブタン)に対して、その濃度(ppm)の対数と検知極−対極(基準極)間電圧との間に、ほぼ直線的な関係が示された。また、この検知素子は、特に水素に対する感度が高いことが判明した。   This reducing gas detection element is supplied with current from an external power source to a heating metal resistor and maintained at 600 ° C., and is installed in atmospheres of various gas types and concentrations, and a detection electrode and a counter electrode (reference electrode) When the voltage (potential difference) was measured, the characteristics shown in FIG. 2 were obtained. That is, for various reducing gases (hydrogen, carbon monoxide, methane, butane), there is a substantially linear relationship between the logarithm of the concentration (ppm) and the voltage between the detection electrode and the counter electrode (reference electrode). Indicated. It was also found that this sensing element is particularly sensitive to hydrogen.

以上詳述するように、本発明は、より簡単な構造で、より簡便な方法による還元性ガスの検知を可能にするガス検知素子及びガス検出装置を提供するものであり、その工業的価値、極めて大である。   As described above in detail, the present invention provides a gas detection element and a gas detection device that enable detection of reducing gas by a simpler method with a simpler structure, and its industrial value. It is extremely large.

本発明のガス検知装置の概略図Schematic of the gas detector of the present invention 本発明のガス検知装置の概略図Schematic of the gas detector of the present invention 本発明のガス検知素子の出力特性を示すグラフThe graph which shows the output characteristic of the gas detection element of this invention

符号の説明Explanation of symbols

1 絶縁基板
2 固体電解質
3 基準極
4 検知極
5 ガス非透過性被膜
6 加熱機構
1 Insulating substrate 2 Solid electrolyte 3 Reference electrode 4 Detection electrode 5 Gas impermeable coating 6 Heating mechanism

Claims (9)

酸化物イオン導電性固体電解質に、検出極及び基準極をそれぞれ接合するとともに、前記基準極をガス非透過性被膜で被覆してなる接合体から構成される還元性ガス検知素子。   A reducing gas detection element comprising a joined body in which a detection electrode and a reference electrode are joined to an oxide ion conductive solid electrolyte, and the reference electrode is covered with a gas non-permeable coating. 酸化物イオン導電性固体電解質に、検出極及び基準極をそれぞれ接合するとともに、前記基準極をガス非透過性被膜で被覆してなる接合体を、絶縁性セラミック基板の片面に接合してなる還元性ガス検知素子。   A reduction formed by bonding a detection electrode and a reference electrode to an oxide ion conductive solid electrolyte, and bonding a bonded body formed by coating the reference electrode with a gas non-permeable coating to one side of an insulating ceramic substrate. Sex gas sensing element. 酸化物イオン導電性固体電解質に、検出極及び基準極をそれぞれ接合するとともに、前記基準極をガス非透過性被膜で被覆してなる接合体を、絶縁性セラミック基板の片面に接合するとともに、前記絶縁性セラミック基板の他面に、加熱用金属抵抗体を接合してなる還元性ガス検知素子。   While joining the detection electrode and the reference electrode to the oxide ion conductive solid electrolyte, respectively, and joining the joined body formed by coating the reference electrode with a gas non-permeable coating on one side of the insulating ceramic substrate, A reducing gas detecting element formed by joining a heating metal resistor to the other surface of an insulating ceramic substrate. 前記接合体が、酸化物イオン導電性固体電解質の同一面上に、検出極及び基準極を接合してなる請求項1〜3のいずれか一項に記載の還元性ガス検知素子。   The reducing gas detection element according to any one of claims 1 to 3, wherein the joined body is formed by joining a detection electrode and a reference electrode on the same surface of the oxide ion conductive solid electrolyte. 前記接合体が、酸化物イオン導電性固体電解質の片面に検出極を、他面に基準極をそれぞれ接合してなる請求項1〜3のいずれか一項に記載の還元性ガス検知素子。   The reducing gas detection element according to any one of claims 1 to 3, wherein the joined body is formed by joining a detection electrode on one side of the oxide ion conductive solid electrolyte and a reference electrode on the other side. 前記酸化物イオン導電性固体電解質がイットリウムもしくはカルシウムによって安定化された酸化ジルコニウムもしくはセリアである請求項1〜5のいずれか一項に記載の還元性ガス検知素子。   The reducing gas detection element according to claim 1, wherein the oxide ion conductive solid electrolyte is zirconium oxide or ceria stabilized by yttrium or calcium. 前記検知極及び基準極が、白金、パラジウム、ロジウム、ルテニウム、金の群から選ばれた貴金属もしくはこれら貴金属の合金からなる請求項1〜6のいずれか一項に記載の還元性ガス検知素子。   The reducing gas detection element according to claim 1, wherein the detection electrode and the reference electrode are made of a noble metal selected from the group consisting of platinum, palladium, rhodium, ruthenium, and gold, or an alloy of these noble metals. 前記ガス非透過性被膜がガラス状材料からなる請求項1〜7のいずれか一項に記載の還元性ガス検知素子。   The reducing gas detection element according to any one of claims 1 to 7, wherein the gas impermeable film is made of a glassy material. 請求項1または2に記載の還元性ガス検出素子と外部加熱機構とを備えた還元性ガス検知装置。   A reducing gas detection device comprising the reducing gas detection element according to claim 1 or 2 and an external heating mechanism.
JP2004030924A 2004-02-06 2004-02-06 Reducing gas detection element and reducing gas detection device Expired - Fee Related JP4532923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030924A JP4532923B2 (en) 2004-02-06 2004-02-06 Reducing gas detection element and reducing gas detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030924A JP4532923B2 (en) 2004-02-06 2004-02-06 Reducing gas detection element and reducing gas detection device

Publications (2)

Publication Number Publication Date
JP2005221428A true JP2005221428A (en) 2005-08-18
JP4532923B2 JP4532923B2 (en) 2010-08-25

Family

ID=34997177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030924A Expired - Fee Related JP4532923B2 (en) 2004-02-06 2004-02-06 Reducing gas detection element and reducing gas detection device

Country Status (1)

Country Link
JP (1) JP4532923B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248335A (en) * 2006-03-17 2007-09-27 New Industry Research Organization Reducible gas sensor
JP2007248334A (en) * 2006-03-17 2007-09-27 New Industry Research Organization Reducible gas sensor and its manufacturing method
US9952175B2 (en) 2014-06-09 2018-04-24 Fujitsu Limited Gas sensor and sensor device
US10481146B2 (en) 2015-05-22 2019-11-19 Fujitsu Limited Gas sensor and information processing system
US10670552B2 (en) 2014-06-09 2020-06-02 Fujitsu Limited Gas sensor and sensor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503022A (en) * 1994-07-28 1998-03-17 ロト テヒニク ゲーエムベーハー ウント コー フォルシュンク フュア アウトモビル ウント ウンベルトテヒニク Solid electrolyte sensor for measuring gaseous anhydride.
JP2001194337A (en) * 2000-01-07 2001-07-19 Tokuyama Corp Method for measuring gas concentration
JP2003107001A (en) * 2001-09-28 2003-04-09 Matsushita Electric Ind Co Ltd Composite sensor
JP2003107110A (en) * 2001-09-28 2003-04-09 Toshiba Corp Electric field measuring sensor and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503022A (en) * 1994-07-28 1998-03-17 ロト テヒニク ゲーエムベーハー ウント コー フォルシュンク フュア アウトモビル ウント ウンベルトテヒニク Solid electrolyte sensor for measuring gaseous anhydride.
JP2001194337A (en) * 2000-01-07 2001-07-19 Tokuyama Corp Method for measuring gas concentration
JP2003107001A (en) * 2001-09-28 2003-04-09 Matsushita Electric Ind Co Ltd Composite sensor
JP2003107110A (en) * 2001-09-28 2003-04-09 Toshiba Corp Electric field measuring sensor and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248335A (en) * 2006-03-17 2007-09-27 New Industry Research Organization Reducible gas sensor
JP2007248334A (en) * 2006-03-17 2007-09-27 New Industry Research Organization Reducible gas sensor and its manufacturing method
US9952175B2 (en) 2014-06-09 2018-04-24 Fujitsu Limited Gas sensor and sensor device
US10670552B2 (en) 2014-06-09 2020-06-02 Fujitsu Limited Gas sensor and sensor device
US10481146B2 (en) 2015-05-22 2019-11-19 Fujitsu Limited Gas sensor and information processing system

Also Published As

Publication number Publication date
JP4532923B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
JP3871497B2 (en) Gas sensor
JP3311218B2 (en) Hydrocarbon sensor
US7235171B2 (en) Hydrogen sensor, hydrogen sensor device and method of detecting hydrogen concentration
KR101052618B1 (en) Nitrogen oxide gas sensor with long term signal stability
EP1635171B1 (en) Hydrocarbon sensor
JPH09274011A (en) Nitrogen oxide detector
JP4783095B2 (en) Hydrogen gas detection element and hydrogen gas detection device
WO2015002060A1 (en) Co sensor and method for manufacturing co sensor
JP4532923B2 (en) Reducing gas detection element and reducing gas detection device
US9599598B2 (en) SOx gas sensor and method of measuring concentration of SOx gas
KR101052617B1 (en) Nitrogen Oxide Gas Sensor
JP4465677B2 (en) Hydrogen gas detector
JPH10123093A (en) Solid electrolytic hydrogen sensor
JP2006133039A (en) Nitrogen oxide sensor
JP2000028573A (en) Hydrocarbon gas sensor
KR101133267B1 (en) NOx gas sensor
JP2008267845A (en) Gas sensor
JP2007278876A (en) Hydrogen sensor
JP4904238B2 (en) Gas sensor and gas detection device
US10161899B2 (en) Oxygen sensor with electrochemical protection mode
JP4912968B2 (en) Non-methane hydrocarbon gas detector
JP4271053B2 (en) Carbon dioxide detector
JP5339754B2 (en) Oxygen gas concentration measurement method
KR101436358B1 (en) NOx gas sensor
Guth Potentiometric CO2 Sensors with Solid Electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4532923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees