JPH10306957A - Absorption refrigerator - Google Patents

Absorption refrigerator

Info

Publication number
JPH10306957A
JPH10306957A JP10132939A JP13293998A JPH10306957A JP H10306957 A JPH10306957 A JP H10306957A JP 10132939 A JP10132939 A JP 10132939A JP 13293998 A JP13293998 A JP 13293998A JP H10306957 A JPH10306957 A JP H10306957A
Authority
JP
Japan
Prior art keywords
heat transfer
absorber
steam
tube
tube group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10132939A
Other languages
Japanese (ja)
Other versions
JP2974005B2 (en
Inventor
Yoshitaka Nishino
由高 西野
Toshio Sawa
俊雄 沢
Takeshi Nakao
剛 中尾
Michihiko Aizawa
道彦 相沢
Kenji Yokose
賢次 横瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10132939A priority Critical patent/JP2974005B2/en
Publication of JPH10306957A publication Critical patent/JPH10306957A/en
Application granted granted Critical
Publication of JP2974005B2 publication Critical patent/JP2974005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a pressure loss of vapor in an absorber of an absorption refrigerator and enable a smooth discharge of non condensible gas in the absorber. SOLUTION: An absorption refrigerator comprises an evaporator which generates vapor by evaporating liquid on the surface of a plurality of heat transfer pipes and an absorber which makes an absorbent on the surface of heat transfer pipes absorb the vapor fed into the absorber. In this absorber, on a cross section of the heat transfer pipes 1 as seen from a longitudinal direction of the transfer pipes 1, vapor channels 2 are formed between a wall surface and the neighboring heat transfer pipes 1 along the wall surface. A gas extraction port 7 is disposed in a set of heat tranfer pipes 1 arranged in a grid array, wherein the surface distance L1 between the heat transfer pipe in a horizontal direction is set to not less than 10 mm, while the surface distance L2 between the heat transfer pipe in a vertical direction is set to not more than 5 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷暖房等に用いら
れる吸収冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerator used for cooling and heating.

【0002】[0002]

【従来の技術】一般に吸収冷凍機は、吸収器,蒸発器,
凝縮器,低温再生器,高温再生器およびこれらを結ぶポ
ンプ,熱交換器からなっている。図7はその原理を示す
系統図である。蒸発器内の管群の管内には水を通水して
おり、管外には冷媒として水が散布され、その蒸発潜熱
によって管内の水を冷却し、冷水として冷房器等へ供給
する。蒸発器で発生した水蒸気は吸収器に流入し、吸収
器内の管群の管外面に散布された吸収液(リチウムブロ
マイドなど)に吸収され、このとき発生する吸収熱は管
内を流れる冷却水によって冷却される。
2. Description of the Related Art In general, an absorption refrigerator has an absorber, an evaporator,
It consists of a condenser, a low-temperature regenerator, a high-temperature regenerator, a pump connecting them, and a heat exchanger. FIG. 7 is a system diagram showing the principle. Water is passed through the tubes of the tube group in the evaporator, and water is sprayed outside the tubes as a refrigerant. The water in the tubes is cooled by the latent heat of evaporation, and supplied to a cooler or the like as cold water. The water vapor generated by the evaporator flows into the absorber, and is absorbed by the absorbing liquid (such as lithium bromide) sprayed on the outer surface of the tube group in the absorber. At this time, the absorption heat generated by the cooling water flowing in the tube Cooled.

【0003】吸収器で水蒸気を吸収した吸収液は濃度が
低下し、吸収力が弱くなる。そこでこれを熱交換器を通
して予熱したのち、高温再生器および低温再生器に送
り、加熱濃縮する。高温再生器の熱源には、ガス,油な
どを燃焼させた熱を用いるのが一般的である。低温再生
器の熱源には、高温再生器で発生した蒸気を用いる。低
温再生器および高温再生器で発生した蒸気は、最終的に
凝縮器で冷却水によって冷却されて凝縮する。凝縮した
水は蒸発媒体として、蒸発器に供給される。これらの吸
収冷凍機の構成要素のうち吸収冷凍機としての性能を左
右する点で特に重要なのは吸収器である。
[0003] The absorption liquid having absorbed the water vapor in the absorber has a reduced concentration and a reduced absorption power. Then, after pre-heating this through a heat exchanger, it is sent to a high-temperature regenerator and a low-temperature regenerator to be heated and concentrated. As a heat source of the high-temperature regenerator, heat obtained by burning gas, oil, or the like is generally used. Steam generated by the high-temperature regenerator is used as the heat source of the low-temperature regenerator. The steam generated in the low-temperature regenerator and the high-temperature regenerator is finally cooled by the cooling water in the condenser and condensed. The condensed water is supplied to an evaporator as an evaporation medium. Of these components of the absorption refrigerator, the absorber is particularly important in that the performance of the absorption refrigerator is affected.

【0004】蒸発器および吸収器は低圧に保たれてい
る。そのため、蒸発器では前述のように管外面に散布し
た水などの蒸発媒体を蒸発することで、その潜熱で管内
を流れる水などの冷房媒体を冷却できる。吸収器は、一
般に、千鳥または格子配列の伝熱管群とその表面に吸収
液を散布するための散布装置とから構成される。一般的
には、吸収液は臭化リチウム溶液を用い、伝熱管の外表
面に散布する。臭化リチウムの蒸気圧は水に比べるとは
るかに小さく、蒸発器から吸収器に流入する蒸気はその
蒸気圧差に基づいて吸収液に吸収される。その際、吸収
熱により吸収液の温度が上昇するため、伝熱管内に水な
どの冷却媒体を流して冷却する。
[0004] The evaporator and absorber are kept at low pressure. Therefore, in the evaporator, as described above, by evaporating the evaporation medium such as water sprayed on the outer surface of the pipe, the latent heat can cool the cooling medium such as water flowing in the pipe. The absorber generally includes a heat transfer tube group in a staggered or lattice arrangement and a spraying device for spraying the absorbing liquid on the surface thereof. In general, a lithium bromide solution is used as the absorbing solution, and is sprayed on the outer surface of the heat transfer tube. The vapor pressure of lithium bromide is much lower than that of water, and the vapor flowing into the absorber from the evaporator is absorbed by the absorbent based on the difference in vapor pressure. At this time, since the temperature of the absorbing liquid rises due to the absorbed heat, a cooling medium such as water is flown in the heat transfer tube to cool the tube.

【0005】吸収冷凍機の性能を向上するには、上述の
吸収サイクル作動原理から、蒸発器における蒸発媒体の
蒸気圧と吸収器における吸収液の蒸気圧との有効な圧力
差を大きくする必要がある。そのため、まず、第一に吸
収器及び蒸発器の管群内での蒸気の流動抵抗(圧力損
失)を小さくし、吸収器内での蒸気の吸収に利用できる
圧力差を大きくすることである。
In order to improve the performance of the absorption refrigerator, it is necessary to increase the effective pressure difference between the vapor pressure of the evaporation medium in the evaporator and the vapor pressure of the absorption liquid in the absorber from the above-mentioned principle of the absorption cycle operation. is there. Therefore, first, the flow resistance (pressure loss) of the steam in the tube group of the absorber and the evaporator should be reduced, and the pressure difference available for absorbing the steam in the absorber should be increased.

【0006】第二には、吸収器内の吸収伝熱特性を向上
することにある。そのためには、主に三つの方策があ
る。一つは本発明とは直接関係しないが、伝熱管単管の
吸収伝熱特性を向上させるために特開昭63−6363号公報
に記載のように伝熱管の表面にフィンを形成し、伝熱面
積を増大するとともに吸収液の保持量を増加させる方法
がある。他の方策は、蒸気側の伝熱抵抗となる空気など
の不凝縮性ガスの溜りを防止することである。もう一つ
の方策は、吸収液を吸収器内の各伝熱管に万遍なく供給
散布し、吸収に供されない無駄な伝熱管を無くすことで
ある。
[0006] Second, it is to improve absorption heat transfer characteristics in the absorber. There are three main ways to do this. One is not directly related to the present invention, but fins are formed on the surface of the heat transfer tube as described in JP-A-63-6363 in order to improve the absorption heat transfer characteristics of the heat transfer tube. There is a method of increasing the holding area of the absorbing liquid while increasing the heat area. Another measure is to prevent accumulation of non-condensable gases, such as air, which provide heat transfer resistance on the steam side. Another measure is to supply and distribute the absorbing liquid evenly to each heat transfer tube in the absorber to eliminate useless heat transfer tubes that are not used for absorption.

【0007】これらの性能向上策に対する従来技術とし
ては、日本特許第1187335 号に記載のように、蒸発器の
蒸気上流部をピッチの狭い格子配列の伝熱管配列にし蒸
気流量の多い下流部をピッチの広い千鳥配列にするとと
もに、吸収器では蒸気流量の多い蒸気上流部でピッチの
広い千鳥配列にし蒸気下流部ではピッチの狭い格子配列
の伝熱管群にすることで、管群内での蒸気の流動抵抗を
均一化する方法がある。また、特開昭62−155482号公報
に記載のように、吸収器の伝熱管群内に管列に平行な仕
切り板を設けることで、不凝縮性ガスの溜りを防止し抽
気する方法がある。
As a prior art for these performance improvement measures, as described in Japanese Patent No. 1187335, a steam upstream of an evaporator is arranged in a heat transfer tube array having a narrow grid arrangement, and a downstream portion having a large steam flow rate is arranged in a pitch. In the absorber, the staggered array with a wide pitch is used in the upstream of the steam with a large steam flow rate, and the heat transfer tubes in the grid array with a narrow pitch are used in the downstream of the steam in the absorber, so that the steam in the There is a method for equalizing the flow resistance. Further, as described in Japanese Patent Application Laid-Open No. Sho 62-155482, there is a method of preventing the accumulation of non-condensable gas and bleeding by providing a partition plate parallel to the tube row in the heat transfer tube group of the absorber. .

【0008】[0008]

【発明が解決しようとする課題】上記従来技術では、吸
収器内の圧力損失低減と空気(不凝縮性ガス)滞留抑制
の両者を同時に満足することはできない。吸収器内での
蒸気の流動状態は大変複雑で、蒸気の流速,流れ方向ま
たは空気滞留個所などの実測は極めて困難である。その
ため経験的知見に基づいて管配列は設計されており、低
圧損と空気滞留抑制をともに満足する管群を得ることは
大変難しい。吸収器内の伝熱管を千鳥配列と格子(碁盤
目)配列を組合せ管ピッチを工夫して配置することで、
圧力損失は低減できたとしても、空気滞留を抑制するこ
とはできない。
In the above prior art, it is impossible to simultaneously reduce both the pressure loss in the absorber and the air (non-condensable gas) stagnation. The flow state of the vapor in the absorber is very complicated, and it is extremely difficult to measure the flow velocity, the flow direction, or the location of air retention of the vapor. Therefore, the tube arrangement is designed based on empirical knowledge, and it is very difficult to obtain a tube group that satisfies both low pressure loss and suppression of air stagnation. By combining the heat transfer tubes in the absorber with a staggered arrangement and a grid (checkerboard) arrangement and devising the tube pitch,
Even if the pressure loss can be reduced, air stagnation cannot be suppressed.

【0009】一方、吸収器の伝熱管群内に管列に平行な
仕切り板を設けることで、空気滞留は抑制できたとして
も圧力損失が大きくなってしまう。更に、吸収器では各
伝熱管に吸収液が供給されているかどうかが蒸気吸収性
能に大きく影響する。吸収液が供給されない伝熱管があ
ると、その管は蒸気の吸収に全く寄与しないことにな
る。この問題点はともに吸収器の伝熱管の配置、すなわ
ち、管群構造に密接に関係する。
On the other hand, by providing a partition plate parallel to the tube row in the heat transfer tube group of the absorber, even if air stagnation can be suppressed, the pressure loss increases. Further, in the absorber, whether or not the absorption liquid is supplied to each heat transfer tube greatly affects the vapor absorption performance. If there is a heat transfer tube to which no absorbing liquid is supplied, the tube will not contribute to the absorption of steam at all. Both of these problems are closely related to the arrangement of the heat transfer tubes of the absorber, that is, the tube bank structure.

【0010】本発明の目的は、伝熱管群内での圧力損失
を低減でき、且つ空気滞留を抑制できる吸収冷凍機を提
供することにある。
[0010] An object of the present invention is to provide an absorption refrigerator capable of reducing pressure loss in a heat transfer tube bank and suppressing air stagnation.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、複数の伝熱管の表面の液を蒸発させて
蒸気を発生する蒸発器及び該蒸発器から流入する蒸気を
複数の伝熱管の表面の吸収液で吸収させる吸収器を設け
た吸収冷凍機において、前記吸収器は、前記伝熱管の長
手方向から見た断面で、壁面とこれに隣接する前記伝熱
管との間に前記壁面に沿った蒸気流路が形成され、前記
伝熱管が碁盤目状に配列された管群内に抽気口が設けら
れ、水平方向の伝熱管表面の間隔が10mm以上、垂直方
向の伝熱管表面の間隔が5mm以下となるように構成す
る。
In order to achieve the above object, according to the present invention, an evaporator for evaporating liquid on the surfaces of a plurality of heat transfer tubes to generate steam and a plurality of steams flowing from the evaporator are provided. In an absorption refrigerator provided with an absorber that absorbs with the absorbing liquid on the surface of the heat transfer tube, the absorber has a cross section viewed from a longitudinal direction of the heat transfer tube, and is provided between a wall surface and the heat transfer tube adjacent thereto. A steam flow passage is formed along the wall surface, a bleed port is provided in a tube group in which the heat transfer tubes are arranged in a grid pattern, and a distance between horizontal heat transfer tube surfaces is 10 mm or more, and a vertical heat transfer tube is provided. The configuration is such that the distance between the surfaces is 5 mm or less.

【0012】蒸気流路での蒸気の流動抵抗は、伝熱管を
密に配置した管群内での流動抵抗に比べるとはるかに小
さく無視できる。本発明によると、吸収器内の蒸気は主
に蒸気流路を流れ、吸収器内全体の圧力損失は大幅に低
減できる。この蒸気流路に蒸気を管群内方向に導く手段
(蒸気案内手段)を設置しない場合は、管群の周り全体
から管群の中心部に向かって蒸気が流れ、蒸気流の到達
点は管群内の中心付近になる。
[0012] The flow resistance of the steam in the steam flow path is much smaller than the flow resistance in the tube group in which the heat transfer tubes are densely arranged, and can be ignored. According to the present invention, the steam in the absorber mainly flows through the steam flow path, and the pressure loss in the entire absorber can be significantly reduced. If a means (steam guide means) for guiding steam in the tube group is not installed in the steam flow path, the steam flows from the entire periphery of the tube group toward the center of the tube group, and the steam flow reaches the pipe Near the center of the group.

【0013】蒸気は管群内を流れるに伴い吸収液に吸収
され流量が少なくなり、蒸気流の最終到達点には主に吸
収液に吸収されない不凝縮性ガス(空気)が到達する。
そこで、管群内に抽気口を配置することで空気の抽気が
可能となる。このようにして、管群内での圧力損失を低
減し空気の滞留を抑制できる。尚、上記の理由から、抽
気口を管群の中心付近に配置すればより効果的となる。
[0013] As the vapor flows through the tube group, the vapor is absorbed by the absorbing liquid and the flow rate decreases, and the non-condensable gas (air) which is not mainly absorbed by the absorbing liquid reaches the final point of the vapor flow.
Therefore, air extraction can be performed by arranging the extraction port in the tube bank. In this way, pressure loss in the tube bank can be reduced and air stagnation can be suppressed. For the above reason, it is more effective to arrange the bleeding port near the center of the tube group.

【0014】また、蒸気流路に蒸気を管群内方向に導く
蒸気案内部材を設置することは、蒸気流の最終到達点を
かえる作用を持つ。特に、管群下部が蒸気流の最終到達
点(抽気口)になる場合、管群の上部から蒸気が流入
し、側壁面と管群との間の蒸気流路に流路内の蒸気流を
管群内へ導き且つ抽気口の方向に導く蒸気案内部材を設
けることにより、吸収器全体としての蒸気流が管群上部
から下部の抽気口に流れるようにできる。従って、管群
内での圧力損失を低減し空気の滞留を抑制できる。この
場合、管群下部に配置する抽気口は、エゼクタ構造など
にすることで吸収液の排出口を兼ねることもできる。
[0014] In addition, the installation of the steam guide member for guiding the steam in the tube group in the steam flow path has an effect of changing the final point of the steam flow. In particular, when the lower part of the tube group becomes the final point (bleed port) of the steam flow, the steam flows in from the upper part of the tube group, and the steam flow in the flow path is formed in the steam flow path between the side wall surface and the tube group. By providing the steam guide member that guides the inside of the tube group and the direction of the bleeding port, the steam flow as the entire absorber can flow from the upper part of the tube group to the lower bleeding port. Therefore, it is possible to reduce the pressure loss in the tube group and suppress the stagnation of air. In this case, the bleeding port arranged at the lower part of the tube bank can also serve as a discharge port of the absorbing liquid by having an ejector structure or the like.

【0015】また、吸収器の管群の右側が蒸気流の最終
到達点(抽気口)になる場合、吸収器の管群の左側の蒸
気流路内に流路内の蒸気流を管群内へ導き且つ抽気口の
方向に導く蒸気案内部材を設けることにより、吸収器全
体としての蒸気流が管群の左側から右側の抽気口に流れ
るようにできる。
[0015] When the right side of the tube group of the absorber is the final arrival point (bleed port) of the steam flow, the steam flow in the flow path is placed in the steam flow path on the left side of the tube group of the absorber. By providing a steam guide member that guides the flow toward the bleed port and the direction of the bleed port, the steam flow as the entire absorber can flow from the left side to the right side bleed port of the tube group.

【0016】更に、実施例ベースでより具体的に説明す
る。吸収器での吸収液の供給は、まず管群の最上部の伝
熱管に散布され、伝熱管表面を流れ、その下に配置され
た伝熱管へと、順次、流下する。下部の伝熱管表面が十
分に吸収液でおおわれるためには、上下の伝熱管の間隔
が狭い方が良い。安定して下部の管へ吸収液が供給され
るには、上下の伝熱管表面の間隔(伝熱管の外表面間の
最短距離)を5mm以下にする必要がある。
Further, the present invention will be described more specifically based on embodiments. The supply of the absorbing liquid in the absorber is first scattered to the heat transfer tubes at the top of the tube group, flows on the surface of the heat transfer tubes, and sequentially flows down to the heat transfer tubes arranged therebelow. In order for the lower heat transfer tube surface to be sufficiently covered with the absorbing liquid, it is preferable that the interval between the upper and lower heat transfer tubes is small. In order to stably supply the absorbing liquid to the lower tube, the distance between the upper and lower heat transfer tube surfaces (the shortest distance between the outer surfaces of the heat transfer tubes) must be 5 mm or less.

【0017】伝熱管外径によらずこの条件を満足するた
めには、伝熱管を碁盤目状に配列する。碁盤目状配列の
管群での圧力損失は、蒸気の流入方向に対して垂直方向
の管間隔、すなわち蒸気が流入できる断面積によって決
まる。管群の上部から蒸気が流入する場合には、水平方
向の伝熱管表面の間隔を10mm以上にすることで圧力損
失を低減でき、さらに上下の伝熱管表面の間隔を5mm以
下にすると、流下する吸収液がカーテン状に上下の管を
連結し、蒸気はあたかも平板間を流れるが如く下へ向か
って流れ、蒸気流の最終到達点は管群中心よりも下側に
なる。従って、管群の中心付近の位置や下側の位置に抽
気口を配置することで、効果的に抽気口から空気を排出
することができる。
In order to satisfy this condition regardless of the outer diameter of the heat transfer tubes, the heat transfer tubes are arranged in a grid pattern. The pressure loss in the cross-sectionally arranged tube group is determined by the pipe spacing in the direction perpendicular to the steam inflow direction, that is, the cross-sectional area through which steam can flow. When the steam flows in from the upper part of the tube group, the pressure loss can be reduced by making the distance between the horizontal surfaces of the heat transfer tubes 10 mm or more, and the steam flows down when the space between the upper and lower heat transfer tubes is made 5 mm or less. The absorbing liquid connects the upper and lower pipes in a curtain shape, and the steam flows downward as if flowing between the flat plates, and the final point of the steam flow is below the center of the tube bank. Therefore, by arranging the bleeding port at a position near the center of the tube bank or at a lower position, air can be effectively discharged from the bleeding port.

【0018】[0018]

【発明の実施の形態】本発明による吸収冷凍機の一例を
図8に示す。本吸収冷凍機は、吸収器10,蒸発器1
1,凝縮器12,低温再生器13,高温再生器14,熱
交換器15およびこれらを結ぶ配管と、種々のポンプか
ら構成されている。
FIG. 8 shows an example of an absorption refrigerator according to the present invention. The absorption refrigerator has an absorber 10 and an evaporator 1
1, a condenser 12, a low-temperature regenerator 13, a high-temperature regenerator 14, a heat exchanger 15, and piping connecting them, and various pumps.

【0019】図8で蒸発器11内には、複数の伝熱管1
の集合体である伝熱管群を内蔵し、各伝熱管1内には水
が通水される。各伝熱管1の外表面には、冷媒散布装置
17から冷媒として水が散布される。蒸発器11内は数
mmHg/cm2 の低圧に維持されているために、伝熱管1
外表面の冷媒が蒸発しその蒸発潜熱で伝熱管1内を流れ
る水が冷却され冷水として冷房器等へ供給される。蒸発
しなかった冷媒は蒸発器11底部より冷媒ポンプ27に
よりパイプ22を通って冷媒散布装置17へ循環する。
In FIG. 8, a plurality of heat transfer tubes 1 are provided in the evaporator 11.
A heat transfer tube group, which is an aggregate of the above, is built in, and water is passed through each heat transfer tube 1. Water is sprayed on the outer surface of each heat transfer tube 1 as a coolant from a coolant spraying device 17. Number inside evaporator 11
Since the pressure is maintained at a low pressure of mmHg / cm 2 , the heat transfer tube 1
The refrigerant on the outer surface evaporates, and the water flowing in the heat transfer tube 1 is cooled by the latent heat of evaporation, and supplied to a cooler or the like as cold water. The refrigerant that has not evaporated is circulated from the bottom of the evaporator 11 to the refrigerant distribution device 17 through the pipe 22 by the refrigerant pump 27.

【0020】蒸発器11で発生した蒸気は吸収器10に
その上部から流入する。吸収器10内にも伝熱管群を配
列し、その伝熱管群の上方には吸収液散布装置4を配置
し伝熱管1外表面に吸収液5(LiBrなど)を散布す
る。蒸発器11から流入した蒸気は、伝熱管1外表面の
吸収液5に吸収される。その時に発生する吸収熱は伝熱
管1内を流れる冷却水で冷却する。この冷却水は低温再
生器13を介して冷却塔との間を循環する。吸収器10
内には、伝熱管群と側壁面との間に空間があり、そこが
蒸気流路2を形成する。蒸気流路2には蒸気整流板9が
設置され、蒸気の流れを伝熱管群の領域方向に向けて斜
め下方へ誘導する。この吸収器10の構造に関しては詳
細を後述する。
The vapor generated in the evaporator 11 flows into the absorber 10 from above. A heat transfer tube group is also arranged in the absorber 10, and an absorption liquid spraying device 4 is arranged above the heat transfer tube group, and the absorption liquid 5 (LiBr or the like) is sprayed on the outer surface of the heat transfer tube 1. The steam flowing from the evaporator 11 is absorbed by the absorbing liquid 5 on the outer surface of the heat transfer tube 1. The absorption heat generated at that time is cooled by cooling water flowing in the heat transfer tube 1. This cooling water circulates through the low-temperature regenerator 13 and the cooling tower. Absorber 10
Inside, there is a space between the heat transfer tube group and the side wall surface, which forms the steam flow path 2. A steam flow straightening plate 9 is provided in the steam flow path 2 and guides the flow of steam obliquely downward toward the region of the heat transfer tube group. Details of the structure of the absorber 10 will be described later.

【0021】吸収器10内で吸収液5は蒸気を吸収する
ために濃度が低下する。濃度が低くなった吸収液5は吸
収器10の下部から排出し、吸収液ポンプ16によって
熱交換器15に送られ余熱され、一部は低温再生器13
に送られ、残りの吸収液5はパイプ25を通って高温再
生器14に送られる。高温再生器14では、油又はガス
の燃焼により熱交換器15から送られてきた吸収液5を
加熱して濃縮する。濃縮された吸収液5はパイプ20を
通って熱交換器15の加熱側に戻され、加熱源として用
いられるとともに、一部は吸収器10内の吸収液散布装
置17にパイプ18を通って供給される。
In the absorber 10, the concentration of the absorbing liquid 5 decreases because the absorbing liquid 5 absorbs the vapor. The absorbent 5 whose concentration has become low is discharged from the lower part of the absorber 10 and sent to the heat exchanger 15 by the absorbent pump 16 to be preheated.
Is sent to the high-temperature regenerator 14 through the pipe 25. In the high temperature regenerator 14, the absorption liquid 5 sent from the heat exchanger 15 is heated and concentrated by the combustion of oil or gas. The concentrated absorbent 5 is returned to the heating side of the heat exchanger 15 through the pipe 20 and is used as a heating source, and a part is supplied to the absorbent dispersion device 17 in the absorber 10 through the pipe 18. Is done.

【0022】また、高温再生器14で吸収液5の濃縮に
より発生した蒸気はパイプ21を通って低温再生器13
の加熱源として供給され、熱交換器15で余熱されパイ
プ24で低温再生器13に供給される吸収液5を加熱濃
縮する。濃縮された吸収液5はパイプ19を通って熱交
換器15の加熱側に戻される。低温再生器13での吸収
液5の濃縮で発生した蒸気は、凝縮器12で冷却され凝
縮し、冷媒としてパイプ23を通って蒸発器11の冷媒
散布装置17に供給される。
The steam generated by concentration of the absorbent 5 in the high-temperature regenerator 14 passes through a pipe 21 and passes through the low-temperature regenerator 13.
The absorption liquid 5 which is supplied as a heating source, is preheated by the heat exchanger 15 and is supplied to the low temperature regenerator 13 by the pipe 24 is heated and concentrated. The concentrated absorbent 5 is returned to the heating side of the heat exchanger 15 through the pipe 19. The vapor generated by the concentration of the absorption liquid 5 in the low-temperature regenerator 13 is cooled and condensed in the condenser 12 and supplied to the refrigerant dispersion device 17 of the evaporator 11 through the pipe 23 as the refrigerant.

【0023】上述の各機内は0.01〜0.1気圧程度の
低圧に維持された密閉容器と成っているが、溶接部等か
ら微量の空気(不凝縮性ガス)が漏れ込むと、吸収器1
0での吸収液5による冷媒蒸気の吸収特性が低下する。
そのため、吸収器10では抽気をする必要がある。図8
では、吸収液5の抽出口が抽気口6を兼ねており、エゼ
クター方式などにより不凝縮性ガスは吸収液5とともに
パイプ26で吸収器10から排出され、最終的には、凝
縮器12から系外へ排出される。吸収器10内の蒸気流
路2と蒸気整流板9とにより、不凝縮性ガスの排出を効
率よく行うことが出来ることや、また、吸収器10の不
凝縮性ガスの抽気口は吸収液の排出口と兼ねない独立し
た口であっても良いことは後述する通りである。
Although the inside of each of the above-described units is a closed container maintained at a low pressure of about 0.01 to 0.1 atm, if a small amount of air (non-condensable gas) leaks from a welded portion or the like, it is absorbed. Vessel 1
At 0, the absorption characteristic of the refrigerant vapor by the absorbing liquid 5 is reduced.
Therefore, it is necessary to perform bleeding in the absorber 10. FIG.
Then, the extraction port of the absorbing liquid 5 also serves as the bleeding port 6, and the non-condensable gas is discharged from the absorber 10 together with the absorbing liquid 5 from the absorber 10 by an ejector method or the like. It is discharged outside. The non-condensable gas can be efficiently discharged by the steam flow path 2 and the steam rectifying plate 9 in the absorber 10, and the non-condensable gas extraction port of the absorber 10 It is possible to use an independent port that does not double as the discharge port, as described later.

【0024】図9は、本発明による吸収冷凍機の別の一
例を示す構成図である。基本構成は図8と同じである
が、蒸発器11から吸収器10への蒸気の流れ方向、及
び吸収器10の構造が異なる。蒸発器11と吸収器10
との間にはエリミネータ28が配置されており、蒸発器
11で冷媒の蒸発により発生した蒸気はエリミネータ2
8を通過して吸収器10内に流入する。エリミネータ2
8の主な機能は蒸発器11から吸収器10に流入する蒸
気からミストを除去することである。
FIG. 9 is a block diagram showing another example of an absorption refrigerator according to the present invention. The basic configuration is the same as that of FIG. 8, but the flow direction of steam from the evaporator 11 to the absorber 10 and the structure of the absorber 10 are different. Evaporator 11 and absorber 10
An eliminator 28 is disposed between the eliminator 2 and the evaporator 11.
8 and flows into the absorber 10. Eliminator 2
The main function of 8 is to remove mist from the vapor flowing into the absorber 10 from the evaporator 11.

【0025】吸収器10では、伝熱管群のサイドから蒸
気が流入するように、蒸気の流入口としての開口が水平
横向きに向けられている。伝熱管群と壁面との間には蒸
気流路2が形成されており、蒸気流路2には蒸気を伝熱
管群内の方向へ導く手段として整流板9が傾斜させて設
置されている。不凝縮性ガスの抽気口7は、図8の場合
とは異なり、側壁面に設けられており、吸収液5の排出
口8とは独立している。
In the absorber 10, an opening serving as a steam inlet is oriented horizontally and horizontally so that steam flows in from the side of the heat transfer tube group. A steam flow passage 2 is formed between the heat transfer tube group and the wall surface, and a straightening plate 9 is installed in the steam flow passage 2 at an angle as a means for guiding steam in a direction inside the heat transfer tube group. Unlike the case of FIG. 8, the non-condensable gas extraction port 7 is provided on the side wall surface and is independent of the discharge port 8 of the absorbent 5.

【0026】以下、吸収器10について詳細に説明す
る。図1(a),(b)は、本発明の吸収冷凍機の吸収器
の二つの実施例をそれぞれ、伝熱管長手方向から見た断
面の模式図である。1は伝熱管、2は蒸気流路、3は蒸
発器から流入する蒸気の流入部、4は吸収液散布装置、
5は吸収液、6は吸収液排出口を兼ねた抽気口、7は抽
気口、8は吸収液排出口、9は蒸気流路に設置され蒸気
案内部材として機能する整流板を示す。蒸気流入部3に
は吸収液の飛散を防止するためにエリミネータ等が設置
されている場合もあるが、何も設置されない開口部にな
っている場合もある。
Hereinafter, the absorber 10 will be described in detail. FIGS. 1 (a) and 1 (b) are schematic diagrams of cross sections of two embodiments of the absorber of the absorption refrigerator of the present invention, respectively, as viewed from the longitudinal direction of the heat transfer tube. 1 is a heat transfer tube, 2 is a steam flow path, 3 is an inflow portion of steam flowing from an evaporator, 4 is an absorbent dispersion device,
Reference numeral 5 denotes an absorbing liquid, 6 denotes a bleeding port also serving as an absorbing liquid discharge port, 7 denotes a bleeding port, 8 denotes an absorbing liquid discharge port, and 9 denotes a rectifying plate installed in a steam flow path and functioning as a steam guide member. The vapor inflow section 3 may be provided with an eliminator or the like in order to prevent the absorption liquid from scattering, but may be provided with an opening where nothing is provided.

【0027】(a)は蒸気が管群の上部から流入する吸
収器であり、(b)は蒸気が管群の側面から流入する吸
収器である。吸収器内の圧力損失は管群と壁面との間に
形成された蒸気流路2の効果により低減される。(a)
の吸収器では、側壁面の蒸気流路に整流板が設置され、
蒸気流は上部から下部に向かって流れ、蒸気流の最終到
達点は管群下部になる。管群下部に配置した吸収液排出
口を兼ねた抽気口から不凝縮性ガス(空気)を排出する
ことができる。(b)の吸収器では、上下面と奥の側壁
面の蒸気流路に整流板が設置され、蒸気は水平方向に流
れ、管群の外の側壁面に設置した抽気口から空気を抽気
できる。
(A) is an absorber in which steam flows in from the upper part of the tube group, and (b) is an absorber in which steam flows in from the side surface of the tube group. The pressure loss in the absorber is reduced by the effect of the steam flow path 2 formed between the tube group and the wall surface. (A)
In the above absorber, a flow straightening plate is installed in the steam flow path on the side wall surface,
The steam flow flows from the upper part to the lower part, and the final point of the steam flow is at the lower part of the tube bank. The non-condensable gas (air) can be discharged from the bleed port which also serves as the absorbent discharge port disposed below the tube group. In the absorber of (b), a flow straightening plate is installed in the steam flow path on the upper and lower surfaces and the inner side wall surface, the steam flows in the horizontal direction, and air can be extracted from the air outlet provided on the outer side wall surface of the tube group. .

【0028】図2(a),(b)は、図1(a),(b)と
それぞれほぼ同様の吸収器の伝熱管長手方向から見た断
面図を示す。図1(a),(b)の蒸気流路に整流板が設
置されずに、それぞれ、管群のほぼ中央に抽気口7が設
置されている。(a),(b)ともに流入した蒸気は、蒸
気流路2を流れ管群の周囲全体から中心部へ向かって流
れ、蒸気流の最終到達点は管群の中央付近になる。その
ため、管群の中央付近に配置した抽気口7から空気を排
出できる。
FIGS. 2A and 2B are cross-sectional views of the absorber substantially similar to FIGS. 1A and 1B, respectively, as viewed from the longitudinal direction of the heat transfer tube. A straightening plate is not provided in the steam flow path of FIGS. 1A and 1B, and a bleeding port 7 is provided substantially at the center of each tube group. The steam that has flowed in both (a) and (b) flows through the steam flow path 2 from the entire periphery of the tube group toward the center, and the final point of the steam flow is near the center of the tube group. Therefore, air can be discharged from the bleed port 7 arranged near the center of the tube group.

【0029】本実施例で、水平方向の伝熱管表面の間隔
1 を10mm以上に、上下の伝熱管表面の間隔L2 を5
mm以下にして、管群の中心よりやや下側の位置に抽気口
を配置することにより、抽気口からの空気の排出をより
効果的にすることができる。図3(a)も、本発明の他
の実施例による吸収冷凍機の吸収器の伝熱管長手方向か
ら見た断面図を示す。蒸気は管群上部から流入し、一方
の側壁面の蒸気流路には整流板が二枚設置されている。
管群内の伝熱管は碁盤目配列され、水平方向の管ピッチ
は管径の二倍程度(即ち、水平方向の管表面間隔は管径
程度)と広く、垂直方向の管ピッチは垂直方向の管表面
間隔が3mm程度となるようにかなり狭い。
In this embodiment, the distance L 1 between the horizontal surfaces of the heat transfer tubes is set to 10 mm or more, and the distance L 2 between the upper and lower surfaces of the heat transfer tubes is set to 5 or more.
By arranging the bleeding port at a position slightly below the center of the tube bank with the diameter being equal to or less than mm, it is possible to more effectively discharge air from the bleeding port. FIG. 3A also shows a cross-sectional view of an absorber of an absorption refrigerator according to another embodiment of the present invention as viewed from the longitudinal direction of the heat transfer tubes. The steam flows in from the upper part of the tube bank, and two straightening plates are installed in the steam passage on one side wall.
The heat transfer tubes in the tube group are arranged in a grid pattern, the horizontal tube pitch is about twice as large as the pipe diameter (that is, the horizontal pipe surface spacing is about the pipe diameter), and the vertical pipe pitch is vertical. It is quite narrow so that the pipe surface spacing is about 3 mm.

【0030】図3(b)及び図3(c)も、本発明のさ
らに他の実施例による吸収冷凍機の吸収器の伝熱管長手
方向から見た断面図を示す。図3(b)は両側壁面と伝
熱管群との間に蒸気流路2が形成されており、両側の各
蒸気流路2に蒸気整流板9が一枚ずつ設置されている。
図3(c)では片側の側壁面と伝熱管群の間に蒸気流路
2が形成されており、蒸気流路2に蒸気整流板9が一枚
設置されている。
FIGS. 3 (b) and 3 (c) are cross-sectional views of the absorber of the absorption refrigerator according to still another embodiment of the present invention as viewed from the longitudinal direction of the heat transfer tubes. In FIG. 3B, the steam flow passages 2 are formed between both side wall surfaces and the heat transfer tube group, and one steam flow straightening plate 9 is installed in each steam flow passage 2 on both sides.
In FIG. 3C, the steam flow path 2 is formed between one side wall surface and the heat transfer tube group, and one steam flow straightening plate 9 is provided in the steam flow path 2.

【0031】次に、本発明の原理が妥当であることを、
吸収器内での基本的な管群配置の数値解析結果により説
明する。この数値解析では、流れに関して質量と運動量
の保存則を解き、伝熱管群における蒸気の吸収量を実験
式に基づいて求めている。この解析モデルの詳細は、
(Proceeding of the Second International Symposium
on Condensers and condensation(1990),p.235〜p.24
4)に示されている。
Next, it is confirmed that the principle of the present invention is valid.
A description will be given based on the results of a numerical analysis of the basic arrangement of the tube banks in the absorber. In this numerical analysis, the law of conservation of mass and momentum is solved for the flow, and the amount of steam absorption in the heat transfer tube group is obtained based on an empirical formula. For more information on this analysis model,
(Proceeding of the Second International Symposium
on Condensers and condensation (1990), p.235-p.24
4) is shown.

【0032】図4(a),(b)は、数値解析を行った二
種の吸収器の伝熱管群の伝熱管長手方向から見た断面を
示すものである。二種の吸収器は全て同一本数の伝熱管
(外径19.05mm )198本が同一ピッチで配置され
ている。蒸気は吸収器の上部から流入する。(a)は管
群(同図中で斜線を付した)と壁面の間に蒸気流路が形
成されている吸収器である。(b)は管群と側壁面の間
に蒸気流路が形成されていない吸収器である。同図
(c)は、(a)と(b)の図中に圧力プロット位置で
の圧力分布の数値解析結果を示すものである。これよ
り、明らかに管群と壁面の間に蒸気流路を形成した方
が、圧力分布が均一化し圧力損失が小さくなっているこ
とがわかる。
FIGS. 4 (a) and 4 (b) show cross sections of the heat transfer tube groups of the two types of absorbers as viewed from the longitudinal direction of the heat transfer tubes subjected to numerical analysis. In each of the two types of absorbers, 198 heat transfer tubes (outer diameter 19.05 mm) of the same number are arranged at the same pitch. Steam flows in from the top of the absorber. (A) is an absorber in which a steam flow path is formed between a tube group (hatched in the figure) and a wall surface. (B) is an absorber in which a steam channel is not formed between the tube bank and the side wall surface. FIG. 9C shows the results of numerical analysis of the pressure distribution at the pressure plot positions in FIGS. 9A and 9B. This clearly shows that forming the steam flow passage between the tube bank and the wall surface makes the pressure distribution uniform and reduces the pressure loss.

【0033】図5(a),(b)は、管群(同図中で点線
で囲まれた領域)と壁面の間に蒸気流路が形成されてい
る吸収器においての、それぞれ蒸気流速分布と空気分圧
分布の数値解析結果を示すものである。蒸気は管群上部
から流入する。(a)の蒸気流速分布からは、蒸気流路
2を流れて蒸気が吸収器全体に供給され、管群のほぼ中
央付近が蒸気流の最終到達点になることがわかる。その
ときの空気分圧分布を示すのが(b)である。蒸気流の
最終到達点付近に空気が滞留し、分圧が高くなっている
ことがわかる。そこで、図2(a)のように管群のほぼ
中央に抽気口を設けることで、連続的に不凝縮ガスの空
気を排出できる。
FIGS. 5 (a) and 5 (b) show steam flow velocity distributions in an absorber having a steam flow path formed between a tube group (a region surrounded by a dotted line in FIG. 5) and a wall surface. 3 shows the results of numerical analysis of the air partial pressure distribution. Steam flows in from the top of the tube bank. From the steam flow velocity distribution in (a), it can be seen that the steam flows through the steam flow path 2 and is supplied to the entire absorber, and almost the center of the tube group is the final point of the steam flow. (B) shows the air partial pressure distribution at that time. It can be seen that air stays near the final point of the vapor flow and the partial pressure is high. Therefore, by providing a bleeding port substantially at the center of the tube group as shown in FIG. 2A, the air of the non-condensable gas can be continuously discharged.

【0034】図6(a),(b)も、図5(a),(b)と
同様に、管群(同図中で点線で囲まれた領域)と壁面の
間に蒸気流路が形成されている吸収器においての、それ
ぞれ蒸気流速分布と空気分圧分布の数値解析結果を示す
ものである。但し、側壁面の蒸気流路に六枚の整流板が
設置されている。蒸気は管群上部から流入し、管群下部
にむかって流れる。(a)の蒸気流速分布からは、管群
下部付近が蒸気流の最終到達点になることがわかる。そ
のときの空気分圧分布を示すのが(b)である。蒸気流
の最終到達点付近に空気が滞留し、分圧が高くなってい
ることがわかる。そこで、図1(a)のように管群下部
に抽気口を設けることで、連続的に不凝縮ガスの空気を
排出できる。
6 (a) and 6 (b), similarly to FIGS. 5 (a) and 5 (b), the steam flow path is formed between the tube group (the area surrounded by the dotted line in the figure) and the wall surface. It is a figure which shows the numerical analysis result of the steam flow velocity distribution and the air partial pressure distribution in the absorber which is formed, respectively. However, six straightening plates are provided in the steam flow path on the side wall surface. The steam flows in from the upper part of the tube group and flows toward the lower part of the tube group. From the steam flow distribution shown in (a), it can be seen that the vicinity of the lower part of the tube bank is the final point of the steam flow. (B) shows the air partial pressure distribution at that time. It can be seen that air stays near the final point of the vapor flow and the partial pressure is high. Therefore, by providing a bleed port at the lower part of the tube group as shown in FIG. 1A, the air of the non-condensable gas can be continuously discharged.

【0035】[0035]

【発明の効果】本発明によれば、吸収冷凍機の吸収器で
の蒸気の圧力損失を低減できると共に、不凝縮性ガスを
効率よく抽気できる。
According to the present invention, the pressure loss of steam in the absorber of the absorption refrigerator can be reduced, and the non-condensable gas can be efficiently extracted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による吸収冷凍機の吸収器の
伝熱管長手方向の断面図。
FIG. 1 is a longitudinal sectional view of a heat transfer tube of an absorber of an absorption refrigerator according to an embodiment of the present invention.

【図2】本発明の第二の実施例による吸収冷凍機の吸収
器の伝熱管長手方向の断面図。
FIG. 2 is a longitudinal sectional view of a heat transfer tube of an absorber of an absorption refrigerator according to a second embodiment of the present invention.

【図3】本発明の第三の実施例による吸収冷凍機の吸収
器の伝熱管長手方向の断面図。
FIG. 3 is a longitudinal sectional view of a heat transfer tube of an absorber of an absorption refrigerator according to a third embodiment of the present invention.

【図4】数値解析による本発明と従来技術との圧力分布
図。
FIG. 4 is a pressure distribution diagram of the present invention and the prior art by numerical analysis.

【図5】数値解析による蒸気流路をもつ吸収器内の蒸気
流速分布と空気分圧分布図。
FIG. 5 is a diagram showing a steam flow rate distribution and an air partial pressure distribution in an absorber having a steam flow channel by numerical analysis.

【図6】数値解析による蒸気流路をもち、蒸気流路に整
流板を設置した吸収器内の蒸気流速分布と空気分圧分布
図。
FIG. 6 is a diagram showing a steam flow rate distribution and an air partial pressure distribution in an absorber having a steam flow path by a numerical analysis and having a flow straightening plate installed in the steam flow path.

【図7】従来の吸収冷凍機の全体系統図。FIG. 7 is an overall system diagram of a conventional absorption refrigerator.

【図8】本発明の実施例による吸収冷凍機の全体系統
図。
FIG. 8 is an overall system diagram of an absorption refrigerator according to an embodiment of the present invention.

【図9】本発明の他の実施例による吸収冷凍機の全体系
統図。
FIG. 9 is an overall system diagram of an absorption refrigerator according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…伝熱管、2…蒸気流路、3…蒸気の流入部、4…吸
収液散布装置、5…吸収液、6,7…抽気口、8…吸収
液排出口、9…蒸気整流板。
DESCRIPTION OF SYMBOLS 1 ... Heat transfer pipe, 2 ... Steam flow path, 3 ... Steam inflow part, 4 ... Absorbent liquid spraying device, 5 ... Absorbent liquid, 6, 7 ... Bleed port, 8 ... Absorbent liquid outlet, 9 ... Steam rectification plate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 相沢 道彦 茨城県土浦市神立町603番地 株式会社日 立製作所土浦工場内 (72)発明者 横瀬 賢次 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Michihiko Aizawa 603, Kandamachi, Tsuchiura-shi, Ibaraki Pref. In the Tsuchiura Plant, Hitachi, Ltd. Energy Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数の伝熱管の表面の液を蒸発させて蒸気
を発生する蒸発器及び該蒸発器から流入する蒸気を複数
の伝熱管の表面の吸収液で吸収させる吸収器を備えた吸
収冷凍機において、 前記吸収器は、前記伝熱管の長手方向から見た断面で、
壁面とこれに隣接する前記伝熱管との間に前記壁面に沿
った蒸気流路が形成され、前記伝熱管が碁盤目状に配列
された管群内に抽気口が設けられ、水平方向の伝熱管表
面の間隔が10mm以上、垂直方向の伝熱管表面の間隔が
5mm以下であることを特徴とする吸収冷凍機。
1. An absorption device comprising: an evaporator for evaporating liquid on the surfaces of a plurality of heat transfer tubes to generate steam; and an absorber for absorbing the vapor flowing from the evaporator with the absorbent on the surfaces of the plurality of heat transfer tubes. In the refrigerator, the absorber has a cross section viewed from a longitudinal direction of the heat transfer tube,
A steam flow passage is formed along the wall surface between the wall surface and the heat transfer tube adjacent thereto, and a bleed port is provided in a tube group in which the heat transfer tubes are arranged in a grid pattern. An absorption refrigerator having a space between heat pipe surfaces of 10 mm or more and a space between heat transfer tube surfaces in a vertical direction of 5 mm or less.
【請求項2】請求項1において、前記抽気口が前記伝熱
管の管群の中央付近に配置されていることを特徴とする
吸収冷凍機。
2. The absorption refrigerator according to claim 1, wherein the bleeding port is disposed near a center of a tube group of the heat transfer tubes.
【請求項3】請求項2において、前記抽気口が前記伝熱
管の管群の中央よりも下側に配置されていることを特徴
とする吸収冷凍機。
3. The absorption refrigerator according to claim 2, wherein the air extraction port is disposed below a center of a tube group of the heat transfer tubes.
JP10132939A 1998-05-15 1998-05-15 Absorption refrigerator Expired - Fee Related JP2974005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10132939A JP2974005B2 (en) 1998-05-15 1998-05-15 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10132939A JP2974005B2 (en) 1998-05-15 1998-05-15 Absorption refrigerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3301530A Division JP2973653B2 (en) 1991-11-18 1991-11-18 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH10306957A true JPH10306957A (en) 1998-11-17
JP2974005B2 JP2974005B2 (en) 1999-11-08

Family

ID=15093042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10132939A Expired - Fee Related JP2974005B2 (en) 1998-05-15 1998-05-15 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2974005B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101871729B1 (en) * 2017-02-08 2018-06-27 엘지전자 주식회사 Absorption Chiller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101871729B1 (en) * 2017-02-08 2018-06-27 엘지전자 주식회사 Absorption Chiller

Also Published As

Publication number Publication date
JP2974005B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
JP3195100B2 (en) High-temperature regenerator of absorption chiller / heater and absorption chiller / heater
CN105157281A (en) Tube-in-tube evaporative condenser with fins
US4158295A (en) Spray generators for absorption refrigeration systems
CA2059759C (en) Heat exchanger for condensing vapor into liquid phase, power generating plant using the heat exchanger and absorption refrigerator using the heat exchanger
US5463880A (en) Absorption refrigerator
JP2000179989A (en) Sprinkler of absorption water cooler/heater
JP3789815B2 (en) High temperature regenerator and absorption chiller / heater equipped with the same
JP2568769B2 (en) Absorption refrigerator
JP2974005B2 (en) Absorption refrigerator
CN205174937U (en) Sleeve pipe evaporative condenser with fin
US5857354A (en) Air-cooled absorption-type air conditioning apparatus with vertical heat-transfer fins
KR890004393B1 (en) Air cooling type absorption cooler
JP2973653B2 (en) Absorption refrigerator
KR920007600B1 (en) Double effect air-cooled absorption refrigerating machine
JP2009168271A (en) Double effect absorption type cold and heat generating/outputting device
JPH06307735A (en) Absorption freezer
EP0082018B1 (en) Absorption refrigeration system
JP2779565B2 (en) Absorption refrigerator
JP4437253B2 (en) Absorption refrigerator
CN112178983B (en) Heat transfer pipe arrangement structure of refrigerant circulating equipment and refrigerant circulating equipment
JPS5812953A (en) Cool air, hot air and hot water supply equipment utilizing solar heat
JP2877420B2 (en) Absorption refrigerator
JP2008304081A (en) Absorption type refrigerating device
JP3604920B2 (en) Absorption chiller absorber
JPH062988A (en) Absorption refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees