JPH10306312A - Method for observing hydrogen concentration in exhaust gas - Google Patents

Method for observing hydrogen concentration in exhaust gas

Info

Publication number
JPH10306312A
JPH10306312A JP9111288A JP11128897A JPH10306312A JP H10306312 A JPH10306312 A JP H10306312A JP 9111288 A JP9111288 A JP 9111288A JP 11128897 A JP11128897 A JP 11128897A JP H10306312 A JPH10306312 A JP H10306312A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
hydrogen
sound
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9111288A
Other languages
Japanese (ja)
Inventor
Yasuto Mizushima
康人 水嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9111288A priority Critical patent/JPH10306312A/en
Publication of JPH10306312A publication Critical patent/JPH10306312A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02818Density, viscosity

Abstract

PROBLEM TO BE SOLVED: To quickly detect a rapid change in hydrogen concn. in exhaust gas in a vacuum degassing apparatus by constantly measuring the sound velocity propagated in the exhaust gas and detecting the change in hydrogen concn. contained in the exhaust gas with a change in the sound velocity. SOLUTION: The exhaust gas produced in the vacuum degassing treatment of molten steel, is mainly constituted with CO, CO2 and H2 . Since the sound velocity propagated in the exhaust gas of H2 gas only is three to five times as high as that in only CO gas or CO2 gas, the sound velocity of the above exhaust gas is affected most sensitively to the hydrogen gas concn. Based on this, a speaker 3 as the sound wave transmitter and an ultrasonic microphone 2 for receiver mutually faced in the radius direction, are arranged on the inner wall of a duct 1 for exhaust gas to measure the variation of sound volume per unit time between the transmitter and the receiver. In such a way, the hydrogen concn. in the exhaust gas is observed and the adding quantity of flux is adjusted and the vacuum degree is lowered, and thereby, the exhaust gas composition can be made not to reach the explosion limit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス中の水素ガ
ス濃度監視方法及び装置に関し、特に、ガス分析計を用
いずに、鉄鋼精錬に用いる真空脱ガス装置において、そ
の排ガスに含まれる水素ガス濃度の増減を簡易に検出す
る技術である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for monitoring the concentration of hydrogen gas in exhaust gas, and more particularly to a method for monitoring the concentration of hydrogen gas contained in exhaust gas in a vacuum degassing apparatus used for steel refining without using a gas analyzer. This is a technique for easily detecting an increase or decrease in density.

【0002】[0002]

【従来の技術】鋼材が含有する炭素は、該鋼材の品質及
び機械的強度に大きな影響を及ぼすので、近年の製鋼工
程では、転炉等で脱炭精錬された溶鋼を、さらに真空脱
ガス装置で処理し、所謂極低炭素領域にまで脱炭される
場合がある。その際、炭素量を目標値にするため、前記
真空脱ガス装置の排ガス成分を分析し、その分析値に基
づいたダイナミック制御が行われるようになった。
2. Description of the Related Art Since carbon contained in steel has a great effect on the quality and mechanical strength of the steel, in recent steelmaking processes, molten steel decarburized and refined in a converter or the like is further subjected to a vacuum degassing apparatus. , And may be decarbonized to a so-called extremely low carbon region. At that time, in order to set the carbon content to a target value, the exhaust gas component of the vacuum degassing device is analyzed, and dynamic control based on the analysis value is performed.

【0003】この真空脱ガス装置の排ガス成分は、真空
脱ガス装置が、数十torr程度の真空下にあるため、
それに近い位置でのサンプリングが困難であり、通常、
常圧下で分析されている。つまり、特開平6−8102
7号公報に開示されているように、真空脱ガス装置から
かなり離れた場所に真空ポンプを設置し、該ポンプの出
側で常圧になった排ガスを採取し、質量分析計又は赤外
線分析計を用いて、排ガス中の成分を分析するのであ
る。この方法では、分析計に排ガスを直接導入するの
で、除塵および除湿を行うサンプリング装置が必要であ
った。そして、該サンプリング装置は、排ガス中のダス
トが水分と結合してフィルタの目詰りを起こすので、頻
繁なメンテナンスを必要としていた。また、分析計の設
置位置が真空脱ガス装置から遠いので、ガスがサンプリ
ング装置を通過して分析計に到達するのに時間がかか
り、迅速な成分分析を妨げていた。
[0003] The exhaust gas component of this vacuum degassing device is under vacuum of about several tens torr because the vacuum degassing device is under vacuum.
It is difficult to sample near that point, and usually
Analyzed under normal pressure. That is, JP-A-6-8102
As disclosed in Japanese Patent Publication No. 7, a vacuum pump is installed at a place far away from the vacuum degassing device, exhaust gas at normal pressure is collected at the outlet of the pump, and a mass spectrometer or an infrared spectrometer is used. Is used to analyze the components in the exhaust gas. In this method, since the exhaust gas is directly introduced into the analyzer, a sampling device for removing dust and dehumidifying was required. In addition, the sampling device requires frequent maintenance because dust in exhaust gas combines with moisture to cause clogging of the filter. Also, since the installation position of the analyzer is far from the vacuum degassing device, it takes time for the gas to pass through the sampling device and reach the analyzer, which hinders rapid component analysis.

【0004】ところで、このような迅速分析ができない
従来の排ガス分析でも、通常の真空製錬では、脱ガス装
置内の反応モニターとしてそれなりに機能してきた。し
かしながら、近年、真空下で処理される鋼種の多様化に
伴い、炉内への副原料投入時の不測のガス成分変化が問
題となってきた。例えば、Ti、Zr、Hf等水素吸蔵
性の高い元素を、鋼中での有効量に調整するため、真空
脱ガス装置内の溶鋼に添加すると、これらの金属に吸蔵
されていた水素が突如放出されて排ガス中に混入し、そ
の水素濃度を急激に変化させることが観測された。ま
た、精錬中に冷材としてチョッパ(スクラップ屑)等を
投入したり、精錬用フラックスとして吸湿分の多い石灰
系のものを投入した場合にも、同様の問題が知見され
た。この水素は、COと共にガス爆発の原因になるガス
種である。従って、排ガス中の急激な水素濃度の増大に
よって排ガスが爆発限界を超えることは、安全上、絶対
に避けなければならない。
[0004] Even in the conventional exhaust gas analysis which cannot perform such rapid analysis, ordinary vacuum smelting has functioned as a reaction monitor in a degassing apparatus. However, in recent years, with the diversification of steel types processed under vacuum, an unexpected change in gas components at the time of feeding auxiliary materials into the furnace has become a problem. For example, when elements having high hydrogen storage properties such as Ti, Zr, and Hf are added to molten steel in a vacuum degassing apparatus in order to adjust to an effective amount in steel, hydrogen stored in these metals is suddenly released. It was observed that they were mixed into the exhaust gas and rapidly changed the hydrogen concentration. Similar problems were also found when choppers (scrap scraps) or the like were introduced as a cold material during refining, or when a lime-based flux containing a large amount of moisture was introduced as a refining flux. This hydrogen is a gas species that causes a gas explosion together with CO. Therefore, from the viewpoint of safety, it must be absolutely avoided that the exhaust gas exceeds the explosion limit due to the rapid increase in the hydrogen concentration in the exhaust gas.

【0005】ところが、上記した従来のガス採取による
分析では、迅速分析ができないので、ダクト内を通過す
る排ガスに水素ガスが急激に増量しても、その状況をい
ち早く検出できず、予防措置が遅れてしまう恐れがあ
る。そのため、溶鋼の真空脱ガス処理が安心して行えな
いという問題を抱えていた。
However, in the above-described conventional analysis using gas sampling, rapid analysis cannot be performed. Therefore, even if the amount of hydrogen gas rapidly increases in the exhaust gas passing through the duct, the situation cannot be detected quickly, and preventive measures are delayed. There is a risk that it will. Therefore, there has been a problem that the vacuum degassing of molten steel cannot be performed with security.

【0006】[0006]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑み、真空脱ガス装置の排ガス中水素濃度の急激な変
化を迅速に検知可能な排ガス中の水素濃度監視方法及び
装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a method and an apparatus for monitoring the concentration of hydrogen in exhaust gas which can rapidly detect a rapid change in the concentration of hydrogen in exhaust gas of a vacuum degassing apparatus. It is an object.

【0007】[0007]

【課題を解決するための手段】発明者は、上記目的を達
成するため、排ガスを採取して分析するのではなく、迅
速処理が可能な水素濃度監視手段の発見に鋭意努力し
た。そして、排ガス中を通過する音の伝搬速度(以下、
音速という)が排ガス中の水素濃度に影響されることに
着眼し、本発明を完成させた。
Means for Solving the Problems In order to achieve the above object, the inventor has made an intensive effort to find a hydrogen concentration monitoring means capable of performing rapid processing, instead of collecting and analyzing exhaust gas. And the propagation speed of the sound passing through the exhaust gas (hereinafter, referred to as
The present invention has been completed by focusing on the fact that the sound velocity is affected by the hydrogen concentration in the exhaust gas.

【0008】すなわち、本発明は、排ガス中を伝播する
音速を常時測定し、該音速の変化で排ガスに含まれる水
素の濃度変化を検知することを特徴とする排ガス中の水
素ガス濃度監視方法である。また、本発明は、前記音速
にしきい値を設定し、測定した音速が該しきい値を超え
たら警報を発することを特徴とする排ガス中の水素ガス
濃度監視方法である。
That is, the present invention relates to a method for monitoring the concentration of hydrogen gas in exhaust gas, which constantly measures the speed of sound propagating in the exhaust gas and detects a change in the concentration of hydrogen contained in the exhaust gas based on the change in the sound speed. is there. Further, the present invention is a method for monitoring the concentration of hydrogen gas in exhaust gas, wherein a threshold value is set for the sound speed, and an alarm is issued when the measured sound speed exceeds the threshold value.

【0009】さらに、本発明は、真空脱ガス装置の排ガ
ス用ダクトの内壁に、音波を発生させるスピーカと、該
音波を受ける超音波マイクロホンとを対向させて設けた
ことを特徴とする排ガス中の水素ガス濃度監視装置でも
ある。加えて、本発明は、前記スピーカと超音波マイク
ロホンとを、前記内壁の半径方向で対向させて設けたこ
とを特徴とする請求項3記載の排ガスの水素濃度監視装
置。
Further, the present invention is characterized in that a speaker for generating a sound wave and an ultrasonic microphone for receiving the sound wave are provided opposite to each other on the inner wall of the exhaust gas duct of the vacuum degassing apparatus. It is also a hydrogen gas concentration monitoring device. 4. The apparatus according to claim 3, wherein the speaker and the ultrasonic microphone are provided so as to face each other in a radial direction of the inner wall.

【0010】本発明では、排ガス中を伝搬する音速を常
時測定し、その変化量を検出するようにしたので、該排
ガス中の水素の急激な濃度を容易に検知できるようにな
る。その結果、オペレータは、排ガスの水素濃度管理が
的確に行え、かつその措置(水素含有量の減少)も迅速
に実施できるようになる。
In the present invention, since the speed of sound propagating in the exhaust gas is constantly measured and the amount of change is detected, the rapid concentration of hydrogen in the exhaust gas can be easily detected. As a result, the operator can accurately manage the hydrogen concentration of the exhaust gas, and can quickly perform the measure (reduction of the hydrogen content).

【0011】[0011]

【発明の実施の形態】以下、本発明に至る経緯も含め、
本発明の実施の形態を説明する。ガス中を伝搬する音速
は、該ガスがすべてCOの場合で337.1(m/se
c)、CO2 の場合で258.0(m/sec)、H2
の場合で1269.5(m/sec)である。溶鋼の真
空脱ガス処理で生じる排ガスは、ほぼCO、CO 2 、H
2 で構成されるので、上記の事実から真空脱ガス装置か
らの排ガスは、水素ガス濃度によって最も敏感に反応す
ると考えられる。
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described. Speed of sound propagating in gas
Is 337.1 (m / sec) when the gas is all CO.
c), COTwo 258.0 (m / sec), HTwo 
Is 1269.5 (m / sec). True of molten steel
Exhaust gas generated by the empty degassing process is almost CO, CO Two , H
Two Because of the above facts, the vacuum degassing device
These exhaust gases react most sensitively depending on the hydrogen gas concentration.
It is thought that.

【0012】本発明は、この考えを具現化したものであ
り、使用した装置例を図1に示す。図1は、排ガス用ダ
クト1の断面を示しており、その内壁に、半径方向で対
向させて音波の発信用にスピーカ3を、受信用に超音波
マイクロホン2を設けてある。なお、本発明では、設置
位置を該ダクト1の半径方向に限るものではなく、長手
方向でも対向させる関係にあれば良い。これによって、
発信と受信間の時間あたりの音量変化が測定できること
になる。
The present invention embodies this idea, and FIG. 1 shows an example of an apparatus used. FIG. 1 shows a cross section of an exhaust gas duct 1, and a speaker 3 for transmitting a sound wave and an ultrasonic microphone 2 for receiving are provided on the inner wall of the duct 1 so as to face each other in the radial direction. In the present invention, the installation position is not limited to the radial direction of the duct 1, but may be any relationship as long as they are opposed to each other in the longitudinal direction. by this,
The change in volume per time between transmission and reception can be measured.

【0013】また、前記真空脱ガス処理時に溶鋼へ添加
する、例えばチョッパ等の冷材は、排ガス中のCO、C
2 量を殆ど変化させないか、あるいは変化させてもそ
の変化速度は小さい。そのため、排ガス中のCO、CO
2 濃度については、従来通りの排ガス分析計(図示せ
ず)による分析で十分である。また、それらの分析値で
本発明に係る排ガスの音速から推算される水素ガス濃度
を補正すれば、より正確な排ガス中水素ガス濃度の監視
が可能となる。
[0013] In addition, a cold material such as a chopper to be added to the molten steel at the time of the above-mentioned vacuum degassing treatment may include CO, C in exhaust gas.
The O 2 amount is hardly changed, or even if it is changed, the change speed is small. Therefore, CO, CO in exhaust gas
Regarding the two concentrations, analysis using a conventional exhaust gas analyzer (not shown) is sufficient. Further, if the hydrogen gas concentration estimated from the sound speed of the exhaust gas according to the present invention is corrected with those analysis values, more accurate monitoring of the hydrogen gas concentration in the exhaust gas becomes possible.

【0014】このようにして監視した排ガス中の水素濃
度の変化に基づけば、合金成分や焼き石灰等のフラック
スの添加量を調整することによって、あるいは真空度を
下げることによって、排ガス組成を爆発限界に入らない
ようにすることが可能である。その際、音速にしきい値
を設定し、その値を超えたら警報を出してオペレータに
注意を促し、1時的に真空度を下げて発生ガス量を低減
し、処置の遅れを防止することもできる。なお、しきい
値としては、水素の爆発限界下限濃度とすれば良い。
Based on the change in the hydrogen concentration in the exhaust gas monitored in this manner, the composition of the exhaust gas can be adjusted to the explosion limit by adjusting the amount of the flux added such as alloy components and calcined lime, or by reducing the degree of vacuum. It is possible to avoid entering. At that time, a threshold value is set for the sound velocity, and if it exceeds the value, a warning is issued to alert the operator, and the degree of vacuum is temporarily reduced to reduce the amount of generated gas, thereby preventing delay in treatment. it can. Note that the threshold may be the lower explosive limit concentration of hydrogen.

【0015】[0015]

【実施例】真空脱ガス装置として所謂VODを用い、そ
の排気用ダクト1の内壁に、図1に示すように半径方向
で対向させて超音波マイクロホン2とスピーカ3を設置
した。そして、下記の条件で音速の測定試験を行った。
VODで溶鋼の脱ガス処理を行う場合、通常の排ガス組
成は、CO:60vol%、CO2 :40vol%であ
り、該廃ガス中を通過する音速は、本発明に係る装置で
測定したところ約307(m/sec)であった。
EXAMPLE A so-called VOD was used as a vacuum degassing device, and an ultrasonic microphone 2 and a speaker 3 were installed on the inner wall of an exhaust duct 1 so as to face each other in the radial direction as shown in FIG. Then, a sound speed measurement test was performed under the following conditions.
When performing degassing treatment of the molten steel in VOD, the conventional exhaust gas composition, CO: 60vol%, CO 2 : a 40 vol%, the speed of sound passing through the waste gas is about as measured by the apparatus according to the present invention 307 (m / sec).

【0016】次に、溶鋼にTi合金を添加して溶鋼組成
を調整し、その間も本発明に係る装置で音速の測定を継
続した。排ガス中の水素濃度及び音速の変化を、それぞ
れ図2及び図3に示す。これらの図より、Ti添加時か
ら直ちに水素濃度及び音速が増加を開始していることが
わかる。そして、排ガスの組成は、最終的にCO:60
vol%、CO2 :30vol%、H2 :10vol%
になり、音速は408(m/sec)であった。
Next, the composition of the molten steel was adjusted by adding a Ti alloy to the molten steel, and during that time, the measurement of the sound velocity was continued with the apparatus according to the present invention. The changes in the hydrogen concentration and the speed of sound in the exhaust gas are shown in FIGS. 2 and 3, respectively. From these figures, it can be seen that the hydrogen concentration and the sound speed start increasing immediately after the addition of Ti. The composition of the exhaust gas finally becomes CO: 60
vol%, CO 2: 30vol% , H 2: 10vol%
And the sound speed was 408 (m / sec).

【0017】この試験結果によれば、排ガス中の音速測
定で水素濃度変化を迅速に検知でき、本発明が溶鋼の真
空脱ガス処理の安全性に有効であることが確認された。
According to the test results, it was possible to quickly detect a change in the hydrogen concentration by measuring the speed of sound in the exhaust gas, and it was confirmed that the present invention was effective for the safety of vacuum degassing of molten steel.

【0018】[0018]

【発明の効果】以上述べたように、本発明により、排ガ
スの組成変化を音の伝搬速度の変化で把握できるように
なった。これは、特に、水素濃度の増減監視を、イニシ
ャル・コストやメンテナンス・コストのかかる分析計や
サンプリング装置を使わずに、実施する際に有効であ
る。
As described above, according to the present invention, the change in the composition of the exhaust gas can be grasped by the change in the sound propagation speed. This is particularly effective when monitoring the increase or decrease of the hydrogen concentration without using an analyzer or a sampling device that requires initial costs and maintenance costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る排ガス中の水素濃度監視装置の一
例を示す図である。
FIG. 1 is a diagram showing an example of a device for monitoring the concentration of hydrogen in exhaust gas according to the present invention.

【図2】本発明に係る排ガス中の水素濃度監視方法の実
施で得た水素濃度の経時変化を示す図である。
FIG. 2 is a diagram showing a change with time of the hydrogen concentration obtained by implementing the method for monitoring the hydrogen concentration in exhaust gas according to the present invention.

【図3】本発明に係る排ガス中の水素濃度監視方法の実
施で得た音速の経時変化を示す図である。
FIG. 3 is a diagram showing a change over time in sound speed obtained by implementing the method for monitoring hydrogen concentration in exhaust gas according to the present invention.

【符号の説明】[Explanation of symbols]

1 排ガス用ダクト 2 超音波マイクロホン 3 スピーカ 4 音波 1 Duct for exhaust gas 2 Ultrasonic microphone 3 Speaker 4 Sound wave

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中を伝播する音速を常時測定し、
該音速の変化で排ガスに含まれる水素の濃度変化を検知
することを特徴とする排ガス中の水素ガス濃度監視方
法。
1. A sound velocity that propagates in exhaust gas is constantly measured,
A method for monitoring the concentration of hydrogen gas in exhaust gas, wherein the change in the concentration of hydrogen contained in the exhaust gas is detected based on the change in the speed of sound.
【請求項2】 前記音速にしきい値を設定し、測定値が
該しきい値を超えたら警報を発することを特徴とする請
求項1記載の排ガス中の水素ガス濃度監視方法。
2. A method for monitoring the concentration of hydrogen gas in exhaust gas according to claim 1, wherein a threshold value is set for the sound speed, and an alarm is issued when the measured value exceeds the threshold value.
【請求項3】 真空脱ガス装置の排ガス用ダクトの内壁
に、音波を発生させるスピーカと、該音波を受ける超音
波マイクロホンとを対向させて設けたことを特徴とする
排ガス中の水素ガス濃度監視装置。
3. A hydrogen gas concentration monitor in an exhaust gas, wherein a speaker for generating a sound wave and an ultrasonic microphone for receiving the sound wave are provided on the inner wall of the exhaust gas duct of the vacuum degassing device so as to face each other. apparatus.
【請求項4】 前記スピーカと超音波マイクロホンと
を、内壁の半径方向で対向させて設けたことを特徴とす
る請求項3記載の排ガスの水素濃度監視装置。
4. The exhaust gas hydrogen concentration monitoring apparatus according to claim 3, wherein the speaker and the ultrasonic microphone are provided to face each other in a radial direction of an inner wall.
JP9111288A 1997-04-28 1997-04-28 Method for observing hydrogen concentration in exhaust gas Withdrawn JPH10306312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9111288A JPH10306312A (en) 1997-04-28 1997-04-28 Method for observing hydrogen concentration in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9111288A JPH10306312A (en) 1997-04-28 1997-04-28 Method for observing hydrogen concentration in exhaust gas

Publications (1)

Publication Number Publication Date
JPH10306312A true JPH10306312A (en) 1998-11-17

Family

ID=14557433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9111288A Withdrawn JPH10306312A (en) 1997-04-28 1997-04-28 Method for observing hydrogen concentration in exhaust gas

Country Status (1)

Country Link
JP (1) JPH10306312A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7143632B2 (en) 2003-07-23 2006-12-05 High Energy Accelerator Research Organization Gas detecting method, and gas detecting device
US10260513B2 (en) 2013-06-27 2019-04-16 Mitsubishi Hitachi Power Systems, Ltd. Corrected RPM calculation method for finding a corrected RPM of a compressor using a sound velocity of an inlet gas sucked into the compressor, and RPM of the compressor, and a reference state quantity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7143632B2 (en) 2003-07-23 2006-12-05 High Energy Accelerator Research Organization Gas detecting method, and gas detecting device
US10260513B2 (en) 2013-06-27 2019-04-16 Mitsubishi Hitachi Power Systems, Ltd. Corrected RPM calculation method for finding a corrected RPM of a compressor using a sound velocity of an inlet gas sucked into the compressor, and RPM of the compressor, and a reference state quantity

Similar Documents

Publication Publication Date Title
EP3620542B1 (en) Converter operation monitoring method and converter operation method
US4024522A (en) Acoustic emission system for welding flaw detection
EP3929312A1 (en) Method for predicting slopping of converter furnace, method for operating converter furnace, and system for predicting slopping of converter furnace
KR101362712B1 (en) Control of the converter process by means of exhaust gas signals
JPH10306312A (en) Method for observing hydrogen concentration in exhaust gas
CA1250356A (en) Method and apparatus for measuring slag-forming conditions within converter
EP0178480B1 (en) Method and apparatus for controlled melt refining
JP3164976B2 (en) Method for predicting slopping in a converter and its prevention
Auclair et al. Cleanliness assessment: a critical review and a real need to predict rolling contact fatigue behaviour
Vidacak et al. Observation on foaming of EAF slags in the production of stainless steel
Nzotta et al. A study on the sulphide capacities of steelmaking slags
JP4493571B2 (en) Method for measuring dust concentration in exhaust gas
FR2648564A1 (en) METHOD AND DEVICE FOR MEASURING THE INSTABILITY OF AN ARC IN AN ELECTRIC OVEN FOR TREATING LIQUID METAL
JPH06248321A (en) Method for predicting slopping in refining furnace
JP3198841B2 (en) Method and apparatus for atomic absorption analysis of suspended particles in gas
JPS5941409A (en) Control of blowing
JPH0221547B2 (en)
JP2000256729A (en) Method for detecting drop of stuck material in rh degassing vessel
JPH06158140A (en) Method for operating refining furnace
JPS58106424A (en) Measuring device for material scattering out of converter
Rungta et al. Inclusions: advantages, disadvantages, and the technological trends
JPS6247418A (en) Method for estimating oxygen concentration in molten steel
JPH07113112A (en) Method for suppressing occurrence of spitting in converter
JPS5948655A (en) Method and apparatus for inspecting quality of cast iron product
JP2002363635A (en) Method for determining decarburization terminating point in vacuum degassing apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706