JPH10309601A - Manufacture of saw blade shape optical element forming die and device thereof - Google Patents

Manufacture of saw blade shape optical element forming die and device thereof

Info

Publication number
JPH10309601A
JPH10309601A JP11965897A JP11965897A JPH10309601A JP H10309601 A JPH10309601 A JP H10309601A JP 11965897 A JP11965897 A JP 11965897A JP 11965897 A JP11965897 A JP 11965897A JP H10309601 A JPH10309601 A JP H10309601A
Authority
JP
Japan
Prior art keywords
cutting
cutting tool
saw
optical element
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11965897A
Other languages
Japanese (ja)
Inventor
Kazuo Nitta
和男 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP11965897A priority Critical patent/JPH10309601A/en
Publication of JPH10309601A publication Critical patent/JPH10309601A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Turning (AREA)

Abstract

PROBLEM TO BE SOLVED: To make form accuracy of a saw blade shape groove of a saw blade optical element forming die be extremely good. SOLUTION: In manufacture of a saw blade shape optical element forming die which is cut to the specified depth, putting a cutting edge ridge line 2d of a cutting bite 2 on a base material 1 of the saw blade shape optical element forming die, cutting edge angle θ of a cutting edge 2b which is changed by deflection of the cutting bite 2 during cutting is compensated in reverse direction of change by the deflection, and, by the same amount with a change amount Δθby the deflection.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フレネルレンズや
グレーティングレンズのような微細形状を有する光学素
子の成形型を高精度に加工する鋸刃状光学素子成形型の
製造方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a device for manufacturing a saw-shaped optical element mold for processing a mold for an optical element having a fine shape such as a Fresnel lens or a grating lens with high precision.

【0002】[0002]

【従来の技術】従来、フレネルレンズやグレーティング
レンズのような微細形状を有する光学素子の成形型を加
工する方法としては、図12に示す方法が一般的に行わ
れている。すなわち、図12(A)に示すように、フレ
ネルレンズ成形型の型素材aに切削バイトbを当て、つ
ぎに図12(B)に示すように、所定の深さまで切り込
んだ後、切削用バイトbを取り除き、図12(C)に示
すように、フレネルレンズ成形型の垂直面および斜面に
相当する切削面c、dを形成している。そして、フレネ
ルレンズ成形型の斜面角度の変化に合わせて切削用バイ
トbの切り込み角度を変えるようしている。
2. Description of the Related Art Conventionally, as a method for processing a mold for an optical element having a fine shape such as a Fresnel lens or a grating lens, a method shown in FIG. 12 is generally performed. That is, as shown in FIG. 12A, a cutting tool b is applied to a mold material a of a Fresnel lens molding die, and then, as shown in FIG. By removing b, as shown in FIG. 12C, cut surfaces c and d corresponding to the vertical surface and the inclined surface of the Fresnel lens mold are formed. Then, the cutting angle of the cutting bit b is changed in accordance with the change in the slope angle of the Fresnel lens mold.

【0003】しかしながら、この切削方法においては、
型素材aに形成される切削面c、dのうち斜面に相当す
る切削面dは切削用バイトbの切刃の形状が転写され、
滑らかに仕上げられるが、垂直面に相当する切削面cに
は切り込まれた切削用バイトbの刃先痕が残る。刃先痕
が残るフレネルレンズ成形型でフレネルレンズを成形す
る場合には、成形されたフレネルレンズのレンズ面に切
削痕が転写される。このフレネルレンズを使用した場合
には切削痕で光が乱反射し、フレネルレンズの各ピッチ
毎の線が白化して現れる。また、フレネルレンズ成形型
から、成形された樹脂製のフレネルレンズを離型させる
場合、抵抗が大きいためフレネルレンズがフレネルレン
ズ成形型から完全に離型されず、レンズ面を破損させる
恐れがあった。これらのことはフレネルレンズのみなら
ず、グレーティングレンズなどのさらに微細な形状を有
する光学素子に関しても同様であった。
However, in this cutting method,
Of the cutting surfaces c and d formed on the mold material a, the cutting surface d corresponding to the slope is transferred with the shape of the cutting edge of the cutting tool b,
Although the surface is finished smoothly, a cutting edge c of the cutting bit b which has been cut remains on the cutting surface c corresponding to the vertical surface. When a Fresnel lens is formed using a Fresnel lens mold having a cutting edge, cutting marks are transferred to the lens surface of the formed Fresnel lens. When this Fresnel lens is used, light is irregularly reflected by a cutting mark, and a line for each pitch of the Fresnel lens appears white. Further, when the molded resin-made Fresnel lens is released from the Fresnel lens mold, the resistance is so large that the Fresnel lens is not completely released from the Fresnel lens mold, which may damage the lens surface. . The same applies to not only the Fresnel lens but also an optical element having a finer shape such as a grating lens.

【0004】そこで、このような問題の解決策として、
例えば、特公昭61−25481号公報所載の技術が開
示されている。この技術について、図13を用いて説明
する。図13において、フレネルレンズ成形型の型素材
110を旋盤などのワーク台に固定する。図13(A)
に示すように、固定された型素材110に切削バイト1
11を当接させ、図13(B)に示すように所定の切り
込み深さ、例えば型素材110の表面から0.3〜0.
4mm程度切り込む。このときには、刃物112の一方
の切刃112aが切削面の斜面114aに当接し、この
斜面114aを仕上げる。
Therefore, as a solution to such a problem,
For example, a technique disclosed in Japanese Patent Publication No. 61-25481 is disclosed. This technique will be described with reference to FIG. In FIG. 13, a mold material 110 of a Fresnel lens molding die is fixed to a work table such as a lathe. FIG. 13 (A)
As shown in FIG.
11 are brought into contact with each other, and as shown in FIG.
Cut about 4 mm. At this time, one of the cutting edges 112a of the blade 112 abuts on the slope 114a of the cutting surface, and finishes the slope 114a.

【0005】切削バイト111が所定の切り込み深さま
で切り込まれた後、切削バイト111を刃物112の刃
先を中心にして揺動させ、刃物112の他方の切刃11
2bが図13(C)に示すように切削面の垂直面114
bに当接するように位置決めし、この当接状態で切削面
114bを仕上げる。切削面の垂直面114bおよび斜
面114aを仕上げた後、図13(D)に示すように、
切削バイト111を切削面から取り除き、次の切削面を
加工するための準備がなされる。このようにして、型素
材110の表面に断面鋸刃状の切削面が順次形成され、
フレネルレンズ成形型が製造される。
After the cutting bit 111 is cut to a predetermined cutting depth, the cutting bit 111 is swung about the cutting edge of the cutting tool 112 so that the other cutting edge 11 of the cutting tool 112 is cut.
2b is a vertical surface 114 of the cutting surface as shown in FIG.
b, and the cutting surface 114b is finished in this contact state. After finishing the vertical surface 114b and the inclined surface 114a of the cutting surface, as shown in FIG.
The cutting tool 111 is removed from the cutting surface, and preparations are made for processing the next cutting surface. In this way, a cutting surface having a sawtooth cross section is sequentially formed on the surface of the mold material 110,
A Fresnel lens mold is manufactured.

【0006】ここで、フレネルレンズの形状的な特徴に
ついて説明する。フレネルレンズは同心円状の溝を多数
形成しており、各溝の光軸方向断面は鋸刃状で、個々の
鋸刃状溝は直角三角形を成している。径方向における個
々の溝の幅、すなわちピッチは、光軸側ほど広く、外縁
側ほど狭い。溝の深さは一定である。各溝の斜面は溝の
ピッチおよび深さに依存し、光軸に直交する平面に対し
て、ピッチが広い溝の斜面ほどその傾斜は緩く、ピッチ
が狭い溝の斜面ほどその傾斜は急となっている。
Here, the geometrical characteristics of the Fresnel lens will be described. The Fresnel lens has a large number of concentric grooves, and each groove has a sawtooth-shaped cross section in the optical axis direction, and each sawtooth-shaped groove forms a right triangle. The width of each groove in the radial direction, that is, the pitch, is wider toward the optical axis and narrower toward the outer edge. The depth of the groove is constant. The slope of each groove depends on the pitch and depth of the groove. With respect to a plane perpendicular to the optical axis, the slope of the groove with a wider pitch is gentler, and the slope of the groove with a smaller pitch is steeper. ing.

【0007】[0007]

【発明が解決しようとする課題】しかるに、上記特公昭
61−25481号公報所載の従来技術には、以下のよ
うな問題点があった。この従来技術による切削方法で
は、切削面の斜面または垂直面のいずれか一方の面を加
工した後、切削バイトを刃先を中心として回動させて、
他方の面に切刃を全面接触させて加工することにより、
フレネルレンズ成形型の切削面に切削痕を残すことな
く、その切削面を滑らかに仕上げるものである。しか
し、このような切削バイト角度の制御を行いつつ加工を
行う方法は、切削バイト支持部の剛性が比較的低いた
め、型素材に形成される斜面における垂直抗力により、
切削バイト支持部や切削バイト自体に弾性変形が生じ、
斜面は正確な角度に形成され得ない。
However, the prior art disclosed in Japanese Patent Publication No. 61-25481 has the following problems. In this conventional cutting method, after machining either the inclined surface or the vertical surface of the cutting surface, the cutting tool is rotated around the cutting edge,
By processing the cutting edge in contact with the entire surface on the other side,
This is to finish the cut surface smoothly without leaving any cutting marks on the cut surface of the Fresnel lens mold. However, in the method of performing the processing while controlling the cutting bit angle, since the rigidity of the cutting bit supporting portion is relatively low, the vertical drag on the slope formed in the mold material causes
Elastic deformation occurs in the cutting tool support and the cutting tool itself,
The slope cannot be formed at an exact angle.

【0008】また、ピッチ幅が広い程、斜面が長くなる
ため、切削バイトが受ける垂直抗力は大きくなり、切削
バイトの撓みが大きくなる。切削バイトが撓むと、型素
材に対して切削バイトの切刃が傾くことになる。そのた
め、鋸刃状溝の鉛直方向の寸法(溝の深さ)に寸法誤差
が生じるとともに、斜面の角度が設計値通りにならな
い。例えば、このような鋸刃状溝の形状精度が劣る成形
型を用いて成形されたグレーティングレンズでは、光の
回折が設計通りにならずに、著しく解像を劣化させた
り、フレアを発生させる等の問題点があった。
[0008] Further, as the pitch width is wider, the slope is longer, so that the vertical reaction force applied to the cutting tool increases, and the bending of the cutting tool increases. When the cutting tool is bent, the cutting edge of the cutting tool is inclined with respect to the mold material. Therefore, a dimensional error occurs in the vertical dimension (groove depth) of the sawtooth-shaped groove, and the angle of the slope is not as designed. For example, in a grating lens formed using a mold having such inferior shape accuracy of the saw-tooth groove, light diffraction does not become as designed, and the resolution is remarkably deteriorated or flare is generated. There was a problem.

【0009】本発明は、上記従来の問題点に鑑みてなさ
れたもので、請求項1に係る発明の課題は、鋸刃状光学
素子成形型の鋸刃状溝の形状精度を極めて良好にするこ
とができる鋸刃状光学素子成形型の製造方法を提供する
ことである。請求項2または3に係る発明の課題は、鋸
刃状光学素子成形型の鋸刃状溝の形状精度を極めて良好
にすることができる鋸刃状光学素子成形型の製造装置を
提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention according to claim 1 is to make the shape accuracy of a saw-shaped groove of a saw-shaped optical element molding die extremely good. It is an object of the present invention to provide a method for manufacturing a sawtooth-shaped optical element forming die capable of performing the above-mentioned steps. An object of the invention according to claim 2 or 3 is to provide an apparatus for manufacturing a saw-tooth-shaped optical element molding die capable of extremely improving the shape accuracy of the saw-tooth-shaped groove of the saw-toothed optical element molding die. is there.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に係る発明は、鋸刃状光学素子成形型の基
材に切削バイトの切刃稜線を当てつつ、所定深さまで切
り込み加工する鋸刃状光学素子成形型の製造方法におい
て、前記切り込み加工時に前記切削バイトが撓むことに
よって変化する切刃の切り込み角度を、前記撓みによる
変化とは逆の方向に、かつ、撓みによる変化量と同一量
だけ補正させることを特徴とする。請求項2に係る発明
は、鋸刃状光学素子成形型の基材を保持する基材保持部
と、鋸刃状溝の斜面を切り込み加工する切刃を有する切
削バイトと、該切削バイトを保持するとともに前記基材
に対して該切削バイトを傾斜させる回動機構と、前記基
材に対して前記切削バイトを切り込ませるように前記基
材もしくは前記切削バイトを移動する移動手段とを備え
た鋸刃状光学素子成形型の製造装置において、前記切り
込み加工時に前記切削バイトが撓むことによって変化す
る切刃の切り込み角度を、前記撓みによる変化とは逆の
方向に、かつ、撓みによる変化量と同一量だけ補正する
ように前記回動機構を制御する制御装置を設けたことを
特徴とする。請求項3に係る発明は、鋸刃状光学素子成
形型の基材を保持する基材保持部と、鋸刃状溝の斜面を
切り込み加工する切刃を有する切削バイトと、該切削バ
イトを保持するとともに前記基材に対して該切削バイト
を傾斜させる回動機構と、前記基材に対して前記切削バ
イトを切り込ませるように前記基材もしくは前記切削バ
イトを移動する移動手段とを備えた鋸刃状光学素子成形
型の製造装置において、前記切削バイトの切刃が前記鋸
刃状溝の斜面から受けるトルクを感知する感知装置と、
該トルクの大きさに比例する前記切削バイトが撓むこと
によって変化する切刃の切り込み角度を、前記撓みによ
る変化とは逆の方向に、かつ、撓みによる変化量と同一
量だけ補正するように前記回動機構を制御する制御装置
とを設けたことを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 is directed to cutting a cutting blade to a predetermined depth while applying a cutting edge ridgeline of a cutting tool to a base material of a saw-shaped optical element molding die. In the method for manufacturing a saw-shaped optical element forming die to be processed, the cutting angle of the cutting blade, which is changed by the bending of the cutting tool during the cutting, is changed in a direction opposite to the change due to the bending, and by the bending. The correction is performed by the same amount as the change amount. The invention according to claim 2 is a cutting tool having a base material holding part for holding a base material of the saw-shaped optical element molding die, a cutting blade for cutting a slope of the saw-shaped groove, and holding the cutting tool. A rotating mechanism for tilting the cutting tool with respect to the base material, and moving means for moving the base material or the cutting tool so as to cut the cutting tool with respect to the base material. In the apparatus for manufacturing a saw-shaped optical element molding die, the cutting angle of the cutting blade, which is changed by the bending of the cutting tool during the cutting, is changed in a direction opposite to the change due to the bending, and the amount of change due to the bending. And a control device for controlling the rotation mechanism so as to correct by the same amount as that described above. According to a third aspect of the present invention, there is provided a cutting tool having a base material holding portion for holding a base material of a saw blade optical element forming die, a cutting blade for cutting a slope of a saw blade groove, and holding the cutting tool. A rotating mechanism for tilting the cutting tool with respect to the base material, and moving means for moving the base material or the cutting tool so as to cut the cutting tool with respect to the base material. In the apparatus for manufacturing a saw-toothed optical element molding die, a sensing device for sensing a torque that the cutting edge of the cutting bit receives from a slope of the saw-toothed groove,
The cutting angle of the cutting edge, which is changed by bending of the cutting tool in proportion to the magnitude of the torque, is corrected in the direction opposite to the change due to the bending, and by the same amount as the amount of change due to the bending. A control device for controlling the rotating mechanism is provided.

【0011】請求項1に係る発明の作用では、切り込み
加工時に切削バイトが撓むことによって変化する切刃の
切り込み角度を、前記撓みによる変化とは逆の方向に、
かつ、撓みによる変化量と同一量だけ補正させることに
より、切削バイトの撓み量と補正量とが相殺されて、所
望の鋸刃状溝に仕上げられる。請求項2に係る発明の作
用では、切り込み加工時に切削バイトが撓むことによっ
て変化する切刃の切り込み角度を、前記撓みによる変化
とは逆の方向に、かつ、撓みによる変化量と同一量だけ
補正するように回動機構を制御する制御装置を設けたこ
とにより、制御装置が回動機構を正確に制御して切削バ
イトの切り込み角度を補正する。請求項3に係る発明の
作用では、切削バイトの切刃が鋸刃状溝の斜面から受け
るトルクを感知する感知装置と、該トルクの大きさに比
例する前記切削バイトが撓むことによって変化する切刃
の切り込み角度を、前記撓みによる変化とは逆の方向
に、かつ、撓みによる変化量と同一量だけ補正するよう
に回動機構を制御する制御装置とを設けたことにより、
感知装置により感知したトルク信号を受け、これに従っ
て制御装置が、回動機構を正確に制御して切削バイトの
切り込み角度を補正する。
In the operation of the invention according to the first aspect, the cutting angle of the cutting blade, which is changed by the bending of the cutting tool at the time of cutting, is changed in a direction opposite to the change caused by the bending.
In addition, by correcting by the same amount as the amount of change due to bending, the amount of bending of the cutting bit and the amount of correction are canceled out, and a desired saw-tooth groove is finished. In the operation of the invention according to claim 2, the cutting angle of the cutting blade, which is changed by the bending of the cutting tool at the time of cutting, is changed in the opposite direction to the change due to the bending, and by the same amount as the amount of change due to the bending. By providing the control device for controlling the turning mechanism to make the correction, the control device accurately controls the turning mechanism and corrects the cutting angle of the cutting tool. In the operation of the invention according to claim 3, a sensing device for sensing the torque received by the cutting bit of the cutting bit from the slope of the saw-shaped groove, and the sensing device is changed by bending of the cutting bit in proportion to the magnitude of the torque. By providing a control device for controlling the rotation mechanism so as to correct the cutting angle of the cutting blade in the direction opposite to the change due to the bending, and by the same amount as the amount of change due to the bending,
Upon receiving the torque signal sensed by the sensing device, the control device accurately controls the turning mechanism and corrects the cutting angle of the cutting tool according to the torque signal.

【0012】[0012]

【発明の実施の形態1】図1〜図8は発明の実施の形態
1を示し、図1は鋸刃状光学素子成形型の製造装置の正
面図、図2は鋸刃状光学素子成形型の製造装置の平面
図、図3は型素材と切削バイトとの関係を示す正面図、
図4は切削バイトの平面図、図5は鋸刃状溝と切刃稜線
との関係を示す図、図6は鋸刃状溝の切削過程の初期の
図、図7は鋸刃状溝を加工するダイヤモンドチップの弾
性変形を示す図、図8は鋸刃状溝を加工する刃先の移動
を示す図である。
1 to 8 show a first embodiment of the present invention. FIG. 1 is a front view of a manufacturing apparatus for a saw-shaped optical element forming die, and FIG. 2 is a saw-shaped optical element forming die. FIG. 3 is a plan view of the manufacturing apparatus of FIG. 3, FIG.
FIG. 4 is a plan view of the cutting tool, FIG. 5 is a diagram showing the relationship between the saw-shaped groove and the cutting edge ridge line, FIG. 6 is an initial view of the cutting process of the saw-shaped groove, and FIG. FIG. 8 is a diagram showing the elastic deformation of the diamond tip to be machined, and FIG. 8 is a diagram showing the movement of the cutting edge for machining the sawtooth groove.

【0013】まず、鋸刃状光学素子成形型の製造装置に
ついて説明する。図1および図2において、鋸刃状光学
素子成形型の製造装置たるNC旋盤50は、主に、基材
たる型素材1を保持して回転軸5の周りを回転する基材
保持部たるワーク台チャッキング部4と、切削バイト2
を支持するバイト支持部3と、バイト支持部3を回動さ
せる回転機構7と、回転機構7に接続されてその回動を
制御する制御装置8とを備えている。バイト支持部3と
回転機構7とにより回動機構を構成している。また、回
動機構自体は移動手段をも兼ねている。NC旋盤50
は、少なくとも、型素材1の回転動作、型素材1の回転
軸5方向におけるバイト支持部3の進退動作、切削用バ
イト2の型素材1に対する切り込み角度調整、および切
削バイト2の送り動作の4軸制御方式となっている。
First, an apparatus for manufacturing a saw-shaped optical element molding die will be described. In FIGS. 1 and 2, an NC lathe 50, which is an apparatus for manufacturing a saw-toothed optical element molding die, mainly holds a base material 1, and rotates a work serving as a base material holding unit that rotates around a rotation axis 5. Table chucking part 4 and cutting tool 2
, A rotation mechanism 7 for rotating the bite support 3, and a control device 8 connected to the rotation mechanism 7 and controlling the rotation. The turning mechanism is constituted by the cutting tool support portion 3 and the rotating mechanism 7. Further, the rotating mechanism itself also serves as a moving means. NC lathe 50
Are at least the following four operations: a rotating operation of the mold blank 1, an advancing and retreating operation of the cutting tool 2 in the direction of the rotation axis 5 of the mold blank 1, an adjustment of a cutting angle of the cutting tool 2 with respect to the mold material 1, and a feeding operation of the cutting tool 2. It is an axis control system.

【0014】図3に示すように、型素材1は、SUS系
の円筒状母材に0.1mm厚の無電解P−Ni化学メッ
キ1aを成膜した後、Rmax0.05μm以下の面粗
度で回転軸5に対して直交する平面1bに切削が施され
ている。切削用バイト2は、バイト支持部3に型素材1
の回転軸5方向に進退自在に支持されている。また、図
4に示すように、切削用バイト2は、シャンク2aの先
端に、一辺3mm程度の天然または合成のダイヤモンド
チップ2bが接着されており、ダイヤモンドチップ2b
のウイング角2cは、被切削部品の鋸刃状溝の溝角度よ
り2〜4°程度小さくなるように形成されている。さら
に、図2に示すように、切削バイト2を支持しているバ
イト支持部3は、ダイヤモンドチップ2bの切刃稜線2
dと回転軸5とのなす角度φ(バイト切刃傾斜角度θに
対する余角)を自在に変化させることができるように、
バイト支持部3に回転機構7を具備している。
As shown in FIG. 3, a mold material 1 is formed by depositing an electroless P-Ni chemical plating 1a having a thickness of 0.1 mm on a SUS-based cylindrical base material and then forming a surface roughness Rmax of 0.05 μm or less. Thus, a plane 1b orthogonal to the rotation axis 5 is cut. The cutting tool 2 has a tool material 1
Are supported so as to be able to advance and retreat in the direction of the rotation shaft 5. As shown in FIG. 4, the cutting tool 2 has a shank 2a to which a natural or synthetic diamond tip 2b having a side of about 3 mm is adhered.
The wing angle 2c is formed to be smaller by about 2 to 4 degrees than the groove angle of the sawtooth groove of the part to be cut. Further, as shown in FIG. 2, the cutting tool supporting portion 3 supporting the cutting tool 2 is provided with a cutting edge ridge 2 of the diamond tip 2b.
In order that the angle φ between d and the rotating shaft 5 (remaining angle with respect to the cutting edge inclination angle θ) can be freely changed,
A rotating mechanism 7 is provided on the bite support 3.

【0015】図2において、制御装置8は回転機構7に
接続され、回転機構7の上面に連設されたバイト支持部
3の回転動作を制御する。これは、入力された設計値、
即ち、所望の鋸刃状溝の数値データを基に、バイトの切
り込み角度、切り込み深さ、および切り込み位置を制御
するものである。制御装置8には、バイト支持部3の回
転角度を、バイト切刃稜線2dと型素材1の回転軸5と
の角度φ(バイト切刃傾斜角度θに対する余角)が、本
来の設計値に下記の式(1)で算出される角度Δθを減
算した数値に補正されるように制御するプログラムが入
力されている。式(1)は、図5および図7において、
次のように表示される。 Δθ=tan-1(K+H/P)−tan-1(H/P)・・・(1) ここで、 Δθ:バイト切刃傾斜角度増加量(単位:rad) K:型素材によって決まる比例係数 H:鋸刃状溝の垂直面高さ(単位:mm) P:鋸刃状溝のピッチ(単位:mm) なお、比例係数Kは、本発明の実施の形態1の型素材1
の切削部分が無電解P−Niの場合、通常0.0016
である。ただし、無電解P−Niの条件変動等により
0.0014〜0.0018に変動する。
In FIG. 2, a control device 8 is connected to the rotating mechanism 7 and controls the rotating operation of the bite supporting portion 3 provided continuously on the upper surface of the rotating mechanism 7. This is the entered design value,
That is, the cutting angle, the cutting depth, and the cutting position of the cutting tool are controlled based on the desired numerical data of the sawtooth groove. The control device 8 sets the rotation angle of the bite supporting portion 3 to the original design value by changing the angle φ (remaining angle with respect to the bite cutting edge inclination angle θ) between the bite cutting edge 2d and the rotating shaft 5 of the die blank 1 to the original design value. A program has been input for controlling the angle Δθ calculated by the following equation (1) to a value obtained by subtracting the angle Δθ. Equation (1) is expressed in FIG. 5 and FIG.
The following is displayed. Δθ = tan −1 (K + H / P) −tan −1 (H / P) (1) where Δθ: Increasing amount of cutting edge inclination angle (unit: rad) K: Proportion coefficient determined by mold material H: Vertical surface height of the sawtooth groove (unit: mm) P: pitch of the sawtooth groove (unit: mm) The proportional coefficient K is the mold material 1 according to the first embodiment of the present invention.
When the cut part of is electroless P-Ni,
It is. However, it fluctuates from 0.0014 to 0.0018 due to fluctuations in conditions of electroless P-Ni and the like.

【0016】つぎに、上記構成の製造装置を用いた鋸刃
状光学素子成形型の製造方法および数値補正の手順につ
いて説明する。 (1)制御装置8に設計値、すなわち、鋸刃状溝の数値
データを入力し、設計値通り(補正なし)の加工を行
う。 <加工の順序> 型素材1に対する切刃稜線2dの傾斜角度を、加工
しようとする鋸刃状溝の傾斜角θ0 に合わせる(平行に
する)。図5において、傾斜角θ0 は式(2)で表示す
ることができる。 θ0 =tan-1(H/P)・・・(2) H:鋸刃状溝の垂直面高さ(単位:mm) P:鋸刃状溝のピッチ(単位:mm) 切削バイト2を型素材1側に直進(回転軸5の方
向)させ、切り込みを開始する。 切削バイト2の先端を切り込んで行くことにより、
鋸刃状溝の垂直面1cを切削する。同時にバイト切刃稜
線2dによって斜面1dを切削する。 上記〜を繰り返す。
Next, a description will be given of a method of manufacturing a saw-toothed optical element molding die using the manufacturing apparatus having the above-described configuration and a procedure of numerical correction. (1) A design value, that is, numerical data of a saw-tooth groove is input to the control device 8, and processing is performed according to the design value (no correction). <Processing Order> The inclination angle of the cutting edge ridge line 2d with respect to the mold blank 1 is adjusted to (parallel to) the inclination angle θ 0 of the saw-shaped groove to be processed. In FIG. 5, the inclination angle θ 0 can be represented by Expression (2). θ 0 = tan -1 (H / P) (2) H: Vertical surface height of the sawtooth groove (unit: mm) P: Pitch of the sawtooth groove (unit: mm) The cutting is started straight (in the direction of the rotating shaft 5) toward the mold blank 1 to start cutting. By cutting the tip of the cutting tool 2,
The vertical surface 1c of the saw-like groove is cut. At the same time, the slope 1d is cut by the cutting edge 2d. Repeat the above ~.

【0017】(2)型基材1に形成した鋸刃状溝を各溝
毎に測定し、各溝毎の誤差(光軸方向の誤差、および光
軸に直交する面に対し鉛直方向の誤差)を求める。 (3)各溝のピッチPと各溝の誤差量との間の相関をと
る。無電解P−Niの場合、誤差量は次の式(3)で表
示される。 誤差量=0.0016×P−7×10-6・・・(3) P:鋸刃状溝のピッチ(単位:mm) ここで、式(3)の(−7×10-6)は極微小な値なの
で無視できる。ピッチPと誤差量との相関を言葉で説明
すると、「ピッチが広いほど→斜面と切削バイトの切刃
との接触長さが大きくなる→切削バイトに作用する垂直
抗力が大きくなる→切削バイトが大きく撓む」となる。
上記相関から、ピッチの変化に伴う誤差量の変化の比例
係数Kが求まる。
(2) The saw-toothed grooves formed on the mold base 1 are measured for each groove, and the error of each groove (the error in the optical axis direction and the error in the vertical direction with respect to a plane perpendicular to the optical axis) is measured. ). (3) The correlation between the pitch P of each groove and the error amount of each groove is obtained. In the case of electroless P-Ni, the error amount is represented by the following equation (3). Error amount = 0.0016 × P−7 × 10 −6 (3) P: Pitch of saw-tooth groove (unit: mm) Here, (−7 × 10 −6 ) in equation (3) is Since it is a very small value, it can be ignored. The correlation between the pitch P and the amount of error can be described in words: "The wider the pitch, the larger the contact length between the slope and the cutting edge of the cutting tool becomes larger. The greater the vertical force acting on the cutting tool becomes, the larger the cutting tool becomes. Greatly bent ".
From the above correlation, the proportional coefficient K of the change in the error amount due to the change in the pitch is obtained.

【0018】(4)比例係数K、ピッチPおよび垂直面
高さHからバイト切刃傾斜角度増加量Δθを求めるため
の式(1)が導かれる。 (5)式(1)を基に、各溝毎のバイト切刃傾斜角度増
加量Δθを求める。 (6)バイト切刃傾斜角度増加量Δθを得た後、本加工
に入る。 (7)本加工の際は、各溝毎におけるバイト切刃傾斜角
度θが、設計値通りに加工する際の各溝のバイト切刃傾
斜角度θ0 に対してバイト切刃傾斜角度増加量Δθを加
算した角度となるように、切削バイト2を傾斜させる。 (8)以降は、本加工の具体的な手順を説明する。
(4) From the proportionality coefficient K, the pitch P and the vertical plane height H, an equation (1) for obtaining the increase amount Δθ of the cutting edge inclination angle is derived. (5) Based on the equation (1), a tool cutting blade inclination angle increase amount Δθ for each groove is obtained. (6) After obtaining the increase amount Δθ of the cutting edge inclination angle, the processing is started. (7) The processing time of the byte cutting edge inclination angle theta in each groove, byte cutting edge inclination angle increment Δθ relative byte cutting edge inclination angle theta 0 of each groove at the time of processing according to the design value The cutting tool 2 is inclined so as to have an angle obtained by adding. (8) Hereinafter, a specific procedure of the main processing will be described.

【0019】(9)まず、式(1)を制御装置8に入力
する。 (10)制御装置8は、式(1)を基に、設計値、即
ち、各溝毎におけるバイト切刃傾斜角度θ0 の補正値た
るバイト切刃傾斜角度増加量Δθを求める。そして、加
工する各溝毎におけるバイト切刃傾斜角度θが、設計値
通り加工する際の各溝毎のバイト切刃傾斜角度θ0 に対
してバイト切刃傾斜角度増加量Δθを加算した角度とな
るように、回動機構を駆動する。
(9) First, equation (1) is input to the control device 8. (10) The control device 8 obtains a design value, that is, an increase amount Δθ of the cutting edge inclination angle which is a correction value of the cutting edge inclination angle θ 0 for each groove, based on the equation (1). The cutting edge inclination angle θ for each groove to be machined is the angle obtained by adding the increasing amount of the cutting edge inclination angle Δθ to the cutting edge inclination angle θ 0 for each groove when machining according to the design value. Then, the rotating mechanism is driven.

【0020】図6〜図8は、鋸刃状溝の切削過程を表し
たものである。図6において、型素材1は、NC旋盤5
0のワーク台チャッキング部4に回転自在に装着され、
所定の回転数で回転運動している。鋸刃状溝の切削加工
は、切削バイト2を支持しているバイト支持部3を型素
材1の回転軸5の方向に移動させつつ、型素材1の平面
1bに当接させて行う。このとき、図7に示すように、
切削バイト2のバイト切刃稜線2dと回転軸5に直交す
る平面1bとがなす角θは、バイト切刃稜線2dが鋸刃
状溝のピッチPに比例する分のバイト切刃傾斜角度増加
量Δθを、制御装置8に入力した設計値θ0 に加算した
値になるように演算され、角度補正がなされる。この
後、図8に示すように、平面1bに当接した切削用バイ
ト2のダイヤモンドチップ2bは、平面1bから所定の
深さまで型素材1の回転軸5の方向に切り込み、折り返
して同軌跡上を後退する。
FIGS. 6 to 8 show the cutting process of the saw-shaped groove. In FIG. 6, a mold blank 1 is an NC lathe 5
0 is rotatably mounted on the chucking portion 4 of the work table.
It is rotating at a predetermined rotation speed. The cutting process of the saw-shaped groove is performed by moving the cutting tool supporting portion 3 supporting the cutting tool 2 in the direction of the rotating shaft 5 of the molding material 1 while making contact with the plane 1b of the molding material 1. At this time, as shown in FIG.
The angle θ formed by the cutting edge 2d of the cutting edge of the cutting bit 2 and the plane 1b orthogonal to the rotation axis 5 is the amount of increase in the inclination angle of the cutting edge of the cutting edge 2d in proportion to the pitch P of the sawtooth groove. Δθ is calculated so as to be a value obtained by adding Δθ to the design value θ 0 input to the control device 8, and the angle is corrected. Thereafter, as shown in FIG. 8, the diamond chip 2b of the cutting tool 2 abutting on the plane 1b is cut in the direction of the rotating shaft 5 of the mold blank 1 from the plane 1b to a predetermined depth, and is turned back on the same locus. Retreat.

【0021】実際に、バイト切刃稜線2dが型素材1に
切り込む際には、切削用バイト2やバイト支持部3に切
刃接触領域11から受ける垂直抗力により弾性変形が生
じ、切削バイト2のバイト切刃稜線2dは、NC旋盤5
0で設定した軌跡に対して誤差を有した軌跡を辿ること
になる。しかしながら、上述のバイト切刃傾斜角度θの
補正により軌跡誤差は相殺され、結果的に設計値通りの
鋸刃状溝を得る。隣接する鋸刃状溝の加工においても、
バイト支持部3を回転軸5の方向に移動させた後、本方
法と同一の方法によって鋸刃状溝の加工を行う。以上の
動作を繰り返し行い、所定の形状になるように仕上げ
る。
Actually, when the cutting edge 2d of the cutting tool is cut into the mold blank 1, elastic deformation occurs due to the vertical reaction force received from the cutting contact area 11 on the cutting tool 2 and the tool supporting portion 3, and the cutting tool 2 The cutting edge 2d of the cutting tool is the NC lathe 5
A trajectory having an error with respect to the trajectory set at 0 will be followed. However, the trajectory error is canceled by the above-described correction of the cutting edge inclination angle θ, and as a result, a sawtooth-shaped groove as designed is obtained. Even when machining adjacent saw-tooth grooves,
After moving the bite supporting portion 3 in the direction of the rotating shaft 5, the saw-shaped groove is machined by the same method as the present method. The above operation is repeated to finish to a predetermined shape.

【0022】本発明の実施の形態1によれば、切削バイ
トの切刃の切り込み角度を、鋸刃状溝のピッチに比例す
る分の補正をすることにより、鋸刃状光学素子成形型の
鋸刃状溝の形状精度を極めて良好にすることができる。
According to the first embodiment of the present invention, the cutting angle of the cutting edge of the cutting bit is corrected by an amount proportional to the pitch of the saw-shaped groove, so that the saw of the saw-shaped optical element molding die is corrected. The shape accuracy of the blade-shaped groove can be made extremely good.

【0023】本発明の実施の形態1では、切削バイトを
型素材の回転軸方向に移動する例を説明したが、型素材
を切削バイトに対して移動しても良い。
In the first embodiment of the present invention, an example in which the cutting tool is moved in the direction of the rotation axis of the mold material has been described, but the mold material may be moved with respect to the cutting tool.

【0024】[0024]

【発明の実施の形態2】図9〜図10は発明の実施の形
態2を示し、図9は鋸刃状光学素子成形型の製造装置の
平面図、図10は切削バイトの弾性ひずみを示す図であ
る。本発明の実施の形態2は発明の実施の形態1と基本
構成が同一であり、異なる部分のみ示し、同一の部材に
は同一の符号を付し説明を省略する。
Second Embodiment FIGS. 9 and 10 show a second embodiment of the present invention. FIG. 9 is a plan view of a saw blade optical element forming die manufacturing apparatus, and FIG. 10 shows the elastic strain of a cutting tool. FIG. Embodiment 2 of the present invention has the same basic configuration as Embodiment 1 of the present invention, and only different portions are shown. The same members are denoted by the same reference numerals and description thereof is omitted.

【0025】図9において、切削バイト2のシャンク2
aには、切削時に生じる弾性ひずみを感知するひずみセ
ンサ12が付設されている。この弾性ひずみは、図10
に示すように、発明の実施の形態1と同様に、切削バイ
ト2先端のバイト切刃稜線2dの弾性変形Δθに相当す
るものである。ひずみセンサ12は、ひずみアンプ13
を介して、制御装置8に電気的に接続されており、制御
装置8からは、演算処理したひずみ量をフィードバック
できるように、バイト支持部3の回転機構7にも電気的
に接続されている。その他の構成は、発明の実施の形態
1と同様である。
In FIG. 9, the shank 2 of the cutting tool 2
a is provided with a strain sensor 12 for sensing elastic strain generated during cutting. This elastic strain is shown in FIG.
As shown in the first embodiment, as in the first embodiment of the present invention, this corresponds to the elastic deformation Δθ of the cutting edge 2d of the cutting bit at the tip of the cutting bit 2. The strain sensor 12 includes a strain amplifier 13
, And is electrically connected to the rotating mechanism 7 of the bite support unit 3 so that the calculated distortion amount can be fed back from the control unit 8. . Other configurations are the same as those of the first embodiment.

【0026】つぎに、上記製造装置を用いた鋸刃状光学
素子成形型の製造方法について説明する。切削用バイト
2が型素材1の平面1bに当接し、切り込みが開始され
ると、切刃接触領域11に作用する垂直抗力により、切
削バイト2に弾性変形が生じる。このときのひずみ量Δ
θは、ひずみセンサ12で感知され、ひずみアンプ13
を介して電圧に変換される。このときの電圧値は、制御
装置8によって適当な係数を乗されて回転機構7にフィ
ードバックされる。このとき出力される値がバイト切刃
稜線2dと型素材1の回転軸5に直交する面とのなす角
θに相当する。また、切削バイト2がなす角θは、発生
する切削抵抗に対してリアルタイムに対応するので、型
素材1表面における金属組織の不均一さにより切削抵抗
にバラツキが生じても、それに対応した補正がなされ
る。
Next, a method for manufacturing a saw-shaped optical element mold using the above-described manufacturing apparatus will be described. When the cutting tool 2 comes into contact with the flat surface 1b of the mold material 1 and the cutting is started, the cutting tool 2 is elastically deformed by the vertical reaction acting on the cutting blade contact area 11. The amount of strain Δ at this time
θ is sensed by the strain sensor 12 and
Is converted to a voltage via The voltage value at this time is multiplied by an appropriate coefficient by the control device 8 and fed back to the rotating mechanism 7. The value output at this time corresponds to the angle θ formed between the cutting edge 2d of the cutting tool and a plane orthogonal to the rotation axis 5 of the mold material 1. Further, since the angle θ formed by the cutting tool 2 corresponds to the generated cutting resistance in real time, even if the cutting resistance varies due to the unevenness of the metal structure on the surface of the mold material 1, the correction corresponding to the variation is performed. Done.

【0027】本発明の実施の形態1によれば、発明の実
施の形態1と同様の効果に加え、型素材表面の金属組織
が不均一であっても、リアルタイムで切削抵抗を感知
し、バイト切刃角度の補正量にフィードバックすること
ができる。
According to the first embodiment of the present invention, in addition to the same effects as the first embodiment of the present invention, even if the metal structure on the surface of the mold material is uneven, the cutting force is sensed in real time, Feedback can be provided to the correction amount of the cutting edge angle.

【0028】本発明の実施の形態1では、ひずみセンサ
を切削バイトに付設したが、バイト支持部に付設しても
同様の作用効果を得ることができる。
In the first embodiment of the present invention, the strain sensor is attached to the cutting tool. However, the same effect can be obtained by attaching the strain sensor to the cutting tool support.

【0029】[0029]

【発明の実施の形態3】図11は発明の実施の形態3を
示し、鋸刃状光学素子成形型の製造装置の平面図であ
る。本発明の実施の形態3は、発明の実施の形態1と基
本構成が同一であり、異なる部分のみ示し、同一の部材
には同一の符号を付し説明を省略する。
Third Embodiment FIG. 11 shows a third embodiment of the present invention, and is a plan view of an apparatus for manufacturing a saw-shaped optical element forming die. Embodiment 3 of the present invention has the same basic configuration as Embodiment 1 of the present invention, and shows only different portions, and the same members are denoted by the same reference numerals and description thereof will be omitted.

【0030】図11において、型素材21の材質は快削
黄銅であり、表面に化学メッキ等の膜は形成されていな
い。また、切刃稜線2dと型素材21の回転軸5と直交
する面とのなす角θの増加量Δθが式(1)で表される
のは、発明の実施の形態1と同様である。しかし、型素
材21の材質が快削黄銅であることから、比例係数Kは
0.0008となる。なお、快削黄銅の組成によって
は、比例係数Kは0.0006〜0.0010と変動す
る。製造装置の構成は、発明の実施の形態1と同一であ
る。
In FIG. 11, the material of the mold material 21 is free-cutting brass, and no film such as chemical plating is formed on the surface. Further, it is the same as in the first embodiment of the present invention that the amount of increase Δθ of the angle θ formed between the cutting edge ridge line 2d and the plane orthogonal to the rotation axis 5 of the mold material 21 is expressed by the formula (1). However, since the material of the mold material 21 is free-cutting brass, the proportional coefficient K is 0.0008. Note that the proportional coefficient K varies from 0.0006 to 0.0010 depending on the composition of the free-cutting brass. The configuration of the manufacturing apparatus is the same as that of the first embodiment.

【0031】つぎに、型素材21を用いた鋸刃状光学素
子成形型の製造方法について説明する。制御装置8か
ら、バイト支持部3の回動角度を制御する回転機構7
に、式(1)で求められたバイト角度の補正量たる増加
量Δθが出力される。この場合、型素材21が快削黄銅
であるため、化学メッキであるP−Niの場合に比べ切
削抵抗が小さく、切削バイト2等の弾性変形も小さくな
り、その分だけ補正量たる増加量Δθも小さくなる。そ
の他の製造方法の手順およびその作用は、発明の実施の
形態1と同様である。
Next, a method for manufacturing a saw-shaped optical element forming die using the die material 21 will be described. The rotation mechanism 7 for controlling the rotation angle of the bite support 3 from the control device 8
Then, the increase amount Δθ, which is the correction amount of the bite angle obtained by the equation (1), is output. In this case, since the mold material 21 is a free-cutting brass, the cutting resistance is smaller and the elastic deformation of the cutting tool 2 and the like is smaller than in the case of P-Ni, which is a chemical plating, and the amount of correction Δθ is correspondingly increased. Is also smaller. Other procedures of the manufacturing method and the operation thereof are the same as those of the first embodiment of the invention.

【0032】本発明の実施の形態3によれば、発明の実
施の形態1の効果に加え、被切削材となる型素材がSU
S系以外の材料、例えば快削黄銅であっても、式(1)
を用いて、切削バイト等の弾性変形による角度誤差を補
正することができる。
According to the third embodiment of the present invention, in addition to the effects of the first embodiment of the present invention, the die material to be cut is made of SU.
Even for materials other than S-based materials, for example, free-cutting brass, formula (1)
Can be used to correct an angular error due to elastic deformation of a cutting tool or the like.

【0033】本願においては、つぎの技術的思想の創作
を含むものである。 (1)前記撓みによる変化量は、式(1)により算出さ
れるものであることを特徴とする請求項1記載の鋸刃状
光学素子の製造方法 Δθ=tan-1(K+H/P)−tan-1(H/P)・・・(1) ここで、 Δθ:バイト切刃傾斜角度増加量(単位:rad) K:型素材によって決まる比例係数 H:鋸刃状溝の垂直面高さ(単位:mm) P:鋸刃状溝のピッチ(単位:mm) 式(1)を制御装置に入力することにより、切削バイト
の切り込み角度の補正を正確かつ迅速に行うことができ
る。
The present application includes the creation of the following technical idea. (1) The method of manufacturing a saw-toothed optical element according to claim 1, wherein the amount of change due to the bending is calculated by the following equation (1): Δθ = tan −1 (K + H / P) − tan -1 (H / P) (1) where, Δθ: Increasing amount of cutting edge inclination angle (unit: rad) K: Proportion coefficient determined by mold material H: Vertical plane height of saw-shaped groove (Unit: mm) P: Pitch of saw-tooth groove (unit: mm) By inputting equation (1) to the control device, it is possible to accurately and quickly correct the cutting angle of the cutting tool.

【0034】[0034]

【発明の効果】請求項1に係る発明によれば、切削バイ
トの撓み量と補正量とが相殺されて、所望の鋸刃状溝に
仕上げられるので、鋸刃状光学素子成形型の鋸刃状溝の
形状精度を極めて良好にすることができる。請求項2に
係る発明によれば、制御装置が回動機構を正確に制御し
て切削バイトの切り込み角度を補正するので、鋸刃状光
学素子成形型の鋸刃状溝の形状精度を極めて良好に仕上
げることができる。請求項3に係る発明によれば、感知
装置により感知したトルク信号を受け、これに従って制
御装置が、回動機構を正確に制御して切削バイトの切り
込み角度を補正するので、鋸刃状光学素子成形型の鋸刃
状溝の形状精度を極めて良好に仕上げるとともに、型素
材の金属組織の不均一による切削抵抗の変化にも対応す
ることができる。
According to the first aspect of the present invention, the amount of deflection of the cutting tool and the amount of correction are canceled out and a desired saw-tooth groove is formed, so that the saw blade of the saw-shaped optical element molding die is formed. The precision of the shape of the groove can be extremely improved. According to the second aspect of the present invention, since the control device accurately controls the turning mechanism to correct the cutting angle of the cutting tool, the shape accuracy of the saw-shaped groove of the saw-shaped optical element molding die is extremely good. Can be finished. According to the third aspect of the present invention, the torque signal sensed by the sensing device is received, and according to the torque signal, the control device accurately controls the turning mechanism to correct the cutting angle of the cutting tool. It is possible to finish the shape accuracy of the saw-shaped groove of the forming die extremely well and to cope with a change in cutting resistance due to unevenness of the metal structure of the die material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明の実施の形態1の鋸刃状光学素子成形型の
製造装置の正面図である。
FIG. 1 is a front view of a manufacturing apparatus for a saw-shaped optical element forming die according to a first embodiment of the present invention.

【図2】発明の実施の形態1の鋸刃状光学素子成形型の
製造装置の平面図である。
FIG. 2 is a plan view of a manufacturing apparatus for a saw-shaped optical element forming die according to the first embodiment of the present invention.

【図3】発明の実施の形態1の型素材と切削バイトとの
関係を示す正面図である。
FIG. 3 is a front view showing a relationship between the die material and the cutting tool according to the first embodiment of the present invention.

【図4】発明の実施の形態1の切削バイトの平面図であ
る。
FIG. 4 is a plan view of the cutting tool according to the first embodiment of the present invention.

【図5】発明の実施の形態1の鋸刃状溝と切刃稜線との
関係を示す図である。
FIG. 5 is a diagram showing a relationship between a saw-toothed groove and a cutting edge ridge according to the first embodiment of the invention;

【図6】発明の実施の形態1の鋸刃状溝の切削過程の初
期の図である。
FIG. 6 is an initial view of a cutting process of the saw-shaped groove according to the first embodiment of the invention;

【図7】発明の実施の形態1の鋸刃状溝を加工するダイ
ヤモンドチップの弾性変形を示す図である。
FIG. 7 is a diagram showing an elastic deformation of a diamond tip for processing a saw-tooth groove according to the first embodiment of the invention;

【図8】発明の実施の形態1の鋸刃状溝を加工する刃先
の移動を示す図である。
FIG. 8 is a diagram showing the movement of the cutting edge for processing the saw-like groove according to the first embodiment of the invention;

【図9】発明の実施の形態2の鋸刃状光学素子成形型の
製造装置の平面図である。
FIG. 9 is a plan view of a manufacturing apparatus for a saw-shaped optical element forming die according to a second embodiment of the present invention.

【図10】発明の実施の形態2の切削バイトの弾性ひず
みを示す図である。
FIG. 10 is a diagram showing elastic strain of a cutting tool according to the second embodiment of the present invention.

【図11】発明の実施の形態3の鋸刃状光学素子成形型
の製造装置の平面図である。
FIG. 11 is a plan view of an apparatus for manufacturing a saw blade optical element molding die according to a third embodiment of the present invention.

【図12】従来技術の鋸刃状溝の加工方法を示す図であ
る。
FIG. 12 is a view showing a conventional method for processing a saw-tooth groove.

【図13】従来技術の鋸刃状溝の加工方法を示す図であ
る。
FIG. 13 is a view showing a conventional method for processing a saw-tooth groove.

【符号の説明】[Explanation of symbols]

1 型素材 2 切削バイト 2b ダイヤモンドチップ 2d バイト切刃稜線 θ バイト切刃傾斜角度 Δθ バイト切刃傾斜角度増加量 1 type material 2 cutting bit 2b diamond tip 2d bit cutting edge ridge line θ bit cutting edge inclination angle Δθ bit cutting edge inclination angle increase

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋸刃状光学素子成形型の基材に切削バイ
トの切刃稜線を当てつつ、所定深さまで切り込み加工す
る鋸刃状光学素子成形型の製造方法において、 前記切り込み加工時に前記切削バイトが撓むことによっ
て変化する切刃の切り込み角度を、前記撓みによる変化
とは逆の方向に、かつ、撓みによる変化量と同一量だけ
補正することを特徴とする鋸刃状光学素子成形型の製造
方法。
1. A method for manufacturing a saw blade-shaped optical element forming die, wherein a cutting edge of a cutting bit is applied to a base material of the saw blade-shaped optical element forming die, and the cutting is performed to a predetermined depth. A saw blade-shaped optical element molding die, characterized in that the cutting angle of the cutting blade, which is changed by bending of the cutting tool, is corrected in the opposite direction to the change due to the bending, and by the same amount as the amount of change due to the bending. Manufacturing method.
【請求項2】 鋸刃状光学素子成形型の基材を保持する
基材保持部と、鋸刃状溝の斜面を切り込み加工する切刃
を有する切削バイトと、該切削バイトを保持するととも
に前記基材に対して該切削バイトを傾斜させる回動機構
と、前記基材に対して前記切削バイトを切り込ませるよ
うに前記基材もしくは前記切削バイトを移動する移動手
段とを備えた鋸刃状光学素子成形型の製造装置におい
て、 前記切り込み加工時に前記切削バイトが撓むことによっ
て変化する切刃の切り込み角度を、前記撓みによる変化
とは逆の方向に、かつ、撓みによる変化量と同一量だけ
補正するように前記回動機構を制御する制御装置を設け
たことを特徴とする鋸刃状光学素子成形型の製造装置。
2. A cutting tool having a base material holding portion for holding a base material of a saw blade optical element forming die, a cutting blade for cutting a slope of a saw blade groove, and holding the cutting tool and holding the cutting tool. A saw blade comprising a rotating mechanism for inclining the cutting tool with respect to the base material, and a moving means for moving the base material or the cutting tool so as to cut the cutting tool with respect to the base material. In the apparatus for manufacturing an optical element molding die, the cutting angle of the cutting blade, which is changed by the bending of the cutting tool during the cutting, is changed in the opposite direction to the change due to the bending, and is equal to the change amount due to the bending. A manufacturing apparatus for a saw-shaped optical element molding die, further comprising a control device for controlling the rotation mechanism so as to correct only the correction.
【請求項3】 鋸刃状光学素子成形型の基材を保持する
基材保持部と、鋸刃状溝の斜面を切り込み加工する切刃
を有する切削バイトと、該切削バイトを保持するととも
に前記基材に対して該切削バイトを傾斜させる回動機構
と、前記基材に対して前記切削バイトを切り込ませるよ
うに前記基材もしくは前記切削バイトを移動する移動手
段とを備えた鋸刃状光学素子成形型の製造装置におい
て、 前記切削バイトの切刃が前記鋸刃状溝の斜面から受ける
トルクを感知する感知装置と、該トルクの大きさに比例
する前記切削バイトが撓むことによって変化する切刃の
切り込み角度を、前記撓みによる変化とは逆の方向に、
かつ、撓みによる変化量と同一量だけ補正するように前
記回動機構を制御する制御装置とを設けたことを特徴と
する鋸刃状光学素子成形型の製造装置。
3. A cutting tool having a base material holding portion for holding a base material of a saw-shaped optical element forming die, a cutting blade for cutting a slope of a saw-shaped groove, and holding the cutting tool. A saw blade comprising a rotating mechanism for inclining the cutting tool with respect to the base material, and a moving means for moving the base material or the cutting tool so as to cut the cutting tool with respect to the base material. In the optical device mold manufacturing apparatus, a sensing device for sensing the torque received by the cutting blade of the cutting bit from the slope of the saw-like groove, and the cutting bit proportional to the magnitude of the torque is changed by bending. The cutting angle of the cutting blade to the direction opposite to the change due to the bending,
And a control device for controlling the rotating mechanism so as to correct the change amount by the same amount as the change amount due to the bending.
JP11965897A 1997-05-09 1997-05-09 Manufacture of saw blade shape optical element forming die and device thereof Withdrawn JPH10309601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11965897A JPH10309601A (en) 1997-05-09 1997-05-09 Manufacture of saw blade shape optical element forming die and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11965897A JPH10309601A (en) 1997-05-09 1997-05-09 Manufacture of saw blade shape optical element forming die and device thereof

Publications (1)

Publication Number Publication Date
JPH10309601A true JPH10309601A (en) 1998-11-24

Family

ID=14766881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11965897A Withdrawn JPH10309601A (en) 1997-05-09 1997-05-09 Manufacture of saw blade shape optical element forming die and device thereof

Country Status (1)

Country Link
JP (1) JPH10309601A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130505A (en) * 2003-09-08 2004-04-30 Toho Engineering Kk Striating machine for pad for semiconductor cmp processing
JP2005153013A (en) * 2003-10-31 2005-06-16 Seiko Epson Corp Method for machining substrate, method for manufacturing microlens sheet, transmission screen, projector, display device, and substrate machining apparatus
JP2010017801A (en) * 2008-07-09 2010-01-28 Okuma Corp Cutting method and cutting apparatus
CN109946136A (en) * 2019-04-11 2019-06-28 中国人民解放军军事科学院国防工程研究院 A kind of inclined clay sample cut mold of depositional plane and its operating method
JP2019121290A (en) * 2018-01-10 2019-07-22 シチズン時計株式会社 Cutting device and control method therefor
CN117301324A (en) * 2023-11-29 2023-12-29 山东宇影光学仪器有限公司 Fresnel lens processing equipment and application method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004130505A (en) * 2003-09-08 2004-04-30 Toho Engineering Kk Striating machine for pad for semiconductor cmp processing
JP2005153013A (en) * 2003-10-31 2005-06-16 Seiko Epson Corp Method for machining substrate, method for manufacturing microlens sheet, transmission screen, projector, display device, and substrate machining apparatus
JP4729883B2 (en) * 2003-10-31 2011-07-20 セイコーエプソン株式会社 Substrate processing method, microlens sheet manufacturing method, transmissive screen, projector, display device, and substrate processing device
JP2010017801A (en) * 2008-07-09 2010-01-28 Okuma Corp Cutting method and cutting apparatus
JP2019121290A (en) * 2018-01-10 2019-07-22 シチズン時計株式会社 Cutting device and control method therefor
CN109946136A (en) * 2019-04-11 2019-06-28 中国人民解放军军事科学院国防工程研究院 A kind of inclined clay sample cut mold of depositional plane and its operating method
CN109946136B (en) * 2019-04-11 2024-06-11 中国人民解放军军事科学院国防工程研究院 Clay sample cutting die with inclined deposition surface and operation method thereof
CN117301324A (en) * 2023-11-29 2023-12-29 山东宇影光学仪器有限公司 Fresnel lens processing equipment and application method thereof
CN117301324B (en) * 2023-11-29 2024-02-13 山东宇影光学仪器有限公司 Fresnel lens processing equipment and application method thereof

Similar Documents

Publication Publication Date Title
JP6850904B2 (en) How to machine cutting inserts and corresponding equipment for machining cutting inserts
US20090099684A1 (en) Tool Wear Correction Method
JPH10309601A (en) Manufacture of saw blade shape optical element forming die and device thereof
JP2007118100A (en) Method and apparatus for working curved surface symmetric with respect to rotation axis
JP2002346803A (en) Groove processing method, grooved goods, and, optical parts or presision parts
WO2004087359A1 (en) Thread cutting control method and thread cutting controller
JP3873328B2 (en) Grooving method and processing apparatus
JP2005063074A (en) Method and device for machining curved surface
CN112809401A (en) Processing method and article
JP3186341B2 (en) Indexable face milling
JP3827377B2 (en) Manufacturing method of optical member
JP3662087B2 (en) Curved surface cutting method
JPH02180523A (en) Cutting method for screw shaft
JPH06269B2 (en) How to cut board
JP2006231428A (en) Method for machining workpiece having minute shape
JP2001162426A (en) Curved surface cutting device and curved surface cutting method
JP2837044B2 (en) Cutting method
JPH07204922A (en) End mill
JP2005040930A (en) Determination method for wear condition of tool
JPH1190778A (en) Control method of automatic woking machine with cutting function for wide flange shape steel
JP4930700B2 (en) Cutting tool grinding method and cutting tool grinding apparatus
JPS6156805A (en) Curved surface machining method
JP2003117733A (en) Lead machining method for outer diameter part and shape part of artificial diamond tool
JPH0976102A (en) Cutting tool and cutting method
JPH0724692A (en) Automatic chamfering device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803