JP4437253B2 - Absorption refrigerator - Google Patents

Absorption refrigerator Download PDF

Info

Publication number
JP4437253B2
JP4437253B2 JP2001160677A JP2001160677A JP4437253B2 JP 4437253 B2 JP4437253 B2 JP 4437253B2 JP 2001160677 A JP2001160677 A JP 2001160677A JP 2001160677 A JP2001160677 A JP 2001160677A JP 4437253 B2 JP4437253 B2 JP 4437253B2
Authority
JP
Japan
Prior art keywords
regenerator
liquid
temperature
absorption
temperature regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001160677A
Other languages
Japanese (ja)
Other versions
JP2002349990A (en
Inventor
雅行 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2001160677A priority Critical patent/JP4437253B2/en
Publication of JP2002349990A publication Critical patent/JP2002349990A/en
Application granted granted Critical
Publication of JP4437253B2 publication Critical patent/JP4437253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸収式冷凍機に係り、特に、排熱源からの排ガスの熱で吸収液を加熱する再生器を備えた吸収式冷凍機に関する。
【0002】
【従来の技術】
排熱源からの排ガスの熱で吸収液を加熱する再生器を備えた吸収式冷凍機、つまり排ガス焚の吸収式冷凍機は、熱を発生する様々な機器や装置類からの排ガスの熱で吸収液を加熱して駆動するものである。このような排ガス焚の吸収式冷凍機では、熱源機が駆動している状態、つまり排ガスが発生している状態で運転が停止している場合に、排ガスが再生器に流入しないようにするため、ダンパなどの排ガスの通流方向の切換手段によって排ガスの通流経路を切り換え、吸収式冷凍機を経由せずに排ガスを排出するための排出流路に排ガスを流すようになっている。
【0003】
【発明が解決しようとする課題】
ところが、ダンパなどの排ガスの通流方向の切換手段では、排ガスの通流方向を排出流路側に切り換えた場合でも、吸収式冷凍機への排ガスの通流を完全に遮断できない場合がある。このように、排ガスのダンパからの漏洩によって停止している吸収式冷凍機の再生器に排ガスが通流すると、再生器内の吸収液が加熱されるため、吸収液が濃縮されて濃度が高くなることにより、吸収液の晶析などが生じ、吸収式冷凍機の駆動に支障を来す場合がある。
【0004】
本発明の課題は、吸収式冷凍機停止時の吸収液の濃縮を抑制することにある。
【0005】
【課題を解決するための手段】
本発明の吸収式冷凍機は、排熱源からの排ガスによって吸収液を加熱する再生器と、凝縮器と、蒸発器と、吸収器と、吸収器から再生器へ吸収液を供給する流路に設けられたポンプと、再生器内の吸収液の温度を検出する温度センサと、再生器からの吸収液が通流する流路に設けられた放熱器とを備え、運転を停止しているとき、温度センサで検出した再生器内の吸収液の温度が設定した温度以上になると、ポンプを駆動すると共に、放熱器の冷却ファンを駆動する構成とすることにより上記課題を解決する。
【0006】
また、本発明の吸収式冷凍機は、排熱源からの排ガスによって吸収液を加熱する第1の再生器及びこの第1の再生器の下方に配設されてこの第1の再生器からの吸収液をバーナで加熱する第2の再生器の少なくとも2つの再生器と、凝縮器と、蒸発器と、吸収器と、この吸収器から第1の再生器へ吸収液を供給する流路に設けられたポンプと、第1の再生器内の吸収液の温度を検出する温度センサと、第1の再生器から第2の再生器へ吸収液を導く流路に放熱器とを備え、運転を停止しているとき、温度センサで検出した第1の再生器内の吸収液の温度が設定した温度以上になると、ポンプを駆動すると共に、放熱器の冷却ファンを駆動する構成とすることにより上記課題を解決する。
【0007】
このような構成とすることにより、吸収式冷凍機が停止しているときに、排ガスが再生器を通流して再生器内の吸収液の温度が設定された温度になると、ポンプの駆動により、吸収液が再生器と吸収器との間で循環すると共に、再生器から吸収器方向に流れる吸収液が、放熱器の冷却ファンの駆動によって冷却される。したがって、ダンパなどの排ガスの通流方向の切換手段で漏洩した排ガスが再生器を通流しても吸収液の温度が上昇し難いため、吸収式冷凍機停止時の吸収液の濃縮を抑制できる。
【0008】
さらに、放熱器は、第1の再生器から第2の再生器へ吸収液を導く流路の、第2の再生器内の吸収液の液面よりも低い位置に設けられている構成とすれば、液相状態の吸収液を冷却でき、吸収液の冷却効率を向上できるので好ましい。
【0009】
また、吸収器に冷却水を供給する冷却水供給手段を備え、蒸発器が二次冷熱媒を冷却する冷却運転中に運転を停止しているとき、温度センサで検出した再生器内の吸収液の温度が設定した温度以上になると、冷却水供給手段により吸収器に冷却水を供給すると共に、ポンプを駆動し、蒸発器が二次冷熱媒を加熱する加熱運転中に運転を停止しているとき、温度センサで検出した再生器内の吸収液の温度が設定した温度以上になると、ポンプを駆動すると共に、放熱器の冷却ファンを駆動する構成とする。
【0010】
このような構成とすれば、蒸発器が二次冷熱媒を冷却する冷却運転中に運転を停止しているとき、例えば空気調和機に用いている場合の冷房運転中に冷房負荷の減少により吸収式冷凍機の運転を停止しているときには、冷却水で吸収液を冷却し、蒸発器が二次冷熱媒を加熱する加熱運転中に運転を停止しているとき、例えば空気調和機に用いている場合の暖房運転中に暖房負荷の減少などにより吸収式冷凍機の運転を停止しているときには、放熱器によって吸収液を冷却することで吸収式冷凍機停止時の吸収液の濃縮を抑制できる。
【0011】
【発明の実施の形態】
以下、本発明を適用してなる吸収式冷凍機の一実施形態について図1乃至図3を参照して説明する。図1は、本発明を適用してなる吸収式冷凍機の概略構成と冷却運転時の動作を示すブロック図である。図2は、排熱源と吸収式冷凍機との間に配管された排ガス管路及び排出管路の構成の一例を示すブロック図である。図3は、本発明を適用してなる吸収式冷凍機の加熱運転時の動作を示すブロック図である。
【0012】
本実施形態の吸収式冷凍機1は、図1に示すように、第1高温再生器2、第2高温再生器3、低温再生器5、凝縮器7、蒸発器9、そして吸収器11などで構成されている。第1高温再生器2は、加熱室13と出口室15とを有している。加熱室13は、熱交換器17を内部に備えている。熱交換器17は、熱を発生する機器や装置などからの排ガスが通流する排ガス管路19に連結されており、排ガスと吸収器11から供給される吸収液つまり稀溶液との間で熱交換を行う。加熱室13の気相部、つまり熱交換器17の上方の空間には、吸収器11内の稀溶液を第1高温再生器2の加熱室に導く稀溶液管路23の端部が開口している。
【0013】
第1高温再生器2の加熱室13と出口室15とは、箱状の第1高温再生器2の内部を越流堰25によって仕切ることで形成されている。越流堰25は、第1高温再生器2の内側底面から上方に向けて延在させた壁状に形成されており、加熱室13と出口室15とを仕切っている。また、越流堰25の上縁と第1高温再生器2の内側上面との間の空間により、加熱室13と出口室15とが連通している。越流堰25の上縁は、熱交換器17が十分に稀溶液中に浸漬される高さとなっている。加熱室13には、越流堰25により加熱室13内に所定の液位以上に保たれた稀溶液の温度を検出するための温度センサ26が設けられている。出口室15内には、第2高温再生器3の上部に連結され、第2高温再生器3で発生した冷媒蒸気が通流する第1蒸気管路31が出口室15の底部から上方に向けて挿通された状態で設置されている。出口室15内に位置する第1蒸気管路31の端部の開口は、越流堰25の上縁よりも高い位置で開口している。
【0014】
加熱室13内の出口室15に連なる側と反対側の上面と側面との角部には、気液分離器27が設けられている。気液分離器27は、第2高温再生器3で発生し、第1蒸気管路31と出口室15とを順次介して加熱室13に流入した冷媒蒸気と、第1高温再生器2の加熱室13で発生した冷媒蒸気の気液分離を行う。気液分離器27には、液体が分離された冷媒蒸気が通流する第2蒸気管路33の一端が連結されている。また、出口室15の底部には、出口室15に溜まった吸収液つまり中間濃溶液を第2高温再生器3へ導く第1中間濃溶液管路35の一端が連結されている。第1中間濃溶液管路35の他端は、第2高温再生器13の底部に連結されている。
【0015】
第2高温再生器3は、バーナ37が内部に設けられた加熱室39と、第1高温再生器2と同様に越流堰41で加熱室39と仕切られた出口室43とを有している。ただし、第2高温再生器3の加熱室39と出口室43とは、加熱室39の側方から出口室43が張り出した形状に形成されている。出口室43の底部には、出口室43に溜まった中間濃溶液を低温再生器5に導く第2中間濃溶液管路45の一端が連結されている。第2中間濃溶液管路45は、低温再生器5内に挿通された状態になっており、第2中間濃溶液管路45の他端は、低温再生器5内で開口している。なお、ポンプなどの送液手段を用いずに第1高温再生器2の中間濃溶液を第2高温再生器3に送るため、第1高温再生器2は、第1高温再生器2の底面が第2高温再生器3の中間濃溶液の液面よりも高い位置になるように設置する。本実施形態では、第1高温再生器2は、第2高温再生器3の上方に設置されている。
【0016】
低温再生器5内には、気液分離器27に一端が連結されている第2蒸気管路33が配設されている。第2蒸気管路33の低温再生器5内に配設された部分は、第2蒸気管路33内を通流する冷媒蒸気の熱により、第2中間濃溶液管路45から低温再生器5内に導かれた中間濃溶液を加熱する熱交換器47となっている。第2蒸気管路33の他端は、凝縮器7内で開口している。低温再生器5と凝縮器7とは、低温再生器5で発生した冷媒蒸気が通流可能に連通している。
【0017】
凝縮器7内には、熱交換器49が設けられている。凝縮器7の熱交換器49には、冷却水が通流する冷却水管路51が連結されている。冷却水管路51は、図示していない冷却塔に連結されており、また、冷却水を循環させるため、図示していない循環用ポンプを備えている。凝縮器7の底部には、熱交換器49を通流する冷却水で冷やされて凝縮して凝縮器7内に溜まった冷媒液を蒸発器9に導く冷媒液管路53の一端が連結されている。冷媒液管路53の他端は、蒸発器9内に設けられた熱交換器55に冷媒液を滴下または流下させて散布する散布部57に連結されている。蒸発器9内に設けられた熱交換器55は、蒸発器9で冷却または加熱された2次冷熱媒、例えば冷水または温水を利用する機器や装置、例えば空気調和機における室内機などとの間で冷水または温水を循環させるための冷温水管路59に連結されている。また、蒸発器9は、蒸発器9で発生した蒸気が通流できるように吸収器11と連通している。
【0018】
吸収器11は、熱交換器61が設けられている。吸収器11の熱交換器61には、冷却水が通流する冷却水管路51が連結されている。なお、冷却水管路51は、吸収器11の熱交換器61と凝縮器7の熱交換器49との間にも配管されているため、吸収器11の熱交換器61と凝縮器7の熱交換器49とは、冷却水管路51に直列に設けられており、冷却水は、図示していない冷却塔から吸収器11の熱交換器61、そして凝縮器7の熱交換器49へと順次通流する。吸収器11の熱交換器61の上方には、低温再生器5で生成された濃溶液を熱交換器61に滴下または流下させて散布する散布部63が設けられている。
【0019】
吸収器11の散布部63には、一端が低温再生器5の底部に連結されて低温再生器5で生成された濃溶液が通流する濃溶液管路65の他端が連結されている。また、吸収器11の底部には、吸収器11で熱交換器61を通流する冷却水で冷却されながら蒸発器9で発生した冷媒蒸気を濃溶液が吸収することで生成されて溜まった稀溶液が通流する稀溶液管路23が連結されている。稀溶液管路23の吸収器11からの出口部分には、ポンプ67が設けられており、稀溶液は、稀溶液管路23を介して第1高温再生器2の加熱室13内に供給される。
【0020】
稀溶液管路23のポンプ63よりも稀溶液の流れに対して下流側の部分には、低温再生器5からの濃溶液管路65内を通流する濃溶液と、稀溶液管路23内を通流する稀溶液との間で熱交換を行うための熱交換器69が設けられている。さらに、稀溶液管路23の熱交換器69よりも下流側の部分には、中間濃溶液管路45内を通流する第2高温再生器3からの中間濃溶液と、稀溶液管路23内を通流する稀溶液との間で熱交換を行うための熱交換器71が設けられている。また、中間濃溶液管路45の熱交換器71よりも中間濃溶液の流れに対して下流側の部分には、第2高温再生器3から低温再生器5へ流れる中間濃溶液の流量を調整するための流量調整弁73が設けられている。
【0021】
気液分離器27には、第2蒸気管路33とは別に、冷媒蒸気を蒸発器9内の熱交換器55の上方に導く、第3蒸気管路75の一端が連結されている。第3蒸気管路75の他端は、蒸発器9内に挿通された状態となっており、蒸発器9内の熱交換器55の上方で開口している。第3蒸気管路75には、第3蒸気管路75への冷媒蒸気の通流及び遮断を行うための第1暖房切換弁77が設けられている。さらに、第2中間濃溶液管路45の流量調整弁73よりも中間濃溶液の流れに対して下流側の部分と蒸発器9の底部とを連通させ、低温再生器5を通らずに中間濃溶液を直接吸収器11及び吸収器11と一体的に形成された蒸発器9の底部に導くバイパス管路79が設けられている。バイパス管路79には、吸収器11及び蒸発器9の底部への中間濃溶液の通流及び遮断を行うための第2暖房切換弁81が設けられている。
【0022】
また、第1中間濃溶液管路35の第2高温再生器3の越流堰41の上縁よりも下に位置する部分には、放熱器83が設けられている。放熱器83は、放熱部85と冷却ファン87などで構成されている。放熱部85は、例えば、第1中間濃溶液管路35に連通し中間濃溶液が通流する管状の流路とこの管状の流路の外面に設けられたコルゲートフィンやプレートフィンなどで構成されている。
【0023】
本実施形態の吸収式冷凍機1は、図2に示すように、排熱源89からの排ガスを排ガス管路19によって第1高温再生器2の熱交換器17に導くものである。排ガス管路19は、排熱源89からの排ガスを吸収式冷凍機1の第1高温再生器2の熱交換器17に導く導入側排ガス管路19aと、吸収式冷凍機1の第1高温再生器2の熱交換器17から流出した排ガスを排出するための導出側排ガス管路19bとからなる。一方、排熱源89の図示していない排ガスの排出口には、排気管路91の一端が連結されており、排気管路91の他端から、排ガスが排出される。排気管路91には、2箇所に排ガスの流路切換手段としてダンパ93、95が設けられている。ダンパ93は、排気管路91のダンパ95よりも排ガスの流れに対して上流側に設けられている。上流側の配設されたダンパ93には導入側排ガス管路19aが、下流側のダンパ95には導出側排ガス管路19bが連結されている。吸収式冷凍機1を駆動する場合には、排ガスが導入側排ガス管路19aと導出側排ガス管路19bに流れるようにダンパ93、95を切り換え、排熱源89が排ガスを発生しているが吸収式冷凍機1を停止する場合には、排ガスが排気管路91に流れるようにダンパ93、95を切り換える。
【0024】
このような構成の吸収式冷凍機の動作と本発明の特徴部について説明する。なお、図において、稀溶液、中間濃溶液、そして濃溶液といった溶液の流れは実線の矢印で示し、冷媒蒸気の流れは破線の矢印で示している。
【0025】
まず、吸収式冷凍機1によって、例えば水を冷却して冷温水管路59に通流させる場合の動作について説明する。このとき、第3蒸気管路75の第1暖房切換弁77及びバイパス管路79の第2暖房切換弁81は閉されており、また、図示していない冷却塔及び循環用ポンプが駆動されている。ダンパ93、95が切り換えられ、排ガスが熱媒管路19を通流しているとき、図1に示すように、稀溶液管路23から供給され第1高温再生器2の加熱室13内に溜まった稀溶液は、加熱室13内の熱交換器17中を通流する排ガスの熱により加熱される。これにより、稀溶液中に吸収されている冷媒が蒸発して冷媒蒸気が生成されると共に、稀溶液は、中間濃溶液となる。このとき、第3蒸気管路75の第1暖房切換弁77は閉じているため、加熱室13内の気相部の冷媒蒸気は、中間濃溶液が気液分離器27で分離された後、第2蒸気管路33を凝縮器7方向に流れる。また、冷媒蒸気は、第2蒸気管路33の低温再生器5内に配管された部分で低温再生器5内の中間濃溶液を加熱する。これにより、冷媒蒸気は凝縮して冷媒液となり凝縮器7内に流入する。なお、稀溶液は、例えば臭化リチウムと水からなる溶液であり、この場合、水が冷媒となる。
【0026】
一方、第1高温再生器2の加熱室13で生成された中間濃溶液は、越流堰25の上縁を越えて出口室15に流入する。出口室15に流入した中間濃溶液は、第1中間濃溶液管路35を介して第2高温再生器3に流入する。第2高温再生器3のバーナ37は、第1高温再生器2で不足した熱量を補うように中間濃溶液の加熱を行う。第2高温再生器3のバーナ37による中間濃溶液の加熱によって第2高温再生器3内で発生した冷媒蒸気は、第1蒸気管路31を介して第1高温再生器2の出口室15内の気相部に流入する。第2高温再生器3から第1高温再生器2の出口室15内の気相部に流入した冷媒蒸気は、第1高温再生器2の加熱室13内の気相部に流入し第1高温再生器2の加熱室13で発生した冷媒蒸気と共に、気液分離器27で液体と分離されて第2蒸気管路33を通流し、第2蒸気管路33の低温再生器5内に配管された部分で凝縮し、冷媒液となり凝縮器7内に流入する。
【0027】
第2高温再生器3で加熱された中間濃溶液は、バイパス管路79の第2暖房切換弁81が閉じているため、第2中間濃溶液管路45を介して低温再生器5内に流入する。低温再生器5内に流入した中間濃溶液は、第2蒸気管路33を通流する第1高温再生器からの冷媒蒸気と第2高温再生器からの冷媒蒸気の熱で加熱され、さらに冷媒蒸気を発生して濃溶液となる。低温再生器5で発生した冷媒蒸気は、凝縮器7内に流入して凝縮する。なお、第2中間濃溶液管路45を介して低温再生器5内に流入する中間濃溶液の流量は、第2中間濃溶液管路45の流量調整弁73の開度で調整される。
【0028】
低温再生器5で発生した冷媒蒸気が凝縮器7内で凝縮した冷媒液と、第2蒸気管路33から凝縮器7内に流入した冷媒液とは、冷媒液管路53を介して蒸発器9内の散布部57から熱交換器55へ散布される。蒸発器9内の熱交換器55へ散布された冷媒液は、熱交換器55内を通流する水の熱を奪って蒸発し、熱交換器55内を通流する水を冷却する。このとき、蒸発器9で生成された冷媒蒸気は、濃溶液管路65を介して吸収器11内の散布部63から散布された濃溶液に吸収され稀溶液となる。このとき、濃溶液への冷媒蒸気の吸収によって発生する熱は、吸収器11内の熱交換器61を通流する冷却水によって冷却される。吸収器11で生成された稀溶液は、稀溶液管路23を介して第1高温再生器2の加熱室13に供給される。
【0029】
ここで、排熱源89が駆動している状態で、例えば空気調和機として用いている場合に冷房負荷が減少するなどの理由によって吸収式冷凍機1が停止すると、ダンパ93、95が、吸収式冷凍機1を経由せずに、排気管路91から排ガスを排出するように切り換わり、この後、希釈運転を行う。希釈運転とは、一般に、第1高温再生器2及び第2高温再生器3で加熱を行わない状態でポンプ67を駆動し続け、生成される濃溶液の濃度を低下させるものである。希釈運転終了後、第1高温再生器2の加熱室13内に溜まった稀溶液の温度を検出する温度センサ26により、稀溶液の温度の検出を開始する。
【0030】
このとき、ダンパ93からの排ガスの漏洩により、排ガス管路19aに排ガスが侵入し、これによって第1高温再生器2の加熱室13内に溜まった稀溶液が加熱され、稀溶液が予め設定された温度以上になると、第2高温再生器3で加熱を行わない状態でポンプ67を駆動すると共に、図示していない冷却水の循環用ポンプを駆動させ、冷却水を図示していない冷却塔から吸収器11の熱交換器61、そして凝縮器7の熱交換器49へと順次通流させて循環させる。これにより、稀溶液つまり吸収液を冷却して吸収液の濃縮を抑制する。
【0031】
次に、吸収式冷凍機1によって、例えば水を加熱して冷温水管路59に通流させる場合の動作について説明する。このとき、第3蒸気管路75の第1暖房切換弁77及びバイパス管路79の第2暖房切換弁81は開されており、また、図示していない冷却塔及び循環用ポンプは停止している。ダンパ93、95が切り換えられ、排ガスが熱媒管路19を通流しているとき、図3に示すように、稀溶液管路23から供給され第1高温再生器2の加熱室13内に溜まった稀溶液は、加熱室13内の熱交換器17中を通流する排ガスの熱により加熱される。これにより、稀溶液中に吸収されている冷媒が蒸発して冷媒蒸気が生成されると共に、稀溶液は、中間濃溶液となる。このとき、第3蒸気管路75の第1暖房切換弁77が開いているため、加熱室13内の気相部の冷媒蒸気は、中間濃溶液が気液分離器27で分離された後、第3蒸気管路75を蒸発器9方向に流れ、蒸発器9内に流入する。
【0032】
一方、第1高温再生器2の加熱室13で生成された中間濃溶液は、越流堰25の上縁を越えて出口室15に流入する。出口室15に流入した中間濃溶液は、第1中間濃溶液管路35を介して第2高温再生器3に流入する。第2高温再生器3のバーナ37は、第1高温再生器2で不足した熱量を補うように中間濃溶液の加熱を行う。第2高温再生器3のバーナ37による中間濃溶液の加熱によって第2高温再生器3内で発生した冷媒蒸気は、第1蒸気管路31を介して第1高温再生器2の出口室15内の気相部に流入する。第2高温再生器3から第1高温再生器2の出口室15内の気相部に流入した冷媒蒸気は、第1高温再生器2の加熱室13内の気相部に流入し第1高温再生器2の加熱室13で発生した冷媒蒸気と共に、気液分離器27で中間濃溶液と分離されて第3蒸気管路75を通流し、蒸発器9内に流入する。
【0033】
蒸発器9に流入した冷媒蒸気の熱で蒸発器9の熱交換器55内を通流する水を加熱する。第2高温再生器3から中間濃溶液管路45とバイパス管路79を介して蒸発器9と吸収器11の底部に流入した中間濃溶液は、熱交換器55内を通流する水を加熱することで凝縮した冷媒液と混ざり、稀溶液となって蒸発器9で生成された冷媒蒸気は、濃溶液管路65を介して吸収器11内の散布部63から散布された濃溶液に吸収され稀溶液となり、この稀溶液は、稀溶液管路23を介して第1高温再生器2の加熱室13に供給される。
【0034】
ここで、排熱源89が駆動している状態で、例えば空気調和機として用いている場合に暖房負荷が減少するなどの理由によって吸収式冷凍機1が停止すると、ダンパ93、95が、吸収式冷凍機1を経由せずに、排気管路91から排ガスを排出するように切り換わる。この後、第1高温再生器2の加熱室13内に溜まった稀溶液の温度を検出する温度センサ26により、稀溶液の温度の検出を開始する。このとき、ダンパ93からの排ガスの漏洩により、排ガス管路19aに排ガスが侵入し、これによって第1高温再生器2の加熱室13内に溜まった稀溶液が加熱され、稀溶液が予め設定された温度以上になると、第2高温再生器3で加熱を行わない状態でポンプ67を駆動させ、吸収液を第1高温再生器2、第2高温再生器3、そして蒸発器9と吸収器11の底部との間で循環させると共に、第1高温再生器2と第2高温再生器3との間の第2中間濃溶液管路35に設けられた放熱器83の冷却ファン87を駆動する。これにより、稀溶液つまり吸収液を冷却して吸収液の濃縮を抑制する。
【0035】
このように、本実施形態の吸収式冷凍機1では、ダンパ93からの排ガスの漏洩により、排ガス管路19aに排ガスが侵入し、これによって第1高温再生器2の加熱室13内に溜まった稀溶液が加熱され、稀溶液が予め設定された温度以上になると、ポンプ67を駆動すると共に、図示していない冷却水の循環用ポンプを駆動させ、冷却水を図示していない冷却塔から吸収器11の熱交換器61、そして凝縮器7の熱交換器49へと順次通流させて循環させるか、または、ポンプ67を駆動させ、吸収液を第1高温再生器2、第2高温再生器3、そして蒸発器9と吸収器11の底部との間で循環させると共に、第2中間濃溶液管路35に設けられた放熱器83の冷却ファン87を駆動することにより、吸収液の温度が上昇を抑えることができるため、吸収式冷凍機停止時の吸収液の濃縮を抑制できる。
【0036】
さらに、本実施形態の吸収式冷凍機1では、放熱器83は、第2中間濃溶液管路35の第2高温再生器3の越流堰41の上縁よりも低い部分、つまり第2高温再生器3の加熱室39内の液面よりも下の部分に設けられている。第2中間濃溶液管路35の加熱室39内の液面よりも下の部分には、第1高温再生器2から第2高温再生器3への吸収液の流量に関係なく吸収液が満たされた状態になっているため、放熱器83は、確実に液相状態の吸収液を冷却することができ、吸収液の冷却効率を向上できる。
【0037】
ところで、実開昭57−30680号公報や特開平11−182974号公報には、複数のダンパとファンやエゼクタを組合せ、排熱源が駆動しているときに吸収式冷凍機が停止した場合に、吸収式冷凍機に排ガスが流れないようにすることが提案されている。しかし、これらに提案された吸収式冷凍機では、ダンパなどの数が多くなりコストが増大する。これに対し、本実施形態の吸収式冷凍機1では、実開昭57−30680号公報や特開平11−182974号公報に提案の吸収式冷凍機に比べダンパなどの数を低減できるため、コストを低減できる。
【0038】
また、本実施形態では、吸収式冷凍機1が2次冷熱媒を冷却する場合には、ポンプ67を駆動すると共に、図示していない冷却水の循環用ポンプを駆動させて、冷却水で吸収液を冷却して吸収式冷凍機停止時の吸収液の濃縮を抑制している。しかし、吸収式冷凍機1が2次冷熱媒を冷却する場合にも、希釈運転終了後、吸収式冷凍機1が2次冷熱媒を加熱する場合と同様に、第2高温再生器3のバーナ37と図示していない冷却水の循環用ポンプが停止している状態で、ポンプ67を駆動させると共に、第2中間濃溶液管路35に設けられた放熱器83の冷却ファン87を駆動させることで吸収式冷凍機停止時の吸収液の濃縮を抑制することもできる。
【0039】
また、本実施形態では、蒸発器9により冷水管路59を通流する水を冷却または加熱する構成を例示しているが、水以外の様々な2次冷熱媒を冷却または加熱することもできる。
【0040】
また、本発明は、本実施形態の構成の吸収式冷凍機に限らず、様々な排熱源からの排ガスの熱で吸収液を加熱する再生器を備えた様々な構成の吸収式冷凍機に適用できる。例えば、本実施形態では、第2高温再生器3や低温再生器5を有する構成を示したが、本発明は、バーナを備えた高温再生器や低温再生器を有していない吸収式冷凍機にも適用できる。なお、排熱源としては、例えばエンジン、燃料電池、種々の工業設備や装置、地熱、温泉などが利用できる。
【0041】
【発明の効果】
本発明によれば、吸収式冷凍機停止時の吸収液の濃縮を抑制することができる。
【図面の簡単な説明】
【図1】本発明を適用してなる吸収式冷凍機の一実施形態の概略構成と冷却運転時の動作を示すブロック図である。
【図2】排熱源と吸収式冷凍機との間に配管された排ガス管路及び排出管路の構成の一例を示すブロック図である。
【図3】本発明を適用してなる吸収式冷凍機の一実施形態の概略構成と加熱運転時の動作を示すブロック図である。
【符号の説明】
1 吸収式冷凍機
2 第1高温再生器
7 凝縮器
9 蒸発器
11 吸収器
23 稀溶液管路
26 温度センサ
35 第1中間濃溶液管路
67 ポンプ
83 放熱器
87 冷却ファン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an absorption refrigerator, and more particularly, to an absorption refrigerator including a regenerator that heats an absorbing liquid with heat of exhaust gas from an exhaust heat source.
[0002]
[Prior art]
Absorption chillers equipped with a regenerator that heats the absorption liquid with the heat of the exhaust gas from the exhaust heat source, that is, the absorption chiller for the exhaust gas soot absorbs the heat of the exhaust gas from various equipment and devices that generate heat. The liquid is heated and driven. In such an exhaust-gas-absorption type refrigerator, in order to prevent the exhaust gas from flowing into the regenerator when the operation is stopped in a state where the heat source device is driven, that is, the exhaust gas is generated. The exhaust gas flow path is switched by a switching means for the exhaust gas flow direction, such as a damper, and the exhaust gas is caused to flow through a discharge passage for discharging the exhaust gas without going through the absorption refrigerator.
[0003]
[Problems to be solved by the invention]
However, the exhaust gas flow direction switching means such as a damper may not completely block the flow of the exhaust gas to the absorption chiller even when the flow direction of the exhaust gas is switched to the discharge flow path side. In this way, when the exhaust gas flows through the regenerator of the absorption refrigeration machine stopped due to leakage from the exhaust gas damper, the absorption liquid in the regenerator is heated, so the absorption liquid is concentrated and the concentration is high. As a result, crystallization of the absorbing solution occurs, which may hinder the driving of the absorption refrigerator.
[0004]
The subject of this invention is suppressing the concentration of the absorption liquid at the time of an absorption refrigerating machine stop.
[0005]
[Means for Solving the Problems]
The absorption refrigerator according to the present invention includes a regenerator that heats an absorbing liquid by exhaust gas from an exhaust heat source, a condenser, an evaporator, an absorber, and a flow path that supplies the absorbing liquid from the absorber to the regenerator. When the pump is provided, a temperature sensor for detecting the temperature of the absorbing liquid in the regenerator, and a radiator provided in a flow path through which the absorbing liquid from the regenerator flows, and the operation is stopped When the temperature of the absorbing liquid in the regenerator detected by the temperature sensor is equal to or higher than the set temperature, the above problem is solved by driving the pump and the cooling fan of the radiator.
[0006]
The absorption refrigerator according to the present invention includes a first regenerator that heats the absorbing liquid with exhaust gas from an exhaust heat source, and an absorption from the first regenerator that is disposed below the first regenerator. Provided in at least two regenerators of a second regenerator for heating the liquid with a burner, a condenser, an evaporator, an absorber, and a flow path for supplying the absorbing liquid from the absorber to the first regenerator Provided with a pump, a temperature sensor for detecting the temperature of the absorbent in the first regenerator, and a radiator in a flow path for leading the absorbent from the first regenerator to the second regenerator. When the temperature of the absorbing liquid in the first regenerator detected by the temperature sensor becomes equal to or higher than the set temperature when the temperature sensor is stopped, the pump is driven and the cooling fan of the radiator is driven. Solve the problem.
[0007]
By adopting such a configuration, when the absorption chiller is stopped, when the exhaust gas flows through the regenerator and the temperature of the absorbing liquid in the regenerator reaches the set temperature, by driving the pump, The absorbing liquid circulates between the regenerator and the absorber, and the absorbing liquid flowing from the regenerator toward the absorber is cooled by driving a cooling fan of the radiator. Therefore, even if the exhaust gas leaked by the switching means of the exhaust gas flow direction such as a damper flows through the regenerator, the temperature of the absorption liquid does not easily rise, and therefore the concentration of the absorption liquid when the absorption refrigerator is stopped can be suppressed.
[0008]
Further, the radiator is configured to be provided at a position lower than the liquid level of the absorbing liquid in the second regenerator in the flow path for guiding the absorbing liquid from the first regenerator to the second regenerator. In this case, the liquid absorption liquid can be cooled, and the cooling efficiency of the liquid absorption can be improved.
[0009]
In addition, a cooling water supply means for supplying cooling water to the absorber is provided, and the absorption liquid in the regenerator detected by the temperature sensor when the operation is stopped during the cooling operation for cooling the secondary cooling medium. When the temperature of the liquid becomes higher than the set temperature, the cooling water is supplied to the absorber by the cooling water supply means and the pump is driven, and the operation is stopped during the heating operation in which the evaporator heats the secondary cooling medium. When the temperature of the absorbing liquid in the regenerator detected by the temperature sensor becomes equal to or higher than the set temperature, the pump is driven and the cooling fan of the radiator is driven.
[0010]
With such a configuration, when the operation is stopped during the cooling operation in which the evaporator cools the secondary cooling medium, for example, when the evaporator is used in an air conditioner, it is absorbed by a decrease in the cooling load during the cooling operation. When the operation of the refrigerating machine is stopped, the absorption liquid is cooled with cooling water, and the operation is stopped during the heating operation in which the evaporator heats the secondary cooling medium. When the operation of the absorption chiller is stopped during heating operation due to a decrease in heating load, etc., the absorption liquid can be prevented from concentrating when the absorption chiller is stopped by cooling the absorption liquid with a radiator. .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an absorption refrigerator according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a block diagram showing a schematic configuration of an absorption chiller to which the present invention is applied and an operation during a cooling operation. FIG. 2 is a block diagram showing an example of the configuration of the exhaust gas pipe and the exhaust pipe piped between the exhaust heat source and the absorption refrigerator. FIG. 3 is a block diagram showing the operation during the heating operation of the absorption chiller to which the present invention is applied.
[0012]
As shown in FIG. 1, the absorption refrigerator 1 of the present embodiment includes a first high-temperature regenerator 2, a second high-temperature regenerator 3, a low-temperature regenerator 5, a condenser 7, an evaporator 9, an absorber 11, and the like. It consists of The first high temperature regenerator 2 has a heating chamber 13 and an outlet chamber 15. The heating chamber 13 includes a heat exchanger 17 inside. The heat exchanger 17 is connected to an exhaust gas pipe line 19 through which exhaust gas from a device or apparatus that generates heat flows, and heat is generated between the exhaust gas and an absorption liquid, that is, a rare solution supplied from the absorber 11. Exchange. In the gas phase portion of the heating chamber 13, that is, in the space above the heat exchanger 17, an end portion of a rare solution pipe 23 that leads the rare solution in the absorber 11 to the heating chamber of the first high temperature regenerator 2 is opened. ing.
[0013]
The heating chamber 13 and the outlet chamber 15 of the first high temperature regenerator 2 are formed by partitioning the inside of the box-shaped first high temperature regenerator 2 with an overflow weir 25. The overflow weir 25 is formed in a wall shape extending upward from the inner bottom surface of the first high-temperature regenerator 2, and partitions the heating chamber 13 and the outlet chamber 15. Further, the heating chamber 13 and the outlet chamber 15 communicate with each other through a space between the upper edge of the overflow weir 25 and the inner upper surface of the first high-temperature regenerator 2. The upper edge of the overflow weir 25 has a height at which the heat exchanger 17 is sufficiently immersed in the dilute solution. The heating chamber 13 is provided with a temperature sensor 26 for detecting the temperature of a rare solution maintained at a predetermined liquid level or higher in the heating chamber 13 by the overflow weir 25. In the outlet chamber 15, a first steam pipe 31 connected to the upper part of the second high temperature regenerator 3 and through which refrigerant vapor generated in the second high temperature regenerator 3 flows is directed upward from the bottom of the outlet chamber 15. Installed. The opening at the end of the first steam line 31 located in the outlet chamber 15 is opened at a position higher than the upper edge of the overflow weir 25.
[0014]
A gas-liquid separator 27 is provided at the corner between the upper surface and the side surface on the opposite side to the side connected to the outlet chamber 15 in the heating chamber 13. The gas-liquid separator 27 is generated in the second high-temperature regenerator 3 and flows into the heating chamber 13 through the first steam line 31 and the outlet chamber 15 in sequence, and the heating of the first high-temperature regenerator 2. Gas-liquid separation of the refrigerant vapor generated in the chamber 13 is performed. The gas-liquid separator 27 is connected to one end of a second vapor conduit 33 through which the refrigerant vapor from which the liquid has been separated flows. The bottom of the outlet chamber 15 is connected to one end of a first intermediate concentrated solution pipe 35 that guides the absorption liquid accumulated in the outlet chamber 15, that is, the intermediate concentrated solution, to the second high temperature regenerator 3. The other end of the first intermediate concentrated solution pipe 35 is connected to the bottom of the second high temperature regenerator 13.
[0015]
The second high-temperature regenerator 3 has a heating chamber 39 in which a burner 37 is provided, and an outlet chamber 43 that is partitioned from the heating chamber 39 by an overflow weir 41 like the first high-temperature regenerator 2. Yes. However, the heating chamber 39 and the outlet chamber 43 of the second high-temperature regenerator 3 are formed in a shape in which the outlet chamber 43 projects from the side of the heating chamber 39. One end of a second intermediate concentrated solution pipe 45 that guides the intermediate concentrated solution accumulated in the outlet chamber 43 to the low temperature regenerator 5 is connected to the bottom of the outlet chamber 43. The second intermediate concentrated solution pipe 45 is inserted into the low temperature regenerator 5, and the other end of the second intermediate concentrated solution pipe 45 opens in the low temperature regenerator 5. In addition, in order to send the intermediate concentrated solution of the first high temperature regenerator 2 to the second high temperature regenerator 3 without using a liquid sending means such as a pump, the first high temperature regenerator 2 has the bottom surface of the first high temperature regenerator 2 The second high temperature regenerator 3 is installed at a position higher than the liquid level of the intermediate concentrated solution. In the present embodiment, the first high temperature regenerator 2 is installed above the second high temperature regenerator 3.
[0016]
In the low-temperature regenerator 5, a second steam line 33 having one end connected to the gas-liquid separator 27 is disposed. The portion of the second steam line 33 disposed in the low temperature regenerator 5 is moved from the second intermediate concentrated solution line 45 to the low temperature regenerator 5 by the heat of the refrigerant vapor flowing in the second steam line 33. A heat exchanger 47 for heating the intermediate concentrated solution introduced into the inside is provided. The other end of the second steam line 33 opens in the condenser 7. The low temperature regenerator 5 and the condenser 7 communicate with each other so that the refrigerant vapor generated in the low temperature regenerator 5 can flow therethrough.
[0017]
A heat exchanger 49 is provided in the condenser 7. A cooling water conduit 51 through which cooling water flows is connected to the heat exchanger 49 of the condenser 7. The cooling water conduit 51 is connected to a cooling tower (not shown), and includes a circulation pump (not shown) for circulating the cooling water. Connected to the bottom of the condenser 7 is one end of a refrigerant liquid line 53 that guides the refrigerant liquid that has been cooled and condensed with cooling water flowing through the heat exchanger 49 and accumulated in the condenser 7 to the evaporator 9. ing. The other end of the refrigerant liquid pipe 53 is connected to a spraying unit 57 that sprays or drops the refrigerant liquid on a heat exchanger 55 provided in the evaporator 9. The heat exchanger 55 provided in the evaporator 9 is connected to a secondary chilled heat medium cooled or heated by the evaporator 9 such as cold water or hot water using an apparatus or device such as an indoor unit in an air conditioner. Is connected to a cold / hot water pipe 59 for circulating cold water or hot water. The evaporator 9 communicates with the absorber 11 so that the vapor generated in the evaporator 9 can flow.
[0018]
The absorber 11 is provided with a heat exchanger 61. A cooling water pipe 51 through which cooling water flows is connected to the heat exchanger 61 of the absorber 11. The cooling water pipe 51 is also connected between the heat exchanger 61 of the absorber 11 and the heat exchanger 49 of the condenser 7, so that the heat of the heat exchanger 61 and the condenser 7 of the absorber 11 is. The exchanger 49 is provided in series with the cooling water pipe 51, and the cooling water is sequentially supplied from a cooling tower (not shown) to the heat exchanger 61 of the absorber 11 and to the heat exchanger 49 of the condenser 7. Circulate. Above the heat exchanger 61 of the absorber 11, a spray unit 63 is provided for spraying the concentrated solution generated by the low temperature regenerator 5 by dropping or flowing down the heat exchanger 61.
[0019]
One end of the absorber 11 is connected to the bottom of the low temperature regenerator 5 and the other end of a concentrated solution pipe 65 through which the concentrated solution generated by the low temperature regenerator 5 flows is connected. Further, at the bottom of the absorber 11, a rare solution generated and accumulated by absorbing the refrigerant vapor generated in the evaporator 9 while being cooled by the cooling water flowing through the heat exchanger 61 in the absorber 11. A dilute solution line 23 through which the solution flows is connected. A pump 67 is provided at the outlet portion of the diluted solution pipe 23 from the absorber 11, and the diluted solution is supplied into the heating chamber 13 of the first high-temperature regenerator 2 through the diluted solution pipe 23. The
[0020]
In the portion of the diluted solution line 23 downstream of the pump 63 with respect to the flow of the diluted solution, a concentrated solution flowing through the concentrated solution line 65 from the low-temperature regenerator 5 and the inside of the diluted solution line 23 A heat exchanger 69 for exchanging heat with a dilute solution flowing therethrough is provided. Furthermore, the intermediate solution from the second high-temperature regenerator 3 flowing through the intermediate concentrated solution line 45 and the diluted solution line 23 are provided on the downstream side of the heat exchanger 69 of the diluted solution line 23. A heat exchanger 71 is provided for exchanging heat with a dilute solution flowing through the inside. Further, the flow rate of the intermediate concentrated solution flowing from the second high temperature regenerator 3 to the low temperature regenerator 5 is adjusted at a portion downstream of the heat exchanger 71 in the intermediate concentrated solution pipe 45 with respect to the flow of the intermediate concentrated solution. A flow rate adjusting valve 73 is provided.
[0021]
In addition to the second steam line 33, one end of a third steam line 75 that guides the refrigerant vapor to above the heat exchanger 55 in the evaporator 9 is connected to the gas-liquid separator 27. The other end of the third steam pipe 75 is inserted into the evaporator 9 and opens above the heat exchanger 55 in the evaporator 9. The third steam line 75 is provided with a first heating switching valve 77 for passing and blocking the refrigerant vapor to and from the third steam line 75. Further, the downstream portion and the bottom of the evaporator 9 are made to communicate with the flow of the intermediate concentrated solution with respect to the flow of the intermediate concentrated solution 73 of the second intermediate concentrated solution pipe 45, and the intermediate concentration is not passed through the low temperature regenerator 5. A bypass pipe 79 is provided for directing the solution directly to the absorber 11 and the bottom of the evaporator 9 formed integrally with the absorber 11. The bypass line 79 is provided with a second heating switching valve 81 for passing and blocking the intermediate concentrated solution to the bottom of the absorber 11 and the evaporator 9.
[0022]
Further, a radiator 83 is provided at a portion of the first intermediate concentrated solution pipe 35 located below the upper edge of the overflow weir 41 of the second high temperature regenerator 3. The radiator 83 includes a heat radiating portion 85, a cooling fan 87, and the like. The heat radiating portion 85 is constituted by, for example, a tubular flow channel that communicates with the first intermediate concentrated solution pipe 35 and through which the intermediate concentrated solution flows, and corrugated fins and plate fins provided on the outer surface of the tubular flow channel. ing.
[0023]
As shown in FIG. 2, the absorption refrigerator 1 of the present embodiment guides exhaust gas from the exhaust heat source 89 to the heat exchanger 17 of the first high-temperature regenerator 2 through the exhaust gas conduit 19. The exhaust gas line 19 includes an introduction-side exhaust gas line 19 a that guides the exhaust gas from the exhaust heat source 89 to the heat exchanger 17 of the first high-temperature regenerator 2 of the absorption refrigeration machine 1, and the first high-temperature regeneration of the absorption refrigeration machine 1. The exhaust side exhaust pipe 19b for exhausting the exhaust gas flowing out from the heat exchanger 17 of the vessel 2 is provided. On the other hand, one end of the exhaust pipe 91 is connected to the exhaust gas outlet (not shown) of the exhaust heat source 89, and the exhaust gas is discharged from the other end of the exhaust pipe 91. The exhaust pipe 91 is provided with dampers 93 and 95 as exhaust gas flow path switching means at two locations. The damper 93 is provided upstream of the damper 95 of the exhaust pipe 91 with respect to the flow of the exhaust gas. The upstream side damper 93 is connected to the introduction side exhaust gas pipe 19a, and the downstream side damper 95 is connected to the outlet side exhaust gas pipe 19b. When the absorption refrigerator 1 is driven, the dampers 93 and 95 are switched so that the exhaust gas flows into the introduction side exhaust gas line 19a and the outlet side exhaust gas line 19b, and the exhaust heat source 89 generates the exhaust gas but absorbs it. When the type refrigerator 1 is stopped, the dampers 93 and 95 are switched so that the exhaust gas flows into the exhaust pipe 91.
[0024]
The operation of the absorption refrigerator having such a configuration and the features of the present invention will be described. In the figure, the flow of solutions such as dilute solution, intermediate concentrated solution, and concentrated solution are indicated by solid arrows, and the flow of refrigerant vapor is indicated by broken arrows.
[0025]
First, the operation when the absorption refrigerator 1 cools water, for example, and flows it through the cold / hot water pipe 59 will be described. At this time, the first heating switching valve 77 of the third steam line 75 and the second heating switching valve 81 of the bypass line 79 are closed, and a cooling tower and a circulation pump (not shown) are driven. Yes. When the dampers 93 and 95 are switched and the exhaust gas flows through the heat medium pipe 19, the exhaust gas is supplied from the dilute solution pipe 23 and accumulated in the heating chamber 13 of the first high-temperature regenerator 2 as shown in FIG. 1. The diluted solution is heated by the heat of the exhaust gas flowing through the heat exchanger 17 in the heating chamber 13. As a result, the refrigerant absorbed in the rare solution evaporates to produce refrigerant vapor, and the rare solution becomes an intermediate concentrated solution. At this time, since the first heating switching valve 77 of the third steam line 75 is closed, the refrigerant vapor in the gas phase portion in the heating chamber 13 is separated from the intermediate concentrated solution by the gas-liquid separator 27. The second steam line 33 flows in the direction of the condenser 7. Further, the refrigerant vapor heats the intermediate concentrated solution in the low temperature regenerator 5 at a portion of the second vapor line 33 piped in the low temperature regenerator 5. Thereby, the refrigerant vapor is condensed into a refrigerant liquid and flows into the condenser 7. The rare solution is, for example, a solution made of lithium bromide and water, and in this case, water becomes a refrigerant.
[0026]
On the other hand, the intermediate concentrated solution generated in the heating chamber 13 of the first high-temperature regenerator 2 flows into the outlet chamber 15 beyond the upper edge of the overflow weir 25. The intermediate concentrated solution flowing into the outlet chamber 15 flows into the second high temperature regenerator 3 through the first intermediate concentrated solution pipe 35. The burner 37 of the second high-temperature regenerator 3 heats the intermediate concentrated solution so as to make up for the amount of heat deficient in the first high-temperature regenerator 2. Refrigerant vapor generated in the second high-temperature regenerator 3 due to the heating of the intermediate concentrated solution by the burner 37 of the second high-temperature regenerator 3 passes through the first steam line 31 in the outlet chamber 15 of the first high-temperature regenerator 2. Into the gas phase. The refrigerant vapor that has flowed from the second high-temperature regenerator 3 into the gas phase portion in the outlet chamber 15 of the first high-temperature regenerator 2 flows into the gas phase portion in the heating chamber 13 of the first high-temperature regenerator 2 and enters the first high-temperature regenerator 2. Along with the refrigerant vapor generated in the heating chamber 13 of the regenerator 2, it is separated from the liquid by the gas-liquid separator 27 and flows through the second vapor line 33, and is piped into the low temperature regenerator 5 in the second vapor line 33. The liquid is condensed at the portion, becomes a refrigerant liquid, and flows into the condenser 7.
[0027]
The intermediate concentrated solution heated by the second high temperature regenerator 3 flows into the low temperature regenerator 5 through the second intermediate concentrated solution line 45 because the second heating switching valve 81 of the bypass line 79 is closed. To do. The intermediate concentrated solution that has flowed into the low-temperature regenerator 5 is heated by the heat of the refrigerant vapor from the first high-temperature regenerator and the refrigerant vapor from the second high-temperature regenerator that flows through the second vapor line 33, and further the refrigerant Steam is generated to form a concentrated solution. The refrigerant vapor generated in the low temperature regenerator 5 flows into the condenser 7 and is condensed. The flow rate of the intermediate concentrated solution flowing into the low temperature regenerator 5 through the second intermediate concentrated solution conduit 45 is adjusted by the opening degree of the flow rate adjusting valve 73 of the second intermediate concentrated solution conduit 45.
[0028]
The refrigerant liquid obtained by condensing the refrigerant vapor generated in the low-temperature regenerator 5 in the condenser 7 and the refrigerant liquid flowing into the condenser 7 from the second vapor line 33 are connected to the evaporator via the refrigerant liquid line 53. 9 is sprayed from the spraying part 57 in the heat exchanger 55 to the heat exchanger 55. The refrigerant liquid sprayed to the heat exchanger 55 in the evaporator 9 takes the heat of the water flowing in the heat exchanger 55 and evaporates, and cools the water flowing in the heat exchanger 55. At this time, the refrigerant vapor generated in the evaporator 9 is absorbed by the concentrated solution sprayed from the spraying part 63 in the absorber 11 through the concentrated solution pipe 65 to become a rare solution. At this time, the heat generated by the absorption of the refrigerant vapor into the concentrated solution is cooled by the cooling water flowing through the heat exchanger 61 in the absorber 11. The dilute solution generated by the absorber 11 is supplied to the heating chamber 13 of the first high temperature regenerator 2 through the dilute solution line 23.
[0029]
Here, when the absorption refrigeration machine 1 is stopped when the exhaust heat source 89 is driven and the cooling load is reduced, for example, when the exhaust heat source 89 is used as an air conditioner, the dampers 93 and 95 are absorbed. It switches so that exhaust gas may be discharged | emitted from the exhaust pipe 91, without passing through the refrigerator 1, and a dilution operation is performed after this. In the dilution operation, generally, the pump 67 is continuously driven without heating in the first high-temperature regenerator 2 and the second high-temperature regenerator 3, and the concentration of the produced concentrated solution is reduced. After completion of the dilution operation, detection of the temperature of the diluted solution is started by the temperature sensor 26 that detects the temperature of the diluted solution accumulated in the heating chamber 13 of the first high-temperature regenerator 2.
[0030]
At this time, due to the leakage of the exhaust gas from the damper 93, the exhaust gas enters the exhaust gas conduit 19a, whereby the rare solution accumulated in the heating chamber 13 of the first high temperature regenerator 2 is heated, and the rare solution is preset. When the temperature is higher than the above temperature, the pump 67 is driven in a state where the second high temperature regenerator 3 is not heated, and a cooling water circulation pump (not shown) is driven to supply the cooling water from a cooling tower (not shown). The heat exchanger 61 of the absorber 11 and the heat exchanger 49 of the condenser 7 are sequentially passed and circulated. Thereby, the dilute solution, that is, the absorbing solution is cooled to suppress the concentration of the absorbing solution.
[0031]
Next, the operation in the case where, for example, water is heated and passed through the cold / hot water pipe 59 by the absorption refrigerator 1 will be described. At this time, the first heating switching valve 77 of the third steam line 75 and the second heating switching valve 81 of the bypass line 79 are opened, and the cooling tower and the circulation pump (not shown) are stopped. Yes. When the dampers 93 and 95 are switched and the exhaust gas flows through the heat medium pipe 19, as shown in FIG. 3, it is supplied from the dilute solution pipe 23 and accumulated in the heating chamber 13 of the first high-temperature regenerator 2. The diluted solution is heated by the heat of the exhaust gas flowing through the heat exchanger 17 in the heating chamber 13. As a result, the refrigerant absorbed in the rare solution evaporates to produce refrigerant vapor, and the rare solution becomes an intermediate concentrated solution. At this time, since the first heating switching valve 77 of the third steam line 75 is open, the refrigerant vapor in the gas phase portion in the heating chamber 13 is separated from the intermediate concentrated solution by the gas-liquid separator 27. The third steam line 75 flows in the direction of the evaporator 9 and flows into the evaporator 9.
[0032]
On the other hand, the intermediate concentrated solution generated in the heating chamber 13 of the first high-temperature regenerator 2 flows into the outlet chamber 15 beyond the upper edge of the overflow weir 25. The intermediate concentrated solution flowing into the outlet chamber 15 flows into the second high temperature regenerator 3 through the first intermediate concentrated solution pipe 35. The burner 37 of the second high-temperature regenerator 3 heats the intermediate concentrated solution so as to make up for the amount of heat deficient in the first high-temperature regenerator 2. Refrigerant vapor generated in the second high-temperature regenerator 3 due to the heating of the intermediate concentrated solution by the burner 37 of the second high-temperature regenerator 3 passes through the first steam line 31 in the outlet chamber 15 of the first high-temperature regenerator 2. Into the gas phase. The refrigerant vapor that has flowed from the second high-temperature regenerator 3 into the gas phase portion in the outlet chamber 15 of the first high-temperature regenerator 2 flows into the gas phase portion in the heating chamber 13 of the first high-temperature regenerator 2 and enters the first high-temperature regenerator 2. Together with the refrigerant vapor generated in the heating chamber 13 of the regenerator 2, it is separated from the intermediate concentrated solution by the gas-liquid separator 27, flows through the third vapor line 75, and flows into the evaporator 9.
[0033]
The water flowing through the heat exchanger 55 of the evaporator 9 is heated by the heat of the refrigerant vapor flowing into the evaporator 9. The intermediate concentrated solution that has flowed from the second high temperature regenerator 3 into the bottom of the evaporator 9 and the absorber 11 through the intermediate concentrated solution line 45 and the bypass line 79 heats the water flowing through the heat exchanger 55. Then, the refrigerant vapor mixed with the condensed refrigerant liquid and generated in the evaporator 9 as a rare solution is absorbed by the concentrated solution sprayed from the spraying portion 63 in the absorber 11 through the concentrated solution pipe 65. The dilute solution is supplied to the heating chamber 13 of the first high-temperature regenerator 2 through the dilute solution line 23.
[0034]
Here, when the absorption refrigeration machine 1 is stopped for the reason that, for example, the heating load is reduced when the exhaust heat source 89 is driven and used as an air conditioner, the dampers 93 and 95 are absorbed by the absorption type. It switches so that exhaust gas may be discharged | emitted from the exhaust pipe 91, without passing through the refrigerator 1. FIG. Thereafter, detection of the temperature of the rare solution is started by the temperature sensor 26 that detects the temperature of the rare solution accumulated in the heating chamber 13 of the first high-temperature regenerator 2. At this time, due to the leakage of the exhaust gas from the damper 93, the exhaust gas enters the exhaust gas conduit 19a, whereby the rare solution accumulated in the heating chamber 13 of the first high temperature regenerator 2 is heated, and the rare solution is preset. When the temperature exceeds the above temperature, the pump 67 is driven without heating in the second high-temperature regenerator 3, and the absorption liquid is supplied to the first high-temperature regenerator 2, the second high-temperature regenerator 3, and the evaporator 9 and the absorber 11. The cooling fan 87 of the radiator 83 provided in the second intermediate concentrated solution pipe 35 between the first high temperature regenerator 2 and the second high temperature regenerator 3 is driven. Thereby, the dilute solution, that is, the absorbing solution is cooled to suppress the concentration of the absorbing solution.
[0035]
As described above, in the absorption refrigerator 1 of the present embodiment, the exhaust gas enters the exhaust gas pipe line 19a due to the leakage of the exhaust gas from the damper 93, and thereby accumulates in the heating chamber 13 of the first high-temperature regenerator 2. When the dilute solution is heated and the dilute solution reaches a preset temperature or higher, the pump 67 is driven and a cooling water circulation pump (not shown) is driven to absorb the cooling water from the cooling tower (not shown). The heat exchanger 61 of the condenser 11 and the heat exchanger 49 of the condenser 7 are sequentially passed through and circulated, or the pump 67 is driven to absorb the absorbed liquid in the first high temperature regenerator 2 and the second high temperature regenerator. The temperature of the absorbing liquid is increased by driving the cooling fan 87 of the radiator 83 provided in the second intermediate concentrated solution pipe 35 while circulating between the evaporator 3 and the evaporator 9 and the bottom of the absorber 11. Can suppress the rise Therefore, it is possible to suppress the concentration of the absorbent solution at the time of absorption refrigerator stopped.
[0036]
Furthermore, in the absorption refrigerator 1 of the present embodiment, the radiator 83 is a portion lower than the upper edge of the overflow weir 41 of the second high temperature regenerator 3 of the second intermediate concentrated solution pipe 35, that is, the second high temperature. The regenerator 3 is provided in a portion below the liquid level in the heating chamber 39. The portion below the liquid level in the heating chamber 39 of the second intermediate concentrated solution pipe 35 is filled with the absorbing liquid regardless of the flow rate of the absorbing liquid from the first high temperature regenerator 2 to the second high temperature regenerator 3. Therefore, the radiator 83 can reliably cool the absorption liquid in the liquid phase and can improve the cooling efficiency of the absorption liquid.
[0037]
Incidentally, in Japanese Utility Model Laid-Open No. 57-30680 and Japanese Patent Application Laid-Open No. 11-182974, when a plurality of dampers and a fan or an ejector are combined, and the absorption chiller is stopped when the exhaust heat source is driven, It has been proposed to prevent exhaust gas from flowing through the absorption chiller. However, in the absorption chillers proposed for these, the number of dampers increases and the cost increases. On the other hand, in the absorption refrigerator 1 of the present embodiment, the number of dampers and the like can be reduced as compared with the absorption refrigerators proposed in Japanese Utility Model Laid-Open Nos. 57-30680 and 11-182974. Can be reduced.
[0038]
In the present embodiment, when the absorption refrigerator 1 cools the secondary cooling medium, the pump 67 is driven and a cooling water circulation pump (not shown) is driven to absorb the cooling water. The liquid is cooled to suppress the concentration of the absorption liquid when the absorption refrigerator is stopped. However, when the absorption chiller 1 cools the secondary cooling medium, the burner of the second high-temperature regenerator 3 is also used in the same manner as when the absorption chiller 1 heats the secondary cooling medium after completion of the dilution operation. 37 and the cooling water circulation pump (not shown) are stopped, the pump 67 is driven, and the cooling fan 87 of the radiator 83 provided in the second intermediate concentrated solution pipe 35 is driven. Therefore, it is possible to suppress the concentration of the absorption liquid when the absorption refrigerator is stopped.
[0039]
Moreover, although the structure which cools or heats the water which flows through the cold water pipe 59 by the evaporator 9 is illustrated in this embodiment, various secondary cooling mediums other than water can also be cooled or heated. .
[0040]
Further, the present invention is not limited to the absorption chiller having the configuration of the present embodiment, and is applied to an absorption chiller having various configurations including a regenerator that heats the absorbing liquid with heat of exhaust gas from various exhaust heat sources. it can. For example, in the present embodiment, a configuration having the second high-temperature regenerator 3 and the low-temperature regenerator 5 is shown, but the present invention is an absorption refrigeration machine that does not have a high-temperature regenerator or a low-temperature regenerator provided with a burner. It can also be applied to. In addition, as an exhaust heat source, an engine, a fuel cell, various industrial facilities and apparatuses, geothermal heat, a hot spring, etc. can be utilized, for example.
[0041]
【The invention's effect】
According to the present invention, it is possible to suppress the concentration of the absorption liquid when the absorption refrigerator is stopped.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of an absorption refrigerator to which the present invention is applied and an operation during a cooling operation.
FIG. 2 is a block diagram showing an example of the configuration of exhaust gas pipes and exhaust pipes piped between an exhaust heat source and an absorption refrigerator.
FIG. 3 is a block diagram showing a schematic configuration of an embodiment of an absorption refrigerator to which the present invention is applied and an operation during a heating operation.
[Explanation of symbols]
1 Absorption refrigerator
2 1st high temperature regenerator
7 Condenser
9 Evaporator
11 Absorber
23 Rare solution line
26 Temperature sensor
35 1st middle concentrated solution line
67 Pump
83 Heatsink
87 Cooling fan

Claims (4)

排熱源からの排ガスによって吸収液を加熱する再生器と、凝縮器と、蒸発器と、吸収器と、前記吸収器から前記再生器へ吸収液を供給する流路に設けられたポンプと、前記再生器内の吸収液の温度を検出する温度センサと、前記再生器からの吸収液が通流する流路に設けられた放熱器とを備え、運転を停止しているとき、前記温度センサで検出した前記再生器内の吸収液の温度が設定した温度以上になると、前記ポンプを駆動すると共に、前記放熱器の冷却ファンを駆動してなる吸収式冷凍機。A regenerator that heats the absorbing liquid by exhaust gas from a waste heat source, a condenser, an evaporator, an absorber, a pump provided in a flow path for supplying the absorbing liquid from the absorber to the regenerator, A temperature sensor for detecting the temperature of the absorbing liquid in the regenerator and a radiator provided in a flow path through which the absorbing liquid from the regenerator flows, and when the operation is stopped, the temperature sensor When the detected temperature of the absorption liquid in the regenerator becomes equal to or higher than a set temperature, the absorption refrigerator is configured to drive the pump and drive the cooling fan of the radiator. 排熱源からの排ガスによって吸収液を加熱する第1の再生器及び該第1の再生器の下方に配設されて該第1の再生器からの吸収液をバーナで加熱する第2の再生器の少なくとも2つの再生器と、凝縮器と、蒸発器と、吸収器と、前記吸収器から前記第1の再生器へ吸収液を供給する流路に設けられたポンプと、前記第1の再生器内の吸収液の温度を検出する温度センサと、前記第1の再生器から前記第2の再生器へ吸収液を導く流路に放熱器とを備え、運転を停止しているとき、前記温度センサで検出した前記第1の再生器内の吸収液の温度が設定した温度以上になると、前記ポンプを駆動すると共に、前記放熱器の冷却ファンを駆動してなる吸収式冷凍機。The 1st regenerator which heats absorption liquid with waste gas from an exhaust heat source, and the 2nd regenerator which is arranged under the 1st regenerator and heats absorption liquid from the 1st regenerator with a burner At least two regenerators, a condenser, an evaporator, an absorber, a pump provided in a flow path for supplying an absorption liquid from the absorber to the first regenerator, and the first regeneration A temperature sensor that detects the temperature of the absorbing liquid in the container, and a radiator in the flow path that leads the absorbing liquid from the first regenerator to the second regenerator, and when the operation is stopped, An absorption refrigerator in which the pump is driven and the cooling fan of the radiator is driven when the temperature of the absorbing liquid in the first regenerator detected by the temperature sensor becomes equal to or higher than a set temperature. 前記放熱器は、前記第1の再生器から前記第2の再生器へ吸収液を導く流路の、前記第2の再生器内の吸収液の液面よりも低い位置に設けられていることを特徴とする請求項に記載の吸収式冷凍機。The radiator is provided at a position lower than the liquid level of the absorbing liquid in the second regenerator in the flow path for guiding the absorbing liquid from the first regenerator to the second regenerator. The absorption refrigerator according to claim 2 , wherein: 前記吸収器に冷却水を供給する冷却水供給手段を備え、前記蒸発器が二次冷熱媒を冷却する冷却運転中に運転を停止しているとき、前記温度センサで検出した前記再生器内の吸収液の温度が設定した温度以上になると、前記冷却水供給手段により前記吸収器に冷却水を供給すると共に前記ポンプを駆動し、
前記蒸発器が二次冷熱媒を加熱する加熱運転中に運転を停止しているとき、前記温度センサで検出した前記再生器内の吸収液の温度が設定した温度以上になると、前記ポンプを駆動すると共に前記放熱器の冷却ファンを駆動してなることを特徴とする請求項1乃至3のいずれか1項に記載の吸収式冷凍機。
Provided with cooling water supply means for supplying cooling water to the absorber, and when the evaporator is stopped during the cooling operation for cooling the secondary cooling medium, in the regenerator detected by the temperature sensor When the temperature of the absorbing liquid is equal to or higher than a set temperature, the cooling water supply means supplies cooling water to the absorber and drives the pump,
When the operation is stopped during the heating operation in which the evaporator heats the secondary cooling medium, the pump is driven when the temperature of the absorbing liquid in the regenerator detected by the temperature sensor is equal to or higher than a set temperature. The absorption refrigeration machine according to any one of claims 1 to 3, wherein the cooling fan of the radiator is driven.
JP2001160677A 2001-05-29 2001-05-29 Absorption refrigerator Expired - Fee Related JP4437253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001160677A JP4437253B2 (en) 2001-05-29 2001-05-29 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001160677A JP4437253B2 (en) 2001-05-29 2001-05-29 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JP2002349990A JP2002349990A (en) 2002-12-04
JP4437253B2 true JP4437253B2 (en) 2010-03-24

Family

ID=19004052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001160677A Expired - Fee Related JP4437253B2 (en) 2001-05-29 2001-05-29 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP4437253B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5118835B2 (en) * 2006-09-28 2013-01-16 三洋電機株式会社 Absorption refrigeration system
JP6672847B2 (en) * 2016-02-03 2020-03-25 アイシン精機株式会社 Absorption type heat pump device
CN109114840B (en) * 2018-08-09 2024-01-23 天津大学 Absorption heat pump treatment equipment

Also Published As

Publication number Publication date
JP2002349990A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
US20090193829A1 (en) Absorption-type cooling device and associated motor vehicle
JP2723454B2 (en) Absorption air conditioner
JP2008095976A (en) Two-stage absorption refrigerating machine
JP4437253B2 (en) Absorption refrigerator
KR101690303B1 (en) Triple effect absorption chiller
JPH09273832A (en) Absorption type refrigerating machine
JP2007333342A (en) Multi-effect absorption refrigerating machine
JPH0355742B2 (en)
JP4315855B2 (en) Absorption refrigerator
KR100213780B1 (en) Water supply system of absortion type cooler
JP4279917B2 (en) Absorption refrigerator
JP4297822B2 (en) Absorption refrigerator
KR19990029907A (en) Absorption Chiller
JP2004169988A (en) Two-stage/single-stage switchable absorption refrigerator and refrigerating system
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JP2009052811A (en) Exhaust heat drive-type absorption refrigerating device
JP2523579B2 (en) Air-cooled absorption type water heater
JP3988016B2 (en) Absorption refrigerator
JP4282225B2 (en) Absorption refrigerator
JPH08159593A (en) Absorption type heat pump
JP4399660B2 (en) Hot water bottle absorption refrigerator
JP3790360B2 (en) Absorption refrigeration system
KR0139277Y1 (en) Absorptive refrigerator
JP4330522B2 (en) Absorption refrigerator operation control method
JP3937087B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees