JPH10303698A - Surface acoustic wave element - Google Patents

Surface acoustic wave element

Info

Publication number
JPH10303698A
JPH10303698A JP10966697A JP10966697A JPH10303698A JP H10303698 A JPH10303698 A JP H10303698A JP 10966697 A JP10966697 A JP 10966697A JP 10966697 A JP10966697 A JP 10966697A JP H10303698 A JPH10303698 A JP H10303698A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
resonator
period
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10966697A
Other languages
Japanese (ja)
Other versions
JP3241293B2 (en
Inventor
Tokihiro Nishihara
時弘 西原
Osamu Igata
理 伊形
Yoshio Sato
良夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14516093&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10303698(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10966697A priority Critical patent/JP3241293B2/en
Publication of JPH10303698A publication Critical patent/JPH10303698A/en
Application granted granted Critical
Publication of JP3241293B2 publication Critical patent/JP3241293B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the electric power resistance by composing a 1st and a 2nd one-terminal-couple surface acoustic wave resonator of inter-digital electrodes having electrode digits, and setting cycle of the electrode digits of at least one one-terminal-couple surface acoustic wave resonator of the 2nd one-terminal couple surface acoustic wave resonator within a specific range. SOLUTION: The cycle λ of the electrode digits of the oneterminal-couple surface acoustic wave resonator is presented as 0.99λav2 <λ<1.01λav2 (where λav2 is the mean value of cycles of the electrode digits of the 2nd one-terminal- couple surface acoustic wave resonator). Currents flowing to respective series resonators S1 , S2 , and S3 are so related that is1 >is2 >is3 and currents flowing to parallel resonators P1 , P2 , and P3 are so related that iP1 >iP2 >iP3 , so the series and parallel resonators S1 and P1 of the initial stages have the largest electric power resistance. The electric power resistance is the weakest almost at the cutoff frequency where the temperature of the element is the highest. The low cutoff frequency of the surface acoustic wave element is close to the resonance frequency of the parallel resonators and the high cutoff frequency is close to the resonance frequency of the series resonators.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、弾性表面波素子
に関し、特に、移動通信端末等のRF部(高周波部)に
用いられる弾性表面波素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave device, and more particularly to a surface acoustic wave device used for an RF unit (high-frequency unit) of a mobile communication terminal or the like.

【0002】[0002]

【従来の技術】近年、小型で軽量な自動車電話,携帯電
話等の移動通信端末の開発が急速に進められている。こ
れに伴い使用される部品の小型,高性能化が求められて
おり、RF部(高周波部)の小型化に寄与する弾性表面
波(SAW:Surface AcousticWave)素子(共振子,段
間フィルタ,アンテナデュプレクサ)の需要も急速に伸
びている。
2. Description of the Related Art In recent years, the development of small and lightweight mobile communication terminals such as car phones and mobile phones has been rapidly progressing. Along with this, there is a demand for smaller and higher-performance components used, and a surface acoustic wave (SAW) element (resonator, interstage filter, antenna, etc.) contributing to miniaturization of the RF section (high-frequency section). Demand for duplexers is also growing rapidly.

【0003】この中でアンテナデュプレクサは、RF部
のフロントエンド部に位置し、高い耐電力性を必要とす
る。これまで弾性表面波素子(以下SAWフィルタとも
呼ぶ)は耐電力性が十分でなかったため、アンテナデュ
プレクサには、誘電体フィルタが主に用いられてきた。
しかし、誘電体フィルタはその大きさが大きいため、移
動通信端末の小型化を困難なものとしていた。
[0003] Among them, the antenna duplexer is located at the front end of the RF unit and requires high power durability. Hitherto, since a surface acoustic wave element (hereinafter also referred to as a SAW filter) has insufficient power durability, a dielectric filter has been mainly used for an antenna duplexer.
However, since the size of the dielectric filter is large, it has been difficult to reduce the size of the mobile communication terminal.

【0004】一方では、SAWフィルタを準マイクロ波
帯(1.8GHz帯)などの高周波帯域で使用する場合
には、電極配線が微細になり、SAWフィルタの耐電力
性が問題となる。従って、移動通信端末の小型化ととも
に、SAWフィルタの耐電力性をより一層向上させるニ
ーズは非常に大きい。
[0004] On the other hand, when used in a high frequency band such as a SAW filter quasi-microwave band (1.8GH z band), the electrode wiring becomes finer, the power durability of SAW filters becomes a problem. Therefore, there is a great need to further improve the power durability of the SAW filter as well as to reduce the size of the mobile communication terminal.

【0005】従来、弾性表面波素子の耐電力性を向上さ
せるために、次のような設計面での改善技術が報告され
ている。特開平6−29779号公報には、梯子型のS
AWフィルタにおいて、入力側初段の直列共振器の電極
指の対数を、他段の直列共振器の電極指の対数より多く
することにより、あるいは、入力側初段の直列共振器の
開口長を、他段の直列共振器の開口長より狭くすること
により、初段の直列共振器の抵抗を低減し、温度上昇を
抑制し、SAWフィルタの耐電力性を向上させる技術が
記載されている。また、SAWフィルタを形成する各共
振器の電極材料を改良することによってSAWフィルタ
の耐電力性を向上させる技術も提案されている。
Conventionally, the following design improvement techniques have been reported to improve the power durability of surface acoustic wave devices. JP-A-6-29779 discloses a ladder type S.
In the AW filter, the number of pairs of electrode fingers of the first-stage series resonator on the input side is made larger than the number of pairs of electrode fingers of the other-stage series resonators, or the opening length of the first-stage series resonator on the input side is increased. A technique is described in which the opening length of the series resonator is made narrower to reduce the resistance of the first series resonator, suppress a temperature rise, and improve the power durability of the SAW filter. In addition, a technique for improving the power durability of the SAW filter by improving the electrode material of each resonator forming the SAW filter has been proposed.

【0006】[0006]

【発明が解決しようとする課題】上記のような工夫によ
って、一定の周波数の信号を連続的に印加しつづける寿
命試験(たとえば、環境温度85℃、印加周波数188
5MHz、印加電力0.3w)では、数十時間の寿命が
確保されている。しかし、アンテナデュプレクサにおい
ては、1〜2w程度の電力負荷がかかることもあり、高
周波信号を印加した場合には、十分な耐電力性があると
は言えない。特に、入力側から見て、SAWフィルタを
構成する後段の共振器の電極には変化が見られなくて
も、初段の直列共振器の電極に溶断が生じる場合が多
い。
With the above-described measures, a life test (for example, an environment temperature of 85 ° C. and an applied frequency of 188) in which a signal of a constant frequency is continuously applied.
At 5 MHz and an applied power of 0.3 w), a life of several tens of hours is ensured. However, in the antenna duplexer, a power load of about 1 to 2 w may be applied, so that it cannot be said that the antenna duplexer has sufficient power durability when a high-frequency signal is applied. In particular, when viewed from the input side, even if no change is observed in the electrodes of the later-stage resonator forming the SAW filter, the electrodes of the first-stage series resonator often melt.

【0007】そこで、この発明は以上のような事情を考
慮してなされたものであり、弾性表面波素子を構成する
共振器の電極周期を変化させることによって、耐電力性
を向上させた弾性表面波素子を提供することを課題とす
る。
Accordingly, the present invention has been made in view of the above circumstances, and has been made in consideration of the above circumstances. By changing the electrode period of a resonator constituting a surface acoustic wave element, an elastic surface having improved power durability can be obtained. It is an object to provide a wave element.

【0008】[0008]

【課題を解決するための手段】この発明は、所定の共振
周波数を有する第1の1端子対弾性表面波共振器を並列
腕に、該第1の1端子対弾性表面波共振器の反共振周波
数に略一致する共振周波数を有する第2の1端子対弾性
表面波共振器を直列腕にそれぞれ複数個配列した梯子型
の弾性表面波素子であって、前記第1及び第2の1端子
対弾性表面波共振器が、所定数の電極指を有するくし形
電極から構成され、第2の1端子対弾性表面波共振器の
うち、少なくとも1つの1端子対弾性表面波共振器の電
極指の周期λが、次式、0.99λav2<λ<1.01
λav2(式中、λav2:第2の1端子対弾性表面波共振器
の電極指の周期の平均値)で表わされることを特徴とす
る弾性表面波素子を提供するものである。
According to the present invention, a first one-port surface acoustic wave resonator having a predetermined resonance frequency is provided on a parallel arm, and an anti-resonance of the first one-port surface acoustic wave resonator is provided. A ladder-type surface acoustic wave element in which a plurality of second one-port surface acoustic wave resonators having a resonance frequency substantially equal to a frequency are arranged on a serial arm, respectively, wherein the first and second one-port pairs are arranged. The surface acoustic wave resonator is constituted by a comb-shaped electrode having a predetermined number of electrode fingers, and at least one of the second one-terminal-to-surface acoustic wave resonators has one electrode-to-electrode finger of the surface acoustic wave resonator. The period λ is given by the following equation: 0.99λ av2 <λ <1.01
It is an object of the present invention to provide a surface acoustic wave device characterized by being represented by λ av2 (where λ av2 is an average value of the period of the electrode fingers of the second one- port surface acoustic wave resonator).

【0009】また、所定の共振周波数を有する第1の1
端子対弾性表面波共振器を並列腕に、該第1の1端子対
弾性表面波共振器の反共振周波数に略一致する共振周波
数を有する第2の1端子対弾性表面波共振器を直列腕に
それぞれ複数個配列した梯子型の弾性表面波素子であっ
て、前記第1及び第2の1端子対弾性表面波共振器が、
所定数の電極指を有するくし形電極から構成され、第1
の1端子対弾性表面波共振器のうち、少なくとも1つの
1端子対弾性表面波共振器の電極指の周期λが、次式、
0.99λav1<λ<1.01λav1(式中、λav1:第
1の1端子対弾性表面波共振器の電極指の周期の平均
値)で表わされることを特徴とする弾性表面波素子を提
供するものである。
Further, a first one having a predetermined resonance frequency is provided.
A terminal-to-surface acoustic wave resonator is provided in a parallel arm, and a second one-terminal-to-surface acoustic wave resonator having a resonance frequency substantially equal to the anti-resonance frequency of the first terminal-to-surface acoustic wave resonator is provided in a serial arm. A plurality of ladder-type surface acoustic wave devices, each of which is arranged on the ladder-type surface acoustic wave resonator,
The first electrode comprises a comb-shaped electrode having a predetermined number of electrode fingers.
The period λ of the electrode fingers of at least one of the one-port surface acoustic wave resonators is expressed by the following equation:
0.99λ av1 <λ <1.01λ av1 (where, λ av1 is the average value of the period of the electrode fingers of the first one- port surface acoustic wave resonator) Is provided.

【0010】さらに、所定の共振周波数を有する第1の
1端子対弾性表面波共振器を並列腕に、該第1の1端子
対弾性表面波共振器の反共振周波数に略一致する共振周
波数を有する第2の1端子対弾性表面波共振器を直列腕
にそれぞれ複数個配列した梯子型の弾性表面波素子であ
って、信号入力側から見て初段の第2の1端子対弾性表
面波共振器が、直列に接続された複数個の分割弾性表面
波共振器から構成されたことを特徴とする弾性表面波素
子を提供するものである。ここで、信号入力側から見て
初段の第2の1端子対弾性表面波共振器は、1つの共振
器によって構成される場合の静電容量よりも大きな静電
容量を持つ複数個の1端子対弾性表面波共振器に分割し
て構成すればよい。このような構成を採用することによ
り、耐電力性に優れた弾性表面波素子を提供することが
できる。
Further, a first one-port surface acoustic wave resonator having a predetermined resonance frequency is connected to a parallel arm, and a resonance frequency substantially matching the anti-resonance frequency of the first one-port surface acoustic wave resonator is set. A ladder-type surface acoustic wave element in which a plurality of second one-port pair surface acoustic wave resonators are arranged in series arms, respectively, wherein the first one-terminal second pair of surface acoustic wave resonators is viewed from the signal input side. A surface acoustic wave device comprising a plurality of divided surface acoustic wave resonators connected in series. Here, when viewed from the signal input side, the first one-terminal pair surface acoustic wave resonator in the first stage is composed of a plurality of one-terminals having a capacitance larger than the capacitance when one resonator is formed. What is necessary is just to comprise by dividing into a surface acoustic wave resonator. By employing such a configuration, a surface acoustic wave element having excellent power durability can be provided.

【0011】[0011]

【発明の実施の形態】上記のような構成を有する弾性表
面波素子において、信号入力側から見て初段の第2の1
端子対弾性表面波共振器の電極指の周期が、他の第2の
1端子対弾性表面波共振器の電極指の周期よりも小さく
してもよく、複数個の第2の1端子対弾性表面波共振器
の電極指の周期が、信号入力側から順に等しいか大きく
なるようにしてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In a surface acoustic wave device having the above-described configuration, the first stage of a second surface acoustic wave device viewed from a signal input side.
The period of the electrode fingers of the terminal-to-surface acoustic wave resonator may be smaller than the period of the electrode fingers of the other second one-terminal-to-surface acoustic wave resonators. The period of the electrode fingers of the surface acoustic wave resonator may be equal or larger in order from the signal input side.

【0012】また、信号入力側から見て初段の第1の1
端子対弾性表面波共振器の電極指の周期が、他の第1の
1端子対弾性表面波並列共振器の電極指の周期よりも大
きくしてもよく、複数個の第1の1端子対弾性表面波共
振器の電極指の周期が、信号入力側から順に等しいか小
さくなるようにしてもよい。
Also, the first stage of the first stage viewed from the signal input side.
The period of the electrode fingers of the terminal-to-surface acoustic wave resonator may be greater than the period of the electrode fingers of the other first one-terminal to surface-parallel surface acoustic wave resonators. The period of the electrode fingers of the surface acoustic wave resonator may be equal or smaller in order from the signal input side.

【0013】さらに、受信用に用いられる弾性表面波素
子の場合には、信号入力側から見て初段の第1の1端子
対弾性表面波共振器の電極指の周期が、他の第1の1端
子対弾性表面波共振器の電極指の周期よりも小さくして
もよく、さらに、複数個の第1の1端子対弾性表面波共
振器の電極指の周期が、信号入力側から順に等しいか大
きくなるようにしてもよい。
Further, in the case of a surface acoustic wave element used for reception, the period of the electrode fingers of the first one-terminal / surface acoustic wave resonator at the first stage when viewed from the signal input side is different from that of the other first. The period of the electrode fingers of the one-port surface acoustic wave resonator may be smaller than that of the first one-terminal-surface acoustic wave resonator. Or larger.

【0014】また、信号入力側から見て初段の第2の1
端子対弾性表面波共振器が、直列に接続された複数個の
分割弾性表面波共振器から構成された弾性表面波素子の
場合には、さらに信号入力側から見て初段以外の第2の
1端子対弾性表面波共振器も、直列に接続された複数個
の分割弾性表面波共振器から構成されるようにしてもよ
い。
Further, the second stage of the first stage viewed from the signal input side.
In the case where the terminal-to-surface acoustic wave resonator is a surface acoustic wave device composed of a plurality of divided surface acoustic wave resonators connected in series, when viewed from the signal input side, the second first SAW element other than the first stage. The terminal-to-surface acoustic wave resonator may also be constituted by a plurality of divided surface acoustic wave resonators connected in series.

【0015】以下、並列腕として構成される前記第1の
1端子対弾性表面波共振器を「並列共振器」と呼び、直
列腕として構成される前記第2の1端子対弾性表面波共
振器を「直列共振器」と呼ぶ。
Hereinafter, the first one-port pair surface acoustic wave resonator configured as a parallel arm is referred to as a “parallel resonator”, and the second one-port pair surface acoustic wave resonator configured as a serial arm. Is called a “series resonator”.

【0016】最初に、直列共振器と並列共振器とから構
成される梯子型の弾性表面波共振器の構成及び動作原理
を示す。図1に、梯子型の弾性表面波素子の回路図の一
例を示す。信号入力側の端子をa1,a2,信号出力側の
端子をb1,b2とする。梯子型の弾性表面波素子は、一
般に、入力端子と出力端子との間に直列に接続された直
列共振器(S1,S2,S3,……)と、2つの入力端子
間及び出力端子間から見て並列に接続された並列共振器
(P1,P2,P3,……)とから構成される。
First, the configuration and operation principle of a ladder type surface acoustic wave resonator composed of a series resonator and a parallel resonator will be described. FIG. 1 shows an example of a circuit diagram of a ladder type surface acoustic wave device. The terminals on the signal input side are a 1 and a 2 , and the terminals on the signal output side are b 1 and b 2 . In general, a ladder-type surface acoustic wave element has a series resonator (S 1 , S 2 , S 3 ,...) Connected in series between an input terminal and an output terminal, and outputs a signal between two input terminals and an output terminal. And parallel resonators (P 1 , P 2 , P 3 ,...) Connected in parallel as viewed from the terminals.

【0017】図2に、直列共振器及び並列共振器の基本
的なパターン構成図を示す。どちらの共振器ともいわゆ
る一端子対弾性表面波共振器であり、くし形形状の電極
指10が互いに入り組んだ2つの励振電極1,2から構
成されるインタディジタルトランスデューサ部分と、そ
の両側に配置される反射器3,4とから構成される。同
図に示すように、励振電極の電極指10の繰り返しサイ
クルの長さを電極指の周期λと呼び、上下方向から互い
に入り組んだ電極指が横方向から見て互いに交差してい
る部分の長さを開口長Yと呼ぶ。図1の共振器の回路図
記号との関係は図2の右側に示すとおりであり、励振電
極の一方の端子Aが信号入力側であり、他方の端子Bが
信号出力側となる。
FIG. 2 shows a basic pattern configuration diagram of a series resonator and a parallel resonator. Both resonators are so-called one-port surface acoustic wave resonators. An interdigital transducer portion is composed of two excitation electrodes 1 and 2 in which comb-shaped electrode fingers 10 are intertwined with each other, and are disposed on both sides thereof. Reflectors 3 and 4. As shown in the figure, the length of the repetition cycle of the electrode finger 10 of the excitation electrode is called the period λ of the electrode finger, and the length of the portion where the electrode fingers intersecting each other from the vertical direction cross each other when viewed from the lateral direction. The length is called an opening length Y. The relationship with the circuit diagram symbols of the resonator of FIG. 1 is as shown on the right side of FIG. 2, in which one terminal A of the excitation electrode is a signal input side and the other terminal B is a signal output side.

【0018】図3に、このような梯子型の弾性表面波素
子の周波数と減衰量との関係、及び周波数と素子の温度
との関係のグラフを示す。ここで、弾性表面波素子の直
列共振器の電極指の周期は2.065μmですべて同じ
であり、並列共振器の電極指の周期は2.140μmで
すべて同じである。アンテナから電気信号が入力される
と、弾性表面波素子は、一定の周波数帯域幅を持つ信号
のみを通過させる帯域通過フィルタとしての役割を果た
す。
FIG. 3 is a graph showing the relationship between the frequency and the attenuation of such a ladder type surface acoustic wave device, and the relationship between the frequency and the temperature of the device. Here, the period of the electrode fingers of the series resonator of the surface acoustic wave element is 2.065 μm, which is the same, and the period of the electrode fingers of the parallel resonator is 2.140 μm, which are all the same. When an electric signal is input from the antenna, the surface acoustic wave element functions as a band-pass filter that passes only a signal having a certain frequency bandwidth.

【0019】同図において、この帯域通過フィルタの2
ケ所のカットオフ周波数付近(Fh 1,Fh2)におい
て、素子の温度が最も高くなっていることがわかる。一
般的に、温度が高くなるということは、耐電力性が弱く
なるので、素子の温度が最も高いカットオフ周波数付近
では弾性表面波素子の耐電力性が最も弱い。一方、弾性
表面波素子の低周波側のカットオフ周波数Fh1は、並
列共振器の共振周波数に近く、高周波側のカットオフ周
波数Fh2は直列共振器の共振周波数に近いため、各共
振器の共振周波数付近で、最も耐電力性が弱いことにな
る。
Referring to FIG.
Near the cutoff frequency 1, FhTwo)smell
Thus, it can be seen that the temperature of the element is highest. one
In general, higher temperatures mean lower power durability.
Near the cut-off frequency where the temperature of the element is highest.
In this case, the surface acoustic wave element has the weakest power durability. Meanwhile, elastic
Cutoff frequency Fh on the low frequency side of the surface acoustic wave element1Is average
Close to the resonance frequency of the column resonator and the cutoff frequency on the high frequency side
Wave number FhTwoAre close to the resonance frequency of the series resonator,
In the vicinity of the resonance frequency of the vibrator, the weakest power
You.

【0020】図4(a)に、直列共振器(S1等)のイ
ンピーダンス(ZS=r+jx,r:抵抗分,x:リア
クタンス分)と、並列共振器(P1等)のアドミタンス
(YP=g+jb,g:コンダクタンス分,b:サセプ
タンス分)の周波数特性を示す。図の縦軸がインピーダ
ンス又はアドミタンスを示すが、リアクタンス分x及び
サセプタンス分bがゼロとなる位置がそれぞれ直列共振
器及び並列共振器の共振周波数である。
FIG. 4A shows the impedance (Z S = r + jx, r: resistance, x: reactance) of the series resonator (S 1 and the like) and the admittance (Y) of the parallel resonator (P 1 and the like). P = g + jb, g: conductance component, b: susceptance component). The vertical axis of the figure indicates impedance or admittance, and the positions where the reactance x and the susceptance b become zero are the resonance frequencies of the series resonator and the parallel resonator, respectively.

【0021】図4(b)は、図4(a)の周波数特性に
合わせて描いた弾性表面波素子のフィルタ特性を示して
いる。信号を通過させる仕様帯域では、直列共振器の共
振周波数が含まれ、インピーダンスZSはほぼゼロであ
るため、ほとんど直接共振器に電流が流れる。また、こ
の直列共振器の共振周波数の近傍では、並列共振器のア
ドミタンスは必ずしもゼロになっていないため、並列共
振器にもわずかではあるが電流が流れる。
FIG. 4B shows the filter characteristics of the surface acoustic wave element drawn according to the frequency characteristics of FIG. 4A. In the specification band for passing a signal, the resonance frequency of the series resonator is included, and the impedance Z S is almost zero, so that current flows almost directly to the resonator. In addition, in the vicinity of the resonance frequency of the series resonator, the admittance of the parallel resonator is not always zero, so that a small amount of current flows through the parallel resonator.

【0022】図1において、信号入力側の初段の直列共
振器S1を流れる電流をiS1、2段目,3段目の直列共
振器S2,S3を流れる電流をiS2,iS3とし、信号入力
側の初段の並列共振器P1を流れる電流をiP1、2段
目,3段目の並列共振器P2,P 3を流れる電流をiP2
P3とする。このとき、各共振器の電流のロスも考慮す
ると、各直列共振器に流れる電流は、iS1>iS2>iS3
という関係が成立する。すなわち、信号入力側の初段の
直列共振器S1は最も大きな電流が流れ、最も温度が高
くなるので、初段の直列共振器S1の耐電力性が最も弱
いことになる。
In FIG. 1, the serial connection of the first stage on the signal input side is
Shaker S1The current flowing throughS12nd and 3rd stages in series
Shaker STwo, SThreeThe current flowing throughS2, IS3And signal input
Side first stage parallel resonator P1The current flowing throughP1, Two steps
Eye, third stage parallel resonator PTwo, P ThreeThe current flowing throughP2,
iP3And At this time, consider the current loss of each resonator.
Then, the current flowing through each series resonator is iS1> IS2> IS3
Is established. That is, the first stage on the signal input side
Series resonator S1Has the largest current and the highest temperature
The first series resonator S1Has the weakest power durability
Will be.

【0023】また、図4(a)より、並列共振器の共振
周波数の近傍では、信号減衰量が大きくなり、ほとんど
並列共振器に電流が流れることになる。しかし、この並
列共振器の共振周波数近傍において、直列共振器のイン
ピーダンスは無限大とはなっていないため、直列共振器
にもわずかではあるが電流が流れる。したがって、並列
共振器の共振周波数近傍の周波数の信号が入力されると
き、各並列共振器に流れる電流は、iP1>iP2>iP3
いう関係が成立する。すなわち、信号入力側の初段の並
列共振器P1は、最も大きな電流が流れるので、最も耐
電力性が低いことになる。以上の説明により、弾性表面
波素子の耐電力性を向上させるためには、信号入力側か
ら見て初段の直列共振器又は並列共振器の耐電力性を改
善する必要があることがわかる。
As shown in FIG. 4A, near the resonance frequency of the parallel resonator, the signal attenuation increases and almost all current flows through the parallel resonator. However, near the resonance frequency of the parallel resonator, the impedance of the series resonator is not infinite, so that a small amount of current flows through the series resonator. Therefore, when a signal having a frequency near the resonance frequency of the parallel resonator is input, the current flowing through each parallel resonator has a relationship of i P1 > i P2 > i P3 . That is, the parallel resonators P 1 of the first-stage signal input side, since the greatest current flows, will be the most that power resistance is low. From the above description, it can be seen that in order to improve the power durability of the surface acoustic wave element, it is necessary to improve the power durability of the first-stage series resonator or parallel resonator viewed from the signal input side.

【0024】ところで、送信用のフィルタでは、仕様帯
域内に電力が印加される。また、図3,図4(b)か
ら、伝送される信号が仕様帯域の高周波側に近づけば近
づくほど、直列共振器の共振周波数に近づくため、信号
入力側から見て耐電力性の最も弱い初段の直列共振器が
劣化しやすくなる。一般に、共振器の共振周波数fと、
共振器の電極指の周期λとは反比例の関係(v=fλ,
vは伝搬速度)があることが知られている。そこで、直
列共振器の電極指の周期λを小さくすれば、直接共振器
の共振周波数fは大きくなるので、耐電力性が最も弱く
なる共振周波数を仕様帯域外方向にシフトさせることが
でき、仕様帯域内での耐電力性が向上できる。
By the way, in a transmission filter, power is applied within a specified band. Also, from FIGS. 3 and 4 (b), the closer the transmitted signal is to the high frequency side of the specification band, the closer to the resonance frequency of the series resonator, and thus the weakest power durability is seen from the signal input side. The first-stage series resonator is easily deteriorated. Generally, the resonance frequency f of the resonator,
The period λ of the electrode fingers of the resonator is inversely proportional (v = fλ,
v is known to have a propagation velocity). Therefore, if the period λ of the electrode fingers of the series resonator is reduced, the resonance frequency f of the direct resonator is increased, so that the resonance frequency at which the power durability becomes weakest can be shifted to outside the specification band. The power durability in the band can be improved.

【0025】すなわち、この発明では、仕様帯域内での
信号の周波数特性に影響を与えない範囲内で、信号入力
側の初段の直列共振器の電極指の周期λS1を他段の直列
共振器の電極指の周期よりも小さくする。具体的には、
入力側初段の直列共振器の電極指の周期λS1を、直列共
振器全体の電極指の周期の平均値λSavよりも1%以内
だけ小さくする。すなわち、0.99λSav≦λS1<λ
Savとする。これにより、入力側初段の直列共振器の共
振周波数は、他段の直列共振器の共振周波数より高周波
側にシフトするため、入力側初段の直列共振器は劣化し
にくくなり、その結果、弾性表面波素子の耐電力性が向
上できる。
That is, according to the present invention, the period λ S1 of the electrode finger of the first-stage series resonator on the signal input side is changed to the other-stage series resonator within a range that does not affect the frequency characteristics of the signal within the specification band. Is smaller than the period of the electrode finger. In particular,
The period λ S1 of the electrode fingers of the first-stage series resonator on the input side is made smaller than the average value λ Sav of the period of the electrode fingers of the entire series resonator by 1% or less. That is, 0.99λ Sav ≦ λ S1
Sav . As a result, the resonance frequency of the input-side first-stage series resonator shifts to a higher frequency side than the resonance frequency of the other-stage series resonator, so that the input-side first-stage series resonator is less likely to deteriorate, and as a result, the elastic surface The power durability of the wave element can be improved.

【0026】また、図3,図4(b)から、伝送される
信号が仕様帯域の低周波側に近づけば近づくほど、並列
共振器の共振周波数に近づくため、信号入力側から見て
耐電力性の最も弱い初段の並列共振器が劣化しやすくな
る。そこで、並列共振器の電極指の周期λを大きくすれ
ば、並列共振器の共振周波数fは小さくなるので、耐電
力性の最も弱くなる共振周波数を仕様帯域外方向にシフ
トさせることができ、仕様帯域内での耐電力性が向上で
きる。
From FIGS. 3 and 4B, the closer the transmitted signal is to the lower frequency side of the specification band, the closer to the resonance frequency of the parallel resonator. The first-stage parallel resonator having the weakest property tends to deteriorate. Therefore, if the period λ of the electrode fingers of the parallel resonator is increased, the resonance frequency f of the parallel resonator is reduced, so that the resonance frequency at which the power durability becomes weakest can be shifted out of the specification band. The power durability in the band can be improved.

【0027】すなわち、この発明において、弾性表面波
素子の耐電力性を向上させる第2の方法として、仕様帯
域内での信号の周波数特性に影響を与えない範囲内で、
信号入力側の初段の並列共振器の電極指の周期λP1を他
段の並列共振器の電極指の周期よりも大きくする。具体
的には、入力側初段の並列共振器の電極指の周期λ
P1を、並列共振器全体の電極指の周期の平均値λPav
りも1%以内だけ大きくする。すなわちλPav<λP1
1.01λPavとする。これにより入力側初段の並列共
振器の共振周波数は、他段の並列共振器の共振周波数よ
り低周波側にシフトするため、入力側初段の並列共振器
は劣化しにくくなり、その結果、弾性表面波素子の耐電
力性が向上できる。また、前記した入力側初段の直列共
振器の周期の減少と、この入力側初段の並列共振器の周
期の増加とを組合せて弾性表面波素子を構成してもよ
い。
That is, according to the present invention, as a second method for improving the power durability of the surface acoustic wave element, within a range that does not affect the frequency characteristics of the signal within the specified band,
The period λ P1 of the electrode fingers of the first-stage parallel resonator on the signal input side is made larger than the period of the electrode fingers of the other-stage parallel resonators. Specifically, the period λ of the electrode fingers of the first-stage parallel resonator on the input side
P1 is made larger than the average value λ Pav of the period of the electrode fingers of the entire parallel resonator by 1% or less. That is, λ PavP1
1.01λ Pav . As a result, the resonance frequency of the first-stage parallel resonator on the input side shifts to a lower frequency side than the resonance frequency of the other-stage parallel resonator, so that the first-stage parallel resonator on the input side is less likely to deteriorate, and as a result, the elastic surface The power durability of the wave element can be improved. Further, the surface acoustic wave element may be configured by combining the above-described decrease in the cycle of the input-side first-stage series resonator and the increase in the cycle of the input-side first-stage parallel resonator.

【0028】次に、通過帯域が送信用フィルタの通過帯
域よりも高周波数側にある受信用フィルタを構成する場
合の耐電力性について説明する。ここで、一般に弾性表
面波素子を用いた分波器は、図5のような構成を持つ。
アンテナ部に対して、共通信号端子TOを介して、送信
用フィルタTX(F2)と受信用フィルタRX(F1)と
が接続されている。ここで、図6に示すように、受信用
フィルタRXの通過帯域(中心周波数f1)が、送信用フ
ィルタTXの通過帯域(中心周波数f2)よりも高周波側
にある場合を考えると、受信用フィルタRXの低周波側
の抑圧域に送信用フィルタTXからの漏れ電力が印加さ
れて受信用フィルタRXが劣化する場合がある。
Next, a description will be given of the power durability when a receiving filter whose pass band is on the higher frequency side than the pass band of the transmitting filter is formed. Here, a duplexer using a surface acoustic wave element generally has a configuration as shown in FIG.
The transmission filter T X (F2) and the reception filter R X (F1) are connected to the antenna unit via the common signal terminal T O. Here, as shown in FIG. 6, the passband of the receive filter R X (center frequency f 1) is, considering the case in the high-frequency side of the passband of the transmission filter T X (center frequency f 2) , receive filter R X leakage power is applied from the transmission filter T X to suppression range of the low frequency side of the reception filter R X may deteriorate.

【0029】すなわち、送信用フィルタTXの漏れ電力
は、受信側フィルタRXの通過帯域の低周波側の近傍付
近に印加されるため、受信側フィルタRXの低周波側の
最弱部分である信号入力側の初段の並列共振器が劣化す
る。
That is, since the leakage power of the transmission filter T X is applied to the vicinity of the low frequency side of the pass band of the reception filter R X , the leakage power is applied to the weakest part of the reception filter R X on the low frequency side. A first-stage parallel resonator on a certain signal input side deteriorates.

【0030】そこで、このような受信用フィルタにおい
ては、入力側初段の並列共振器の電極指の周期λP1を、
他段の並列共振器の電極指の周期よりも小さくする。具
体的には、入力側初段の並列共振器の電極指の周期λP1
を並列共振器全体の電極指の周期の平均値λPavより
も、1%以内だけ小さくする。すなわち、0.99λ
Pav≦λP1<λPavとする。これにより、入力側初段の並
列共振器の共振周波数は、他段の並列共振器の共振周波
数より高周波側にシフトするため、入力側初段の並列共
振器は劣化しにくくなり、その結果、受信用の弾性表面
波素子の耐電力性が向上できる。
Therefore, in such a receiving filter, the period λ P1 of the electrode finger of the first-stage parallel resonator on the input side is calculated as follows:
The period is set smaller than the period of the electrode fingers of the parallel resonators in the other stages. Specifically, the period λ P1 of the electrode fingers of the first-stage parallel resonator on the input side
Is smaller than the average value λ Pav of the period of the electrode fingers of the entire parallel resonator by 1% or less. That is, 0.99λ
Let Pav ≦ λ P1Pav . As a result, the resonance frequency of the first-stage parallel resonator on the input side shifts to a higher frequency side than the resonance frequency of the other-stage parallel resonator, so that the first-stage parallel resonator on the input side is less likely to deteriorate. The power durability of the surface acoustic wave device can be improved.

【0031】また、1つの弾性表面波共振器は、その静
電容量Cが大きいほど耐電力性に優れていることが知ら
れている。したがって、弾性表面波素子の直列共振器に
ついて、より静電容量の大きな共振器に分割して構成す
れば、耐電力性に優れた共振器とすることができる。た
とえば、静電容量Cを持つ直列腕の弾性表面波共振器
は、静電容量がCであるただ1つの共振器によって構成
するよりも、共振器を2つに分割し、静電容量が2Cで
ある2つの共振器を直列に接続することによって構成し
た方が耐電力性が高くなる。あるいは、静電容量が1つ
の共振器の静電容量よりも大きい3個以上の共振器に分
割して、これらの3個以上の共振器を直列に接続して、
1つの直列腕の弾性表面波共振器を構成してもよい。
It is known that the larger the capacitance C of a surface acoustic wave resonator, the better the power durability. Therefore, if the series resonator of the surface acoustic wave element is divided into resonators having a larger capacitance, a resonator excellent in power durability can be obtained. For example, a series arm surface acoustic wave resonator having a capacitance C divides the resonator into two rather than being constituted by a single resonator having a capacitance C, and has a capacitance 2C. When two resonators are connected in series, the power durability becomes higher. Alternatively, the capacitance is divided into three or more resonators whose capacitance is larger than the capacitance of one resonator, and these three or more resonators are connected in series.
One series arm surface acoustic wave resonator may be configured.

【0032】以上、この発明について、主として4つの
実施の形態を示したが、それぞれの形態についての実施
例を次に示す。なお、これらの実施例によって、この発
明が限定されるものではない。
While the present invention has been described mainly with reference to four embodiments, examples of each embodiment will be described below. It should be noted that the present invention is not limited by these embodiments.

【実施例】【Example】

実施例1:直列共振器の電極指の周期の変化 この実施例では、1.8GHz帯の送信用フィルタ(送
信帯域;1850〜1885MHz)を対象とした。図
7に示すように、正規型の一端子対弾性表面波共振器を
直列腕に4個(直列共振器:S1,S2,S3,S4)、並
列腕に2個(並列共振器:P1,P2)接続した梯子型の
送信用フィルタ(弾性表面波素子)を作製した。単結晶
圧電基板にLiTaO336°Ycut−X伝播の基板
を使用し、励振電極、反射器の電極膜はDCスパッタ法
により成膜したA1(700Å)/Cu(150Å)/
A1(700Å)3層膜とした。ここで、S1が入力側
から見て初段の直列共振器、P1が入力側から見て初段
の並列共振器とする。
Example 1 Change in Period of Electrode Fingers of Series Resonator In this example, a 1.8 GHz band transmission filter (transmission band; 1850 to 1885 MHz) was targeted. As shown in FIG. 7, four regular one-port surface acoustic wave resonators are provided in the serial arm (series resonators: S 1 , S 2 , S 3 , S 4 ), and two are provided in the parallel arm (parallel resonance). vessels: P 1, P 2) to produce a transmission filter of the connected ladder (SAW device). A single crystal piezoelectric substrate using a substrate of LiTaO 3 36 ° Ycut-X propagation was used, and the excitation electrode and the electrode film of the reflector were formed by DC sputtering and A1 (700 °) / Cu (150 °) /
An A1 (700 °) three-layer film was formed. Here, S 1 is a first-stage series resonator viewed from the input side, and P 1 is a first-stage parallel resonator viewed from the input side.

【0033】直列共振器の周期を変えた3種類のサンプ
ルA,B,Cを作成して、耐電力性の試験を行った。各
サンプルの共振器の設計内容を次に示す。開口長,電極
指の対数は各サンプルとも共通であり、直列共振器につ
いては、開口長:30μn,対数:155対,反射器:
80対とし、並列共振器は、開口長:60μm,対数:
90対,反射器:100対とした。
Three kinds of samples A, B, and C having different periods of the series resonators were prepared and tested for power durability. The design details of the resonator of each sample are shown below. The aperture length and the logarithm of the electrode finger are common to each sample. For the series resonator, the aperture length is 30 μn, the logarithm is 155 pairs, and the reflector is:
80 pairs, the parallel resonator has an aperture length: 60 μm, and the number of logs:
90 pairs, reflector: 100 pairs.

【0034】電極指の周期については、並列共振器は各
サンプルとも共通であり、2.140μmとした。直列
共振器に関しては、サンプルAは、S1〜S4まですべて
共通であり2.065μm、サンプルBはS1が2.0
60μm、S2〜S4が2.065μm、サンプルCは、
1が2.055μm、S2とS3が2.060μm、S4
が2.065μmである。この時、サンプルBでは、S
1の周期が各直列共振器の周期の平均値の−0.18%
だけ変えられており、サンプルCでは、S1の周期が−
0.24%、S4の周期が+0.24%だけ変えられて
いる。
Regarding the period of the electrode fingers, the parallel resonator was common to all the samples, and was 2.140 μm. Regarding the series resonators, sample A is 2.065 μm common to S 1 to S 4 , and sample B has S 1 of 2.0
60 μm, S 2 to S 4 are 2.065 μm, sample C is
S 1 is 2.055Myuemu, is S 2 and S 3 2.060μm, S 4
Is 2.065 μm. At this time, in sample B, S
The period of 1 is -0.18% of the average value of the period of each series resonator.
In sample C, the period of S 1 is −
0.24%, the period of S 4 is changed by + 0.24%.

【0035】上記の各サンプルについて耐電力評価を寿
命試験で行った。試験の条件は、環境温度85℃、印加
周波数は仕様帯域内で最も弱い周波数の1885MHz
である。評価結果を図8に示す。ここで縦軸の寿命(時
間:hr)とは、送信用フィルタの仕様帯域幅が5%以
上小さくなるまでの時間である。0.3W印加時の寿命
は、サンプルA,B,Cの順に、80hr,165h
r,270hrであった。
Each of the above samples was evaluated for power durability by a life test. The test conditions are: ambient temperature 85 ° C, applied frequency 1885MHz, the weakest frequency in the specification band
It is. FIG. 8 shows the evaluation results. Here, the life (time: hr) on the vertical axis is a time until the specified bandwidth of the transmission filter is reduced by 5% or more. The life when 0.3 W is applied is 80 hours and 165 hours in the order of samples A, B and C.
r, 270 hr.

【0036】このように、各直列共振器の電極指の周期
を変えることにより、サンプルAに対し、サンプルBの
場合約2倍,サンプルCの場合約3.5倍に、寿命すな
わち耐電力性が改善した。特に、入力側初段の直列共振
器の周期を小さくすることは有効である。また、サンプ
ルCのように、信号入力側から見て、直列共振器の電極
指の周期を順に大きくするか、又は、途中の一部分の周
期を等しくしてもよい。
As described above, by changing the period of the electrode fingers of each series resonator, the life, that is, the power durability is increased by about 2 times in the case of the sample B and by about 3.5 times in the case of the sample C. Has improved. In particular, it is effective to reduce the period of the input-side first-stage series resonator. Further, as in the case of the sample C, when viewed from the signal input side, the cycle of the electrode fingers of the series resonator may be sequentially increased, or the cycle of a part in the middle may be made equal.

【0037】実施例2:並列共振器の電極指の変化 実施例1と同様な構成の梯子型の送信用フィルタを用意
した。しかし、ここでは、各直列共振器の周期をすべて
一定とし、各並列共振器の周期のみを変化させた。サン
プルは2種類用意し、サンプルAは、実施例1と全く同
じものを用い、サンプルDは、並列共振器P2の周期を
2.140μm,P1の周期を2.145μmとした。
この時、サンプルDのP1の周期は、各並列共振器の周
期の平均値の+0.12%だけ変えられている。すなわ
ち、入力側から見て初段の並列共振器P1の電極指の周
期を大きくしている。
Example 2 Change of Electrode Finger of Parallel Resonator A ladder-type transmission filter having the same configuration as that of Example 1 was prepared. However, here, all the periods of the series resonators are made constant, and only the period of each parallel resonator is changed. Samples were prepared two types, Sample A, using exactly the same as in example 1, sample D, the period of the parallel resonator P 2 2.140Myuemu, was 2.145μm a period of P 1.
At this time, the period of P 1 sample D is changed by + 0.12% of the average value of the period of the parallel resonator. That is, when viewed from the input side to increase the period of the electrode fingers of the parallel resonator P 1 of the first stage.

【0038】上記の2種類のサンプルの耐電力評価を寿
命試験で行った。試験の条件は、環境温度85℃,印加
周波数は通過帯域内の左端の周波数の1850MHzで
ある。評価結果を図9に示す。0.3W印加時の寿命
は、サンプルA,Dの順に325hr,780hrであ
った。このように、各並列共振器の周期を変えることに
より、サンプルAに対し、Dの場合約2.4倍に寿命す
なわち耐電力性が改善した。また、3つ以上の並列共振
器からなる場合は、信号入力側から見て、並列共振器の
電極指の周期を順に小さくするか、又は途中の一部分の
周期を等しくしてもよい。
The power durability of the two samples was evaluated by a life test. The conditions for the test were an environmental temperature of 85 ° C. and an applied frequency of 1850 MHz, which is the leftmost frequency in the pass band. FIG. 9 shows the evaluation results. The life when 0.3 W was applied was 325 hr and 780 hr in the order of Samples A and D. As described above, by changing the period of each parallel resonator, the life, that is, the power durability was improved by about 2.4 times in the case of the sample A in the case of D. In the case of three or more parallel resonators, the cycle of the electrode fingers of the parallel resonator may be reduced in order or the cycle of a part thereof may be equal when viewed from the signal input side.

【0039】実施例3:受信用フィルタの並列共振器の
電極指の変化 この実施例では、1.8GHz帯の受信用フィルタ(受
信帯域;1930〜1965MHz)を対象とした。図
10に示すように、正規型の一端子弾性表面波共振器を
直列腕に4個(直列共振器:S1,S2,S3,S4)、並
列腕に3個(並列共振器:P1,P2,P3)接続した梯
子型の受信用フィルタを作製した。単結晶圧電基板にL
iTaO336°Ycut−X伝播の基板を使用し、電
極膜はDCスパッタ法により成膜したA1(700Å)
/Cu(150Å)/A1(700Å)3層膜とした。
Embodiment 3 Change of Electrode Fingers of Parallel Resonator of Reception Filter In this embodiment, a 1.8 GHz band reception filter (reception band; 1930 to 1965 MHz) is targeted. As shown in FIG. 10, four normal type one-terminal surface acoustic wave resonators are provided in the series arm (series resonators: S 1 , S 2 , S 3 , S 4 ) and three are provided in the parallel arm (parallel resonators). : P 1 , P 2 , P 3 ) A ladder-type reception filter connected to the ladder was manufactured. L on single crystal piezoelectric substrate
Using an iTaO 3 36 ° Ycut-X propagating substrate, the electrode film was formed by DC sputtering A1 (700 °)
/ Cu (150 °) / A1 (700 °) three-layer film.

【0040】並列共振器の周期を変えた3種類のサンプ
ルをE,F,Gを作成して、耐電力性の試験を行った。
各サンプルの共振器の設計内容を次に示す。開口長,電
極指の対数は各サンプルとも共通であり、直列共振器に
ついては、開口長:30μm,対数:150対,反射
器:80対とし、並列共振器は、開口長:60μm,対
数:90対,反射器:100対とした。
E, F, and G were prepared from three types of samples in which the period of the parallel resonator was changed, and a power durability test was performed.
The design details of the resonator of each sample are shown below. The aperture length and the logarithm of the electrode fingers are common to each sample. For the series resonator, the aperture length is 30 μm, the logarithm is 150 pairs, and the reflector is 80 pairs. For the parallel resonator, the aperture length is 60 μm and the logarithm is: 90 pairs, reflector: 100 pairs.

【0041】電極指の周期については、直列共振器は各
サンプルとも共通であり、2.040μm、並列共振器
に関して、サンプルEは、P1〜P3まですべて共通であ
り2.110μm、サンプルFは、P1が2.105μ
m、P2,P3が2.110μm、サンプルGは、P1
2.105μm、P2が2.110μm、P3が2.11
5μmである。この時、サンプルFでは、P1の周期が
各並列共振器の周期の平均値の−0.16%だけ変えら
れており、サンプルGでは、P1の周期が−0.24
%、P3の周期が+0.24%だけ変えられている。
Regarding the period of the electrode fingers, the series resonator is common to each sample, 2.040 μm, and for the parallel resonator, sample E is common to P 1 to P 3 , 2.110 μm, sample F is, P 1 is 2.105μ
m, P 2 , and P 3 are 2.110 μm. Sample G has a P 1 of 2.105 μm, a P 2 of 2.110 μm, and a P 3 of 2.11.
5 μm. At this time, in sample F, which changed the period of P 1 only -0.16% of the average value of the period of the parallel resonator, the sample G, the cycle of P 1 is -0.24
%, Has been changed cycle of P 3 is only + 0.24%.

【0042】上記の各サンプルの耐電力評価を寿命試験
で行った。ところで、アンテナデュプレクサにおいて
は、送信用フィルタよりも高周波側にある受信用フィル
タの場合、送信用フィルタからの漏れ電力が、受信用フ
ィルタの低周波側の減衰域に印加される。試験の条件
は、環境温度85℃,印加周波数は送信フィルタの帯域
内で最も受信フィルタの耐電力性が弱い周波数の188
5MHzである。
The power durability of each sample was evaluated by a life test. By the way, in the antenna duplexer, in the case of the reception filter located on the higher frequency side than the transmission filter, the leakage power from the transmission filter is applied to the attenuation region on the low frequency side of the reception filter. The test conditions were as follows: the ambient temperature was 85 ° C., and the applied frequency was 188 of the frequency at which the power durability of the receiving filter was weakest in the band of the transmitting filter.
5 MHz.

【0043】評価結果を図11に示す。80mW印加時
の寿命は、サンプルE,F,Gの順に、40hr,14
5hr,170hrであった。このように、各並列共振
器の周期を変えることにより、サンプルEに対し、サン
プルFの場合約3.6倍,サンプルGの場合約4.3倍
に、寿命すなわち耐電力性が改善した。特に、信号入力
側初段の並列共振器の周期を小さくすることは有効であ
る。
FIG. 11 shows the evaluation results. The life at the time of applying 80 mW was 40 hr, 14 samples in the order of samples E, F, and G.
5 hours and 170 hours. As described above, by changing the period of each parallel resonator, the life, that is, the power durability was improved by about 3.6 times in the case of the sample F and by about 4.3 times in the case of the sample G as compared with the sample E. In particular, it is effective to reduce the period of the first-stage parallel resonator on the signal input side.

【0044】実施例4:直列共振器の分割構成 この実施例では、1.8GHz帯の送信用フィルタ(送
信帯域;1850〜1885MHz)を対象とした。単
結晶圧電基板にLiTaO336°Ycut−X伝播の
基板を使用し、電極膜はDCスパッタ法により成膜した
A1(700Å)/Cu(150Å)/A1(700
Å)3層膜である。図4に示すような正規型一端子対弾
性表面波共振器を直列腕に4個(S1,S2,S3
4)、並列腕に2個(P1,P2)接続した梯子型の送
信用フィルタ(サンプルA)と、図12に示すようなS
1共振器を2つに分割した送信用フィルタ(サンプル
H)の耐電力性を比較評価した。
Embodiment 4: Divided Configuration of Series Resonator In this embodiment, a 1.8 GHz band transmission filter (transmission band: 1850 to 1885 MHz) is targeted. A single crystal piezoelectric substrate was a substrate of LiTaO 3 36 ° Ycut-X propagation, and the electrode film was formed by A1 (700 °) / Cu (150 °) / A1 (700) formed by DC sputtering.
Iii) It is a three-layer film. Four regular one-port surface acoustic wave resonators as shown in FIG. 4 (S 1 , S 2 , S 3 ,
S 4 ), a ladder-type transmission filter (sample A) connected to two parallel arms (P 1 , P 2 ), and an S-type filter as shown in FIG.
The power durability of the transmission filter (sample H) obtained by dividing one resonator into two was compared and evaluated.

【0045】この際、サンプルAのS1共振器1個の容
量と、サンプルHの2個の共振器S1 1,S12の容量の和
が同じになるようにした。2つの共振器S11,S12は、
直列に接続され、どちらもサンプルAのS1共振器の容
量の2倍である。たとえば、S1共振器1個の静電容量
を、開口長100μm,1対当り4×10-2pF程度と
するとき、S11,S12の静電容量は、開口長100μ
m,1対当り8×10-2pFとする。
[0045] At this time, the S 1 resonator one capacitor samples A, 2 pieces of the sum of the capacitance of the resonator S 1 1, S 12 of sample H was set to the same. The two resonators S 11 and S 12 are
Connected in series, both of which are twice the capacitance of the S 1 resonator of sample A. For example, when the capacitance of one S 1 resonator is 100 μm in aperture length and about 4 × 10 −2 pF per pair, the capacitance of S 11 and S 12 is 100 μm in aperture length.
m, 8 × 10 −2 pF per pair.

【0046】各サンプルの共振器の設計内容を次に示
す。サンプルAは、実施例1で用いたものと同じサンプ
ルである。また、サンプルHの2個の共振器S11,S12
は同じ構成を有し、開口長:60μm,対数:155
対,反射器:80対である。電極指の周期は、直列共振
器はすべて2.065μm、並列共振器はすべて2.1
40μmである。
The design contents of the resonator of each sample are shown below. Sample A is the same sample used in Example 1. Further, the two resonators S 11 and S 12 of the sample H
Have the same configuration, opening length: 60 μm, logarithm: 155
Pairs, reflectors: 80 pairs. The cycle of the electrode fingers was 2.065 μm for all series resonators and 2.1 for all parallel resonators.
40 μm.

【0047】上記の各サンプルの耐電力評価を寿命試験
で行った。試験の条件は、環境温度85℃、印加周波数
は通過帯域内で最も弱い周波数の1885MHzであ
る。評価結果を図13に示す。0.3W印加時の寿命
は、サンプルA,Hそれぞれ、80hr,460hrで
あった。上記のように、直列共振器の全体の容量を変え
ずに、直列共振器を分割して構成することにより、サン
プルAに対し、Hの寿命は5.8倍改善した。なお、こ
の実施例では直列共振器を2つに分割したものを示した
が、3個以上に分割して構成してもよい。
The power durability of each sample was evaluated by a life test. The conditions for the test were an environmental temperature of 85 ° C. and an applied frequency of 1885 MHz, the weakest frequency in the pass band. FIG. 13 shows the evaluation results. The life when 0.3 W was applied was 80 hr and 460 hr, respectively, for samples A and H. As described above, by dividing the series resonator without changing the overall capacitance of the series resonator, the life of H was improved by 5.8 times as compared with the sample A. In this embodiment, the series resonator is divided into two, but may be divided into three or more.

【0048】また、以上の4つの実施例に示した弾性表
面波共振器の構成は、分波器等を構成する場合に、必要
に応じて、適当に組み合わせて用いてもよい。この場合
でも送信用あるいは受信用フィルタの帯域特性に影響を
与えないで、耐電力性を向上させることができる。
Further, the configuration of the surface acoustic wave resonator shown in the above four embodiments may be used in an appropriate combination as needed, when forming a duplexer or the like. Even in this case, the power durability can be improved without affecting the band characteristics of the transmission or reception filter.

【0049】[0049]

【発明の効果】この発明によれば、各直列共振器あるい
は並列共振器の電極指の周期を異ならせた構成、あるい
は、1つの直列共振器の容量が増えるようにその直列共
振器を複数個に分割した構成を採用するため、弾性表面
波素子の耐電力性を向上させることができる。よって、
この発明は、弾性表面波素子を用いたアンテナデュプレ
クサの実用化に寄与するばかりでなく、電極指の線幅を
微細化する必要のある準マイクロ波帯弾性表面波素子の
信頼性向上にも大きく寄与し得る。
According to the present invention, the configuration is such that the period of the electrode fingers of each series resonator or parallel resonator is different, or a plurality of series resonators are provided so as to increase the capacity of one series resonator. In this case, the power durability of the surface acoustic wave element can be improved. Therefore,
The present invention not only contributes to the practical use of an antenna duplexer using a surface acoustic wave element, but also greatly improves the reliability of a quasi-microwave band surface acoustic wave element that requires a finer line width of an electrode finger. Can contribute.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の梯子型の弾性表面波素子の一実施例
の回路図である。
FIG. 1 is a circuit diagram of a ladder type surface acoustic wave device according to an embodiment of the present invention.

【図2】この発明の1端子対弾性表面波共振器の一実施
例のパターン構成図である。
FIG. 2 is a pattern configuration diagram of one embodiment of a one-terminal surface acoustic wave resonator according to the present invention.

【図3】この発明の弾性表面波素子の減衰量及び温度の
周波数特性を示した図である。
FIG. 3 is a diagram showing the frequency characteristics of attenuation and temperature of the surface acoustic wave device of the present invention.

【図4】この発明の弾性表面波素子の共振器の周波数特
性の説明図である。
FIG. 4 is an explanatory diagram of a frequency characteristic of a resonator of the surface acoustic wave device according to the present invention.

【図5】この発明の弾性表面波素子を利用した分波器の
基本構成図である。
FIG. 5 is a basic configuration diagram of a duplexer using the surface acoustic wave element of the present invention.

【図6】図5の分波器における各フィルタの周波数特性
図である。
FIG. 6 is a frequency characteristic diagram of each filter in the duplexer of FIG.

【図7】この発明の実施例1における弾性表面波素子の
回路図である。
FIG. 7 is a circuit diagram of the surface acoustic wave device according to the first embodiment of the present invention.

【図8】この発明の実施例1における寿命試験結果のグ
ラフである。
FIG. 8 is a graph of a life test result in Example 1 of the present invention.

【図9】この発明の実施例2における寿命試験結果のグ
ラフである。
FIG. 9 is a graph of a life test result in Embodiment 2 of the present invention.

【図10】この発明の実施例3における弾性表面波素子
の回路図である。
FIG. 10 is a circuit diagram of a surface acoustic wave device according to a third embodiment of the present invention.

【図11】この発明の実施例3における寿命試験結果の
グラフである。
FIG. 11 is a graph of a life test result in Example 3 of the present invention.

【図12】この発明の実施例4における弾性表面波素子
の回路図である。
FIG. 12 is a circuit diagram of a surface acoustic wave device according to a fourth embodiment of the present invention.

【図13】この発明の実施例4における寿命試験結果の
グラフである。
FIG. 13 is a graph of a life test result in Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

1 励振電極 2 励振電極 3 反射器 4 反射器 10 電極指 λ 電極指の周期 Y 開口長 S1 直列共振器 S2 直列共振器 S3 直列共振器 S4 直列共振器 P1 並列共振器 P2 並列共振器 F1 受信用フィルタ(RX) F2 送信用フィルタ(TXREFERENCE SIGNS LIST 1 excitation electrode 2 excitation electrode 3 reflector 4 reflector 10 electrode finger λ electrode finger period Y opening length S 1 series resonator S 2 series resonator S 3 series resonator S 4 series resonator P 1 parallel resonator P 2 Parallel resonator F1 Filter for reception (R X ) F2 Filter for transmission (T X )

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 所定の共振周波数を有する第1の1端子
対弾性表面波共振器を並列腕に、該第1の1端子対弾性
表面波共振器の反共振周波数に略一致する共振周波数を
有する第2の1端子対弾性表面波共振器を直列腕にそれ
ぞれ複数個配列した梯子型の弾性表面波素子であって、
前記第1及び第2の1端子対弾性表面波共振器が、所定
数の電極指を有するくし形電極から構成され、第2の1
端子対弾性表面波共振器のうち、少なくとも1つの1端
子対弾性表面波共振器の電極指の周期λが、次式、0.
99λav2<λ<1.01λav2(式中、λav2:第2の
1端子対弾性表面波共振器の電極指の周期の平均値)で
表わされることを特徴とする弾性表面波素子。
1. A first one-port surface acoustic wave resonator having a predetermined resonance frequency is connected to a parallel arm, and a resonance frequency substantially matching the anti-resonance frequency of the first one-port surface acoustic wave resonator is set. A ladder-type surface acoustic wave element in which a plurality of second one-port pair surface acoustic wave resonators are arranged on a serial arm, respectively.
The first and second one-port pair surface acoustic wave resonators are each composed of a comb-shaped electrode having a predetermined number of electrode fingers.
The period λ of the electrode fingers of at least one terminal-to-surface acoustic wave resonator among the terminal-to-surface acoustic wave resonators is expressed by the following equation:
A surface acoustic wave element characterized by being represented by 99λ av2 <λ <1.01λ av2 (where, λ av2 is an average value of the period of the electrode finger of the second one- port surface acoustic wave resonator).
【請求項2】 さらに第1の1端子対弾性表面波共振器
のうち、少なくとも1つの1端子対弾性表面波共振器の
電極指の周期λが、次式、0.99λav1<λ<1.0
1λav1(式中、λav1:第1の1端子対弾性表面波共振
器の電極指の周期の平均値)で表わされることを特徴と
する請求項1記載の弾性表面波素子。
2. The method of claim 1, wherein the period λ of the electrode finger of at least one of the first one-port surface acoustic wave resonator is 0.99λ av1 <λ <1. .0
2. The surface acoustic wave element according to claim 1, wherein the surface acoustic wave element is represented by 1 [lambda ] av1 (where [lambda] av1 is an average value of the period of the electrode fingers of the first one- port surface acoustic wave resonator).
【請求項3】 信号入力側から見て初段の第2の1端子
対弾性表面波共振器の電極指の周期が、他の第2の1端
子対弾性表面波共振器の電極指の周期よりも小さいこと
を特徴とする請求項1又は2に記載した弾性表面波素
子。
3. The period of the electrode finger of the second one-port pair surface acoustic wave resonator in the first stage as viewed from the signal input side is longer than the period of the electrode finger of the other second one-port pair surface acoustic wave resonator. 3. The surface acoustic wave device according to claim 1, wherein the surface acoustic wave element is also small.
【請求項4】 複数個の第2の1端子対弾性表面波共振
器の電極指の周期が、信号入力側から順に等しいか大き
いことを特徴とする請求項1又は2記載の弾性表面波素
子。
4. The surface acoustic wave device according to claim 1, wherein the periods of the electrode fingers of the plurality of second one-terminal surface acoustic wave resonators are equal or larger in order from the signal input side. .
【請求項5】 所定の共振周波数を有する第1の1端子
対弾性表面波共振器を並列腕に、該第1の1端子対弾性
表面波共振器の反共振周波数に略一致する共振周波数を
有する第2の1端子対弾性表面波共振器を直列腕にそれ
ぞれ複数個配列した梯子型の弾性表面波素子であって、
前記第1及び第2の1端子対弾性表面波共振器が、所定
数の電極指を有するくし形電極から構成され、第1の1
端子対弾性表面波共振器のうち、少なくとも1つの1端
子対弾性表面波共振器の電極指の周期λが、次式、0.
99λav1<λ<1.01λav1(式中、λav1:第1の
1端子対弾性表面波共振器の電極指の周期の平均値)で
表わされることを特徴とする弾性表面波素子。
5. A first one-port surface acoustic wave resonator having a predetermined resonance frequency is provided in a parallel arm with a resonance frequency substantially matching the anti-resonance frequency of the first one-port surface acoustic wave resonator. A ladder-type surface acoustic wave element in which a plurality of second one-port pair surface acoustic wave resonators are arranged on a serial arm, respectively.
The first and second one-terminal pair surface acoustic wave resonators are each formed of a comb-shaped electrode having a predetermined number of electrode fingers.
The period λ of the electrode fingers of at least one terminal-to-surface acoustic wave resonator among the terminal-to-surface acoustic wave resonators is expressed by the following equation:
A surface acoustic wave device characterized by being represented by 99λ av1 <λ <1.01λ av1 (where, λ av1 is an average value of the period of the electrode finger of the first one- port surface acoustic wave resonator).
【請求項6】 信号入力側から見て初段の第1の1端子
対弾性表面波共振器の電極指の周期が、他の第1の1端
子対弾性表面波並列共振器の電極指の周期よりも大きい
ことを特徴とする請求項2又は5に記載した弾性表面波
素子。
6. The period of the electrode fingers of the first one-port pair surface acoustic wave resonator in the first stage as viewed from the signal input side is the same as the period of the electrode fingers of the other first one-port pair surface acoustic wave parallel resonators. The surface acoustic wave device according to claim 2, wherein the surface acoustic wave device is larger than the surface acoustic wave device.
【請求項7】 複数個の第1の1端子対弾性表面波共振
器の電極指の周期が、信号入力側から順に等しいか小さ
いことを特徴とする請求項2又は5記載の弾性表面波素
子。
7. The surface acoustic wave element according to claim 2, wherein the periods of the electrode fingers of the plurality of first one-port surface acoustic wave resonators are equal or smaller in order from the signal input side. .
【請求項8】 受信用の弾性表面波素子であって、信号
入力側から見て初段の第1の1端子対弾性表面波共振器
の電極指の周期が、他の第1の1端子対弾性表面波共振
器の電極指の周期よりも小さいことを特徴とする請求項
2又は5記載の弾性表面波素子。
8. A surface acoustic wave element for reception, wherein a period of an electrode finger of a first stage of a first stage pair and an electrode finger of a surface acoustic wave resonator as viewed from a signal input side is equal to that of another first series of one terminal pairs. 6. The surface acoustic wave device according to claim 2, wherein the period is smaller than a period of an electrode finger of the surface acoustic wave resonator.
【請求項9】 受信用の弾性表面波素子であって、複数
個の第1の1端子対弾性表面波共振器の電極指の周期
が、信号入力側から順に等しいか大きいことを特徴とす
る請求項2又は5記載の弾性表面波素子。
9. A surface acoustic wave element for reception, wherein the periods of the electrode fingers of the plurality of first one-port surface acoustic wave resonators are equal or larger in order from the signal input side. A surface acoustic wave device according to claim 2.
【請求項10】 所定の共振周波数を有する第1の1端
子対弾性表面波共振器を並列腕に、該第1の1端子対弾
性表面波共振器の反共振周波数に略一致する共振周波数
を有する第2の1端子対弾性表面波共振器を直列腕にそ
れぞれ複数個配列した梯子型の弾性表面波素子であっ
て、信号入力側から見て初段の第2の1端子対弾性表面
波共振器が、直列に接続された複数個の分割弾性表面波
共振器から構成されたことを特徴とする弾性表面波素
子。
10. A first one-port surface acoustic wave resonator having a predetermined resonance frequency is connected to a parallel arm, and a resonance frequency substantially matching the anti-resonance frequency of the first one-port surface acoustic wave resonator is set. A ladder-type surface acoustic wave element in which a plurality of second one-port pair surface acoustic wave resonators are arranged in series arms, respectively, wherein the first one-terminal second pair of surface acoustic wave resonators is viewed from the signal input side. A surface acoustic wave element comprising a plurality of divided surface acoustic wave resonators connected in series.
【請求項11】 信号入力側から見て初段以外の第2の
1端子対弾性表面波共振器も、直列に接続された複数個
の分割弾性表面波共振器から構成されたことを特徴とす
る請求項10記載の弾性表面波素子。
11. The second one-port surface acoustic wave resonator other than the first stage viewed from the signal input side is also constituted by a plurality of divided surface acoustic wave resonators connected in series. The surface acoustic wave device according to claim 10.
【請求項12】 第2の1端子対弾性表面波共振器が、
直列に接続された複数個の分割弾性表面波共振器から構
成されたことを特徴とする請求項1,2又は5のいずれ
かに記載した弾性表面波素子。
12. The second one-port surface acoustic wave resonator comprises:
6. The surface acoustic wave device according to claim 1, comprising a plurality of divided surface acoustic wave resonators connected in series.
JP10966697A 1997-04-25 1997-04-25 Surface acoustic wave device and duplexer using the same Expired - Lifetime JP3241293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10966697A JP3241293B2 (en) 1997-04-25 1997-04-25 Surface acoustic wave device and duplexer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10966697A JP3241293B2 (en) 1997-04-25 1997-04-25 Surface acoustic wave device and duplexer using the same

Publications (2)

Publication Number Publication Date
JPH10303698A true JPH10303698A (en) 1998-11-13
JP3241293B2 JP3241293B2 (en) 2001-12-25

Family

ID=14516093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10966697A Expired - Lifetime JP3241293B2 (en) 1997-04-25 1997-04-25 Surface acoustic wave device and duplexer using the same

Country Status (1)

Country Link
JP (1) JP3241293B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208223B1 (en) * 1998-03-06 2001-03-27 Oli Electric Industry, Co., Ltd. Receiving filter of a saw separator with greater electrode interdigitated width in first stage parallel resonator
JP2001510950A (en) * 1997-07-17 2001-08-07 エプコス アクチエンゲゼルシャフト Surface acoustic wave filter with improved edge steep characteristics
US6741145B2 (en) * 2000-11-24 2004-05-25 Nokia Corporation Filter structure and arrangement comprising piezoelectric resonators
US6891449B2 (en) * 2000-04-03 2005-05-10 Matsushita Electric Industrial Co., Ltd. Antenna duplexer
US6903626B2 (en) 2001-12-14 2005-06-07 Fujitsu Media Devices Limited Surface acoustic wave element and duplexer having the same
US6975185B2 (en) 2002-09-30 2005-12-13 Fujitsu Media Devices Ltd. Surface acoustic wave filter and surface acoustic wave duplexer having the same
US6995631B2 (en) 2003-01-16 2006-02-07 Murata Manufacturing Co., Ltd. Ladder filter, branching filter, and communication apparatus
US7271684B2 (en) 2002-11-22 2007-09-18 Fujitsu Media Devices Limited Filter element, and filter device, duplexer, and high-frequency circuit each including said filter element
EP1942576A1 (en) * 2005-10-27 2008-07-09 Kyocera Corporation Splitter and communication apparatus using the same
US7420440B2 (en) * 2001-10-26 2008-09-02 Oki Electric Industry Co., Ltd. Transmitting filter including SAW resonators
JP2010109417A (en) * 2008-10-28 2010-05-13 Murata Mfg Co Ltd Ladder type filter and duplexer with the same
US8004370B2 (en) 2006-03-31 2011-08-23 Kyocera Corporation Surface acoustic wave element, surface acoustic wave apparatus, and communication apparatus
JP2012151697A (en) * 2011-01-19 2012-08-09 Taiyo Yuden Co Ltd Duplexer
JP2014225909A (en) * 2014-07-28 2014-12-04 太陽誘電株式会社 Duplexer
JP2015062277A (en) * 2013-08-22 2015-04-02 株式会社村田製作所 Acoustic wave filter device and duplexer
CN111224641A (en) * 2020-01-22 2020-06-02 诺思(天津)微系统有限责任公司 Filter, duplexer, high-frequency front-end circuit and communication device
JP2021190846A (en) * 2020-05-29 2021-12-13 株式会社村田製作所 Acoustic wave device and composite filter device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001510950A (en) * 1997-07-17 2001-08-07 エプコス アクチエンゲゼルシャフト Surface acoustic wave filter with improved edge steep characteristics
US6208223B1 (en) * 1998-03-06 2001-03-27 Oli Electric Industry, Co., Ltd. Receiving filter of a saw separator with greater electrode interdigitated width in first stage parallel resonator
US6891449B2 (en) * 2000-04-03 2005-05-10 Matsushita Electric Industrial Co., Ltd. Antenna duplexer
US6741145B2 (en) * 2000-11-24 2004-05-25 Nokia Corporation Filter structure and arrangement comprising piezoelectric resonators
JP2007267405A (en) * 2000-11-24 2007-10-11 Nokia Corp Filter structure including piezo-resonator, and its configuration
US7420440B2 (en) * 2001-10-26 2008-09-02 Oki Electric Industry Co., Ltd. Transmitting filter including SAW resonators
US6903626B2 (en) 2001-12-14 2005-06-07 Fujitsu Media Devices Limited Surface acoustic wave element and duplexer having the same
CN100367666C (en) * 2001-12-14 2008-02-06 富士通媒体器件株式会社 Surface acoustic wave device and duplexer therewith
US6975185B2 (en) 2002-09-30 2005-12-13 Fujitsu Media Devices Ltd. Surface acoustic wave filter and surface acoustic wave duplexer having the same
KR100701564B1 (en) * 2002-09-30 2007-03-30 후지쓰 메디아 데바이스 가부시키가이샤 Surface acoustic wave filter and surface acoustic wave duplexer having the same
US7271684B2 (en) 2002-11-22 2007-09-18 Fujitsu Media Devices Limited Filter element, and filter device, duplexer, and high-frequency circuit each including said filter element
US6995631B2 (en) 2003-01-16 2006-02-07 Murata Manufacturing Co., Ltd. Ladder filter, branching filter, and communication apparatus
EP1455447A3 (en) * 2003-01-16 2009-07-08 Murata Manufacturing Co., Ltd. Ladder filter, branching filter, and communications apparatus
EP1942576A1 (en) * 2005-10-27 2008-07-09 Kyocera Corporation Splitter and communication apparatus using the same
EP1942576A4 (en) * 2005-10-27 2009-09-30 Kyocera Corp Splitter and communication apparatus using the same
US8004370B2 (en) 2006-03-31 2011-08-23 Kyocera Corporation Surface acoustic wave element, surface acoustic wave apparatus, and communication apparatus
JP2010109417A (en) * 2008-10-28 2010-05-13 Murata Mfg Co Ltd Ladder type filter and duplexer with the same
JP2012151697A (en) * 2011-01-19 2012-08-09 Taiyo Yuden Co Ltd Duplexer
US9136823B2 (en) 2011-01-19 2015-09-15 Taiyo Yuden Co., Ltd. Duplexer
US9641155B2 (en) 2011-01-19 2017-05-02 Taiyo Yuden Co., Ltd. Duplexer
JP2015062277A (en) * 2013-08-22 2015-04-02 株式会社村田製作所 Acoustic wave filter device and duplexer
JP2014225909A (en) * 2014-07-28 2014-12-04 太陽誘電株式会社 Duplexer
CN111224641A (en) * 2020-01-22 2020-06-02 诺思(天津)微系统有限责任公司 Filter, duplexer, high-frequency front-end circuit and communication device
JP2021190846A (en) * 2020-05-29 2021-12-13 株式会社村田製作所 Acoustic wave device and composite filter device

Also Published As

Publication number Publication date
JP3241293B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
US5506552A (en) Surface acoustic wave filter with multiple ground terminals
US6762657B2 (en) Longitudinally coupled resonator-type surface acoustic wave filter
JP2800905B2 (en) Surface acoustic wave filter
JP3241293B2 (en) Surface acoustic wave device and duplexer using the same
JP3191473B2 (en) Surface acoustic wave filter
JP3388475B2 (en) Duplexer
JPH01260911A (en) Composite filter for surface acoustic wave resonator
US7459997B2 (en) Elastic wave filter device and duplexer
KR100679194B1 (en) Surface acoustic wave element and duplexer having the same
KR100323270B1 (en) Saw filter with inter-stage matching saw resonator
JP3838128B2 (en) Surface acoustic wave device and communication device equipped with the same
JPH11312951A (en) Surface acoustic wave filter
US7482895B2 (en) Surface acoustic wave filter
US20080309433A1 (en) Elastic Wave Filter and Communication Device Equipped With the Elastic Wave Filter
US8339221B2 (en) Elastic wave filter device having narrow-pitch electrode finger portions
JPH0629779A (en) Surface acoustic wave filter
CN107248852B (en) Acoustic wave device
JP3152419B2 (en) Surface acoustic wave filter
JP4285052B2 (en) Longitudinal coupled resonator type surface acoustic wave filter
JP2001230657A (en) Surface acoustic wave filter
JP3878714B2 (en) Surface acoustic wave filter
JP2002111443A (en) Coupled surface acoustic wave filter
JPH1093375A (en) Surface acoustic wave filter
GB2387495A (en) Surface-acoustic-wave device
JP2002111444A (en) Coupled surface acoustic wave filter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term