JPH0629779A - Surface acoustic wave filter - Google Patents

Surface acoustic wave filter

Info

Publication number
JPH0629779A
JPH0629779A JP4185181A JP18518192A JPH0629779A JP H0629779 A JPH0629779 A JP H0629779A JP 4185181 A JP4185181 A JP 4185181A JP 18518192 A JP18518192 A JP 18518192A JP H0629779 A JPH0629779 A JP H0629779A
Authority
JP
Japan
Prior art keywords
resonator
stage
surface acoustic
acoustic wave
resonators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4185181A
Other languages
Japanese (ja)
Other versions
JP3194540B2 (en
Inventor
Tsutomu Miyashita
勉 宮下
Yoshio Sato
良夫 佐藤
Osamu Igata
理 伊形
Motoharu Taniguchi
元治 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16166263&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0629779(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18518192A priority Critical patent/JP3194540B2/en
Publication of JPH0629779A publication Critical patent/JPH0629779A/en
Application granted granted Critical
Publication of JP3194540B2 publication Critical patent/JP3194540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02944Means for compensation or elimination of undesirable effects of ohmic loss
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters

Abstract

PURPOSE:To suppress the temperature rise to improve the resistance to power by forming pairs of electrode fingers in a second resonator arranged in the first stage more than those in second resonators arranged in the other stages. CONSTITUTION:First resonators 22 having a prescribed resonance frequency are arranged in a parallel arm and second resonators 23 having the antiresonance frequency of first resonators 22 are arranged in a series arm to form a surface acoustic wave filter. First and second resonators 22 and 23 are one terminal pair where comb-shaped electrodes 25a and 25b having electrode fingers 24a and 24b are matched while crossing, and a parallel resonator P1 and a series resonator S1 are combined to form a stage, and plural stages are formed. The number of pairs of electrode fingers 24a and 24b crossing each other in the series resonator S1 arranged in the first stage is larger than that in series resonators S2 and S3 in the other stages. Thus, the current flowing to each electrode finger of the comb-shaped electrode of the series resonators S1 is reduced to suppress the temperature rise.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車電話及び携帯電
話などの小型移動体無線機のRF(高調波部)のフィル
タに使用される梯子型の弾性表面波フィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ladder type surface acoustic wave filter used as an RF (harmonic wave portion) filter of a small mobile radio such as a car phone and a mobile phone.

【0002】近年、小型で軽量な自動車電話、携帯電話
等の移動通信端末の開発が急速に進められている。これ
に伴い使用される部品の小型、高性能化が求められてお
り、RF部(高周波部)が小型にできる弾性表面波(S
AW)素子(共振子、フィルタ、分波器)の開発が期待
されている。特にSAW分波器はRF部の小型に大きく
貢献できるデバイスなためにその開発が強く要望されて
いる。
In recent years, the development of small and lightweight mobile communication terminals such as car phones and mobile phones has been rapidly advanced. Along with this, there is a demand for miniaturization and high performance of the components used, and the surface acoustic wave (S
AW) elements (resonators, filters, duplexers) are expected to be developed. In particular, the SAW demultiplexer is a device that can greatly contribute to the miniaturization of the RF section, and therefore its development is strongly desired.

【0003】このSAW分波器が、例えば自動車電話、
携帯電話等の移動体端末のRF部には無線の送、受信用
等のフィルタに用いられる場合、挿入損失が小さいこ
と、帯域外の抑圧度が大きいこと等の特性が要求されて
いる。特にRF部の最終段の増幅器の後には分波器が必
要であり、この分波器の送信側フィルタには1〜2W程
度の電力負荷がかかるために耐電力性が要求される。
This SAW duplexer is used, for example, in a mobile phone,
When used as a filter for wireless transmission and reception, the RF unit of a mobile terminal such as a mobile phone is required to have characteristics such as low insertion loss and high out-of-band suppression. In particular, a demultiplexer is required after the final stage amplifier of the RF section, and a power load of about 1 to 2 W is applied to the filter on the transmission side of this demultiplexer, so that power resistance is required.

【0004】[0004]

【従来の技術】従来、耐電力性の高い分波器として、誘
電体分波器が用いられているが、体積が大きくなること
から、体積を小型にできるSAWフィルタがあり、トラ
ンスバーサル型フィルタが一般に用いられる。
2. Description of the Related Art Conventionally, a dielectric demultiplexer has been used as a demultiplexer having high power resistance. However, since the volume is large, there is a SAW filter that can reduce the volume. Is commonly used.

【0005】また、分波器としては、送信用のバンドリ
ジェクト型SAWフィルタと受信用のトランスバーサル
型SAWフィルタを組み合わせたものが知られている。
As a demultiplexer, a combination of a band reject type SAW filter for transmission and a transversal type SAW filter for reception is known.

【0006】さらに、低損失化を図るSAWフィルタと
してSAW共振器を直列腕と並列腕に梯子型に接続した
バンドパスフィルタ、及びこのバンドパスフィルタを組
み合わせた分波器が本発明者等において出願済である。
Further, as a SAW filter for reducing the loss, a bandpass filter in which SAW resonators are connected in series and parallel arms in a ladder shape, and a duplexer combining the bandpass filters are filed by the present inventors. Already done.

【0007】そこで、図13に、梯子型のSAWフィル
タの構成図を示す。図13(A)は記号化したSAWフ
ィルタの回路であり、図13(B)は基板上の配置を示
したもので、図13(A),(B)における梯子型のS
AWフィルタ11は、圧電基板12上に、入出力間で直
列腕のSAW共振器S1 ,S2 ,S3 と並列腕のSAW
共振器P1 ,P2 ,P3 とが梯子状に形成されたもので
ある。
Therefore, FIG. 13 shows a block diagram of a ladder type SAW filter. FIG. 13A is a symbolized SAW filter circuit, and FIG. 13B shows the arrangement on the substrate. The ladder-type S in FIGS. 13A and 13B is used.
The AW filter 11 includes a SAW resonator S 1 , S 2 , and S 3 in a series arm and a SAW resonator in a parallel arm on a piezoelectric substrate 12 between an input and an output.
The resonators P 1 , P 2 and P 3 are formed in a ladder shape.

【0008】ここで、図14に、図13におけるSAW
共振器の構成図を示す。図14(A)は、上記直列腕と
並列腕とを構成するSAW共振器(S1 〜S3 ,P1
3)であり、くし形電極(13a,13b)が互いに
かみ合い状態で整合されたものである。このくし形電極
13a,13bが圧電基板12上に、例えばアルミニウ
ム等の薄膜で形成される。この場合、図中、14は電極
対、15は開口長、16はくし形電極周期である。
FIG. 14 shows the SAW in FIG.
The block diagram of a resonator is shown. FIG. 14 (A) shows SAW resonators (S 1 to S 3 , P 1 to which form the series arm and the parallel arm).
P 3 ), in which the comb-shaped electrodes (13 a, 13 b) are aligned in a meshed state. The comb-shaped electrodes 13a and 13b are formed on the piezoelectric substrate 12 by a thin film such as aluminum. In this case, in the figure, 14 is an electrode pair, 15 is an aperture length, and 16 is a comb-shaped electrode period.

【0009】このときの等価回路が、図14(B)に示
すように、抵抗r1 ,コンダクタンスC1 ,リアクタン
スL1 の直列インピーダンスと、コンダクタンスC0
インピーダンスとの並列接続されたものと等価となる。
そして、これを記号で表わしたものが図14(C)で表
わされ、図13(A)のように配列される。
As shown in FIG. 14B, the equivalent circuit at this time is equivalent to one in which a series impedance of a resistance r 1 , a conductance C 1 and a reactance L 1 and an impedance of a conductance C 0 are connected in parallel. Becomes
A symbol representing this is shown in FIG. 14C, which is arranged as shown in FIG. 13A.

【0010】例えば、並列腕P1 ,P2 ,P3 の電極対
14の数を50対、開口長を150 μm とし、直列腕
1 ,S2 ,S3 の電極対14の数を100 対、開口長を
80μmとし、それぞれのくし形電極13a,13bの
外側にはショート型の反射器(図示せず)が配置され
る。
For example, the number of the electrode pairs 14 of the parallel arms P 1 , P 2 , P 3 is 50, the opening length is 150 μm, and the number of the electrode pairs 14 of the series arms S 1 , S 2 , S 3 is 100. On the other hand, the opening length is 80 μm, and a short-type reflector (not shown) is arranged outside each of the comb-shaped electrodes 13a and 13b.

【0011】ここで、図15に、図13のフィルタ特性
を説明するための図を示す。図15(A)は、上述の並
列腕P1 ,P2 ,P3 と直列腕S1 ,S2 ,S3 の対
数、開口長、容量比を示したものである。そして、図1
5(B)にフィルタの透過特性が示される。
FIG. 15 is a diagram for explaining the filter characteristic of FIG. FIG. 15A shows the logarithm, the aperture length, and the capacity ratio of the parallel arms P 1 , P 2 , P 3 and the series arms S 1 , S 2 , S 3 described above. And FIG.
5 (B) shows the transmission characteristics of the filter.

【0012】図15(A),(B)に示すように、低損
失化が図られたSAWフィルタが得られるものである。
As shown in FIGS. 15A and 15B, a SAW filter having a low loss can be obtained.

【0013】[0013]

【発明が解決しようとする課題】ところで、図13にお
ける梯子型のSAWフィルタ11は、一般に国内向け自
動車、携帯電話用における送信側に使用されるもので、
図16にその加速寿命試験のグラフを示す。
The ladder type SAW filter 11 shown in FIG. 13 is generally used on the transmitting side in domestic automobiles and mobile phones.
FIG. 16 shows a graph of the accelerated life test.

【0014】図16における試験は、入力電力が3.5
W,周囲温度85℃の条件で行ったもので、図からも明
らかなように寿命は周波数に依存する。すなわち、低周
波側に電力を印加した場合に総てのSAW共振器(P1
〜P3 ,S1 〜S3 )のくし形電極13a,13bに変
化が見られずにフィルタの挿入損失のみ増大したのに対
し、高周波側における電力印加の場合、初段の直列共振
器S1 のくし形電極13a,13bに溶断を生じ、フィ
ルタの機能を維持し得ない状態となる。
In the test shown in FIG. 16, the input power is 3.5.
The test was performed under the conditions of W and ambient temperature of 85 ° C., and the life depends on the frequency, as is clear from the figure. That is, when power is applied to the low frequency side, all SAW resonators (P 1
To P 3, S 1 comb electrode 13a of the to S 3), whereas increased only insertion loss of the filter without change is observed in 13b, when the power application in the high frequency side, the first stage of the series resonators S 1 The comb-shaped electrodes 13a and 13b are blown, and the function of the filter cannot be maintained.

【0015】ここで、図17に、フィルタの温度上昇の
グラフを示す。図17のグラフは、入力電力を3.5 W,
周囲温度を室温として試験を行ったもので、図のように
周波数が高くなるにつれて温度が急激に上昇する。すな
わち、SAWフィルタの高周波側での耐電力性の劣化の
主要因としてフィルタの急激な温度上昇であり、特に初
段の直列共振器S1 の温度が最も高くなる。
FIG. 17 is a graph showing the temperature rise of the filter. The graph of FIG. 17 shows that the input power is 3.5 W,
The test was conducted with the ambient temperature at room temperature, and the temperature rises rapidly as the frequency becomes higher as shown in the figure. That is, a sharp rise in temperature of the SAW filter as a main factor of deterioration in power resistance on the high frequency side, and particularly the temperature of the first-stage series resonator S 1 becomes the highest.

【0016】ここで、図18に、フィルタの温度上昇と
劣化を説明するための図を示す。図18(A)は、並列
腕と直列腕に共振周波数の異なる弾性表面波共振器
1 ,S 1 を配置した基本回路であり、図18(B)
は、並列腕共振器のアドミタンスY p (Yp =g+jb
g:コンダクタンス分、b:サセプタンス分)の周波
数特性及び直列腕共振器のインピーダンスZS (ZS
r+jx,r:抵抗分、x:リアクタンス分)の周波数
特性である。
FIG. 18 shows the temperature rise of the filter and
The figure for demonstrating deterioration is shown. FIG. 18A shows parallel
Surface acoustic wave resonator with different resonance frequencies for arm and series arm
P1, S 118B is a basic circuit in which
Is the admittance Y of the parallel arm resonator p(Yp= G + jb
 g: conductance component, b: susceptance component)
Numerical characteristics and impedance Z of series arm resonatorS(ZS=
r + jx, r: resistance component, x: reactance component) frequency
It is a characteristic.

【0017】並列腕共振器のアドミタンスYp のサセプ
タンス分b(点線)は、共振周波数frp で最大値をと
り、そこで符号を+から−へ変え、反共振周波数fap で
0(零)となり、fap 以上で符号が再び+になり、少し
づつ増大してゆく。
The susceptance component b (dotted line) of the admittance Y p of the parallel arm resonator takes a maximum value at the resonance frequency frp, where the sign is changed from + to − and becomes 0 (zero) at the anti-resonance frequency fap. As a result, the sign becomes + again and increases little by little.

【0018】一方、Yp のコンダクタンス分g(一点鎖
線)は、同様にfap で最大値をとり、fap を越えると急
激に減少し、徐々に0に近づいていく。尚コンダクタン
ス分gは+の値しかとらない。
On the other hand, the conductance component g (dashed-dotted line) of Y p similarly takes the maximum value at fap, sharply decreases when it exceeds fap, and gradually approaches 0. The conductance component g takes only a positive value.

【0019】直列腕共振器のインピーダンス分Zs のリ
アクタンス分x(実線)は、アドミタンスとは逆で共振
周波数frs で0となり、反共振周波数fas で最大値をと
り、さらに+から−へ符号を変え、fas 以上では−側か
ら0へ近づいていく。
The reactance component x (solid line) of the impedance component Z s of the series arm resonator is 0 at the resonance frequency frs, which is the opposite of the admittance, takes the maximum value at the anti-resonance frequency fas, and the sign is changed from + to −. Change it, and if it is fas or higher, it approaches 0 from the minus side.

【0020】また、抵抗分rは0から徐々に増加してゆ
き、反共振周波数fas で最大値をとり、それ以上で徐々
に減少していく。rもgと同様に+の値しかとらない。
Further, the resistance component r gradually increases from 0, reaches the maximum value at the antiresonance frequency fas, and gradually decreases when the antiresonance frequency fas is exceeded. Similarly to g, r takes only a positive value.

【0021】ここで、フィルタ特性を作るためには、前
記並列共振器の反共振周波数fap と直列共振器の共振周
波数frs とは略一致もしくは後者がやや大きいことが条
件である。
Here, in order to create the filter characteristic, it is a condition that the anti-resonance frequency fap of the parallel resonator and the resonance frequency frs of the series resonator are substantially the same or the latter is slightly larger.

【0022】図18(B)の下部に上のインピーダン
ス、アドミタンスの周波数特性に合わせて、フィルタ回
路としての通過特性を示す。同図において、fap ≒frs
近傍で通過帯域をとり、それ以外では減衰領域となる。
また、同図からも明らかなように、通過帯域の特に中心
周波数近傍ではb及びxは0になる。
The pass characteristic of the filter circuit is shown in the lower part of FIG. 18B in accordance with the frequency characteristics of the impedance and admittance. In the figure, fap ≈ frs
It takes a pass band in the vicinity and becomes an attenuation region in other areas.
Further, as is clear from the figure, b and x are 0 especially in the vicinity of the center frequency of the pass band.

【0023】これにより、r(r1 )とg(C0 )はフ
ィルタ特性の帯域外抑圧や挿入損失と関係が深く、くし
形電極の開口表、対数に大きく依存する。
As a result, r (r 1 ) and g (C 0 ) are closely related to the out-of-band suppression of the filter characteristics and the insertion loss, and greatly depend on the aperture table and the logarithm of the comb electrode.

【0024】一方、温度上昇においては、図13のSA
Wフィルタ11の入力電流をI,各共振器(P1
3 ,S1 〜S3 )に流れる電流をip1,ip2,ip3
s1,i s2,is3とする。
On the other hand, when the temperature rises, SA in FIG.
The input current of the W filter 11 is I, each resonator (P1~
P3, S1~ S3) Current ip1, Ip2, Ip3
is1, I s2, Is3And

【0025】直列共振器S1 の共振点frs では、並列共
振器P1 のサセプタンスjが必ずしも零になっていない
ため、並列共振器P1 に僅かな電流ip1,ip2,i
p3(ip1>ip2>ip3)が流れる。このため直列共振器
1 に流れる電流はip1>ip2>ip3になるため、初段
の直列共振器S1 の抵抗rによる発熱のため直列共振器
1 の温度上昇が最も高くなり、寿命が最短となる。直
列共振器S1 の共振点frs以外では並列共振器P1 に流
れる電流が多くなるため、直列共振器S1 に流れる電流
も少なくなり、且つ弾性表面波があまり励振されないた
め、温度上昇も小さく寿命も長い。
Series resonator S1At the resonance point frs of
Shake P1Susceptance j of is not necessarily zero
Therefore, the parallel resonator P1Little current ip1, Ip2, I
p3(Ip1> Ip2> Ip3) Flows. Therefore, the series resonator
S1The current flowing through is ip1> Ip2> Ip3Because,
Series resonator S1Series resonator due to heat generated by resistance r
S 1Has the highest temperature rise and the shortest life. straight
Row resonator S1Parallel resonator P except the resonance point frs of1Flow
The series current S1Current flowing through
Less and the surface acoustic waves were not excited much
Therefore, the temperature rise is small and the life is long.

【0026】そこで、本発明は上記の点に鑑みなされた
もので、温度上昇を抑制して耐電力性の向上を図る弾性
表面波フィルタを提供することを目的とする。
Therefore, the present invention has been made in view of the above points, and an object of the present invention is to provide a surface acoustic wave filter which suppresses a temperature rise and improves power resistance.

【0027】[0027]

【課題を解決するための手段】上記課題は、所定数の電
極指を有するくし形電極が互いにかみ合い状態で整合さ
れた一端子対弾性表面波共振器であって、所定の共振周
波数を有する第1の共振器を並列腕に、該第1の共振器
の反共振周波数に少なくとも略一致する共振周波数をも
つ第2の共振器を直列腕に複数段配置される梯子型の弾
性表面波フィルタにおいて、入力側より初段に配置され
る前記第2の共振器の前記かみ合い状態の電極指の対数
を、他段の前記第2の共振器の対数より多く形成するこ
とにより、又は前記かみ合い状態の重複する電極指長を
他段の重複する電極指長より短く形成することにより解
決される。
The above object is a one-terminal pair surface acoustic wave resonator in which comb-shaped electrodes having a predetermined number of electrode fingers are matched with each other in an intermeshing state and have a predetermined resonance frequency. A ladder-type surface acoustic wave filter in which one resonator is arranged in parallel arms and a plurality of second resonators having a resonance frequency at least approximately equal to the anti-resonance frequency of the first resonator are arranged in series arms. , The number of pairs of electrode fingers in the meshed state of the second resonator arranged at the first stage from the input side is larger than that of the second resonators in the other stages, or the overlapping state of the meshed states. The problem is solved by forming the electrode finger length to be shorter than the overlapping electrode finger length of the other stage.

【0028】[0028]

【作用】上述のように、初段の第2の共振器におけるか
み合い状態の電極指の対数を、他段の第2の共振器の対
数より多く形成する。
As described above, the number of electrode fingers in the engaged state in the first-stage second resonator is larger than that in the other-stage second resonator.

【0029】これにより、初段に配置される第2の共振
器のくし形電極における各電極指当たりに流れる電流が
減少し、温度上昇が抑制される。
As a result, the current flowing around each electrode finger in the comb-shaped electrode of the second resonator arranged in the first stage is reduced, and the temperature rise is suppressed.

【0030】また、初段の第2の共振器のかみ合い状態
の重複する電極指長を他段のものより短かく形成する。
これにより、初段の第2の共振器におけるくし形電極全
体の抵抗値が減少し、温度上昇が抑制される。
Further, the overlapping electrode finger lengths of the first stage second resonator in the meshed state are formed shorter than those of the other stages.
As a result, the resistance value of the entire comb-shaped electrode in the first-stage second resonator is reduced, and the temperature rise is suppressed.

【0031】すなわち、初段の第2の共振器に印加され
る電力負荷を減少させ、温度上昇を低減させて耐電力性
を向上させることが可能となる。
That is, it is possible to reduce the power load applied to the first-stage second resonator, reduce the temperature rise, and improve the power resistance.

【0032】[0032]

【実施例】図1に、本発明の第1の実施例の構成図を示
す。図1における梯子型の弾性表面波フィルタ(SAW
フィルタ)21A は、例えば国内向け送信フィルタ(送
信帯域925 〜942 MHz)に適用するものとして、圧電
基板(図示せず)に36°Y−X伝播のLiTaO
3 (リチウムタンタレート)を使用し、Al−2%Cu
を膜厚3000Åで、第1の共振器22(並列共振器P1
3 )を並列腕に、第2の共振器23(直列共振器
1 ,S2 ,S3 )を直列腕にそれぞれ配置して形成し
たものである。
1 is a block diagram of the first embodiment of the present invention. The ladder type surface acoustic wave filter (SAW
The filter 21 A is, for example, as applied to a domestic transmission filter (transmission band 925 to 942 MHz), a 36 ° Y-X propagation LiTaO on a piezoelectric substrate (not shown).
3 (lithium tantalate) is used, Al-2% Cu
With a film thickness of 3000 Å, the first resonator 22 (parallel resonator P 1 ~
P 3 ) is arranged in the parallel arm, and the second resonator 23 (series resonators S 1 , S 2 , S 3 ) is arranged in the series arm.

【0033】第1及び第2の共振器22,23のそれぞ
れは、電極指24a,24bを有するくし形電極25
a,25bが互いにかみ合い状態で整合された一端子対
のものである(図14(A)参照)。この場合、第1の
共振器22(P1 〜P3 )は共振周波数frp (図18参
照)を有し、第2の共振器23(S1 ,S2 ,S3 )は
第1の共振器22の反共振周波数fap に略一致又はより
大きな共振周波数frp (frp1)を有する。そして、並列
共振器P1 と直列共振器S1 とを組み合わせたものを段
として、それぞれ複数段形成される。
Each of the first and second resonators 22 and 23 has a comb-shaped electrode 25 having electrode fingers 24a and 24b.
A pair of terminals a and 25b are aligned with each other in a meshed state (see FIG. 14A). In this case, the first resonator 22 (P 1 to P 3 ) has the resonance frequency frp (see FIG. 18), and the second resonator 23 (S 1 , S 2 , S 3 ) has the first resonance. It has a resonance frequency frp (frp1) substantially equal to or larger than the anti-resonance frequency fap of the container 22. A plurality of parallel resonators P 1 and series resonators S 1 are formed to form a plurality of stages.

【0034】また、入力側より初段に配置される直列共
振器S1 は、そのかみ合い状態の電極指24a,24b
の対数を、他段の直列共振器S2 ,S3 の対数より多く
形成される。なお、並列共振器P1 〜P3 の対数は総て
一定である。
The series resonator S 1 arranged in the first stage from the input side has the electrode fingers 24a, 24b in the engaged state.
Is formed more than the logarithm of the series resonators S 2 and S 3 of the other stages. The logarithm of the parallel resonators P 1 to P 3 is constant.

【0035】ここで、図2に、図1の開口長、対数、容
量比を説明するための図を示す。図2(a)では、並列
共振器P1 〜P3 の対数を50対とし、直列共振器S1
の対数を150 対として他段の直列共振器S2 ,S3 の対
数を100 対としたものである。
Here, FIG. 2 shows a diagram for explaining the aperture length, the logarithm, and the capacitance ratio of FIG. In FIG. 2A, the number of pairs of parallel resonators P 1 to P 3 is 50, and the series resonator S 1 is
The number of pairs of the series resonators S 2 and S 3 is 100, and the number of pairs of the series resonators S 2 and S 3 is 100.

【0036】また、電極指24a,24bのかみ合い状
態の重複する電極指長がいわゆる開口長であり、並列共
振器P1 〜P3 の開口長(Lp1=Lp2=Lp3)を150 μ
m とし、直列共振器S1 ,S2 ,S3 の開口長(Ls1
s2=Ls3)を80μm としたものである。
The overlapping electrode finger lengths of the electrode fingers 24a and 24b in the meshed state are so-called aperture lengths, and the aperture lengths (L p1 = L p2 = L p3 ) of the parallel resonators P 1 to P 3 are 150 μm.
m, and the aperture length of the series resonators S 1 , S 2 , and S 3 (L s1 =
L s2 = L s3 ) is set to 80 μm.

【0037】さらに、各並列共振器P1 〜P3 の容量C
P と各直列共振器S1 ,S2 ,S3の容量Cs の容量比
(Cp /Cs )を、開口長と対数との積の比で定義す
る。
Further, the capacitance C of each parallel resonator P 1 -P 3
The capacitance ratio (C p / C s ) of P and the capacitance C s of each series resonator S 1 , S 2 , and S 3 is defined by the ratio of the product of the aperture length and the logarithm.

【0038】そこで、図3に、図1のフィルタの通過特
性のグラフを示す。すなわち、電極指24a,24bの
対数の設定を上述の図2(a)とした場合の周波数特性
が図3(A)に示される。
Therefore, FIG. 3 shows a graph of the pass characteristic of the filter of FIG. That is, FIG. 3A shows frequency characteristics when the logarithm of the electrode fingers 24a and 24b is set to the above-described FIG. 2A.

【0039】このように、直列共振器S1 の対数が多く
なると、容量比(Cp1/Cs1)が他の段(ブロック)の
容量比が小さくなる。すなわち、図15に示すものは容
量比が一定でインピーダンスのマッチングが行われてい
るが、他の段ごとのインピーダンスのマッチングが合わ
なくなると、パスバンドの両肩が狭くなる傾向にある。
As described above, as the number of series resonators S 1 increases, the capacitance ratio (C p1 / C s1 ) of the other stages (blocks) decreases. That is, in the structure shown in FIG. 15, impedance matching is performed with a constant capacitance ratio, but if impedance matching does not match for other stages, both shoulders of the pass band tend to be narrowed.

【0040】従って、直列共振器S1 の対数の増加によ
る容量比(Cp1/Cs1)と他段の容量比との差が大きく
なってインピーダンスのミスマッチングがされない対数
200対程度まで許容できるものであり、このことは図2
(b),図3(B)に示される。
Therefore, the difference between the capacitance ratio (C p1 / C s1 ) and the capacitance ratio of the other stages due to the increase in the logarithm of the series resonator S 1 becomes large, and impedance mismatching is not performed.
Up to about 200 pairs are acceptable, which is shown in Figure 2.
(B) and FIG. 3 (B) are shown.

【0041】以上のことから、直列共振器S1 の対数を
他の直列共振器S2 ,S3 より多く形成されることで、
初段の直列共振器S1 のくし形電極25a,25bの各
電極指24a,24b当たりに流れる電流が減少して温
度上昇が抑制されるものである。
From the above, by forming the series resonator S 1 in a larger number of logarithms than the other series resonators S 2 and S 3 ,
The current flowing around each of the electrode fingers 24a, 24b of the comb-shaped electrodes 25a, 25b of the first-stage series resonator S 1 is reduced and the temperature rise is suppressed.

【0042】また、他の直列共振器S2 ,S3 の容量比
との差を大きくさせずに対数の増加を行うことから、図
13及び図15に示すSAWフィルタ(11)のフィル
タ特性の劣化を防止することができるものである。
Further, since the logarithm is increased without increasing the difference with the capacitance ratio of the other series resonators S 2 and S 3 , the filter characteristics of the SAW filter (11) shown in FIGS. It is possible to prevent deterioration.

【0043】すなわち、梯子型バンドパスフィルタの特
性を損なうことなく、電力印加時の温度上昇を軽減でき
るため耐電力性の向上、特に直列腕に接続される共振器
の共振点付近に電力が印加された時の耐電力性の向上を
図ることができる。
That is, the temperature rise at the time of power application can be reduced without impairing the characteristics of the ladder type bandpass filter, so that the power resistance is improved, and in particular, the power is applied near the resonance point of the resonator connected to the series arm. It is possible to improve the power resistance of the device when it is operated.

【0044】次に、図4に、本発明の第2の実施例にお
ける開口長等を説明するための図を示し、図5に図4の
フィルタの通過特性のグラフを示す。図4(a)におけ
るSAWフィルタは、直列共振器S1 の電極指の対数を
他段の直列共振器S2 ,S3より多い120 対にすると共
に、次段以降の直列共振器S2 ,S3 の電極指の対数を
順次少なくして、110 対、100 対としたもので、他は図
1と同様である。
Next, FIG. 4 shows a diagram for explaining the aperture length and the like in the second embodiment of the present invention, and FIG. 5 shows a graph of the pass characteristic of the filter of FIG. Figure 4 SAW filter in (a), the series resonators S 1 of the logarithm of the electrode finger while the series resonator S 2, greater than S 3 120 pairs of other stages, the following stages of the series resonators S 2, The number of pairs of electrode fingers of S 3 is gradually reduced to 110 pairs and 100 pairs, and the others are the same as in FIG.

【0045】このときの容量比が順次Cp1/Cs1=0.78
1 ,Cp2/Cs2=0.852 ,Cp3/C s3=0.938 となり、
フィルタの通過特性のグラフが図5(A)に示される。
The capacity ratio at this time is Cp1/ Cs1= 0.78
1, Cp2/ Cs2= 0.852, Cp3/ C s3= 0.938,
A graph of the pass characteristic of the filter is shown in FIG.

【0046】すなわち、初段の容量比の次段以降の容量
比との差を順次設けることで、結果的に各電極指24
a,24bに流れる電流を減少させ、かつフィルタ特性
を劣化させずに耐電力性の向上が図られるものである。
That is, by sequentially providing the difference between the capacitance ratio of the first stage and the capacitance ratio of the next stage and thereafter, the electrode fingers 24 as a result.
It is possible to reduce the current flowing through a and 24b and improve the power resistance without deteriorating the filter characteristics.

【0047】同様に、図4(b)では直列共振器S1
3 の対数を順次140 対,120 対、100 対とし、図4
(C)では対数を順次150 対、125 対、100 対としたと
きのフィルタの通過特性のグラフが図5(B),(C)
に示され、図4(C),図5(C)を許容範囲としてイ
ンピーダンスのマッチングが行われる。
Similarly, in FIG. 4B, the series resonators S 1 to
The logarithm of S 3 is sequentially set to 140 pairs, 120 pairs, and 100 pairs, and FIG.
In (C), the graphs of the pass characteristics of the filter when the logarithm is sequentially set to 150 pairs, 125 pairs, and 100 pairs are shown in FIGS.
In FIG. 4, impedance matching is performed with the allowable range shown in FIGS. 4 (C) and 5 (C).

【0048】次に、図6に、本発明の第3の実施例の構
成図を示す。図6のSAWフィルタ21B は、並列共振
器P1 〜P3 及び直列共振器S1 〜S3 の電極指24
a,24bの対数を同一にして、直列共振器S1 の開口
長Ls1のみを他の直列共振器S 2 ,S3 の開口長Ls2
s3(Ls2=Ls3)より長く形成したもので、他は図1
と同様である。
Next, FIG. 6 shows the structure of the third embodiment of the present invention.
The diagram is shown. SAW filter 21 of FIG.BParallel resonance
Bowl P1~ P3And series resonator S1~ S3Electrode finger 24
The series resonator S has the same logarithm of a and 24b.1Opening
Long Ls1Only other series resonator S 2, S3Opening length Ls2
Ls3(Ls2= Ls3) It is formed longer than the others, and the others are shown in Figure 1.
Is the same as.

【0049】ここで、図7に図6の開口長等を説明する
ための図を示し、図8に図7のフィルタの通過特性のグ
ラフを示す。図7(a)に示すように、並列共振器P1
〜P 3 の対数を50対、開口長を150 μm (Lp1=Lp2
=Lp3)とし、直列共振器S 2 ,S3 の対数を100 対、
開口長を80μm (Ls2=Ls3)としたもので、直列共
振器S1 の対数を100 対、開口長Ls1を60μm とした
ものである。この場合のフィルタの通過特性が図8
(A)に示される。
The opening length and the like of FIG. 6 will be described with reference to FIG.
FIG. 8 shows a graph for showing the pass characteristics of the filter of FIG.
Show rough. As shown in FIG. 7A, the parallel resonator P1
~ P 3Of the logarithm of 50 pairs and the aperture length of 150 μm (Lp1= Lp2
= Lp3), And the series resonator S 2, S3The logarithm of 100 pairs,
Aperture length of 80 μm (Ls2= Ls3) And the series
Shaker S1The logarithm of 100 pairs, opening length Ls1Was set to 60 μm
It is a thing. The pass characteristic of the filter in this case is shown in FIG.
It is shown in (A).

【0050】また、図7(b)においては直列共振器S
1 の開口長Ls1を40μm としたもので、フィルタの通
過特性が図8(B)に示される。
Further, in FIG. 7B, the series resonator S
The aperture characteristic L s1 of 1 is 40 μm, and the pass characteristic of the filter is shown in FIG. 8 (B).

【0051】このように直列共振器S1 のみの開口長L
s1を短かくすることで、くし形電極25a,25b全体
の抵抗値が減少して温度上昇が抑制され耐電力性を向上
させることができる。
Thus, the aperture length L of only the series resonator S 1 is
By shortening s1 , the resistance value of the comb-shaped electrodes 25a and 25b as a whole is reduced, the temperature rise is suppressed, and the power resistance can be improved.

【0052】なお、直列共振器S1 の開口長Ls1が40
μm の場合、容量比が他段の直列共振器S2 ,S3 の容
量比との差が大きくなって、挿入損失がやや劣化し、帯
域幅も狭くなる。従って、インピーダンスのマッチング
を考慮すると開口長Ls1が60μm まで許容される。
The aperture length L s1 of the series resonator S 1 is 40
In the case of μm, the difference in the capacitance ratio from the capacitance ratio of the series resonators S 2 and S 3 in the other stage becomes large, the insertion loss is slightly deteriorated, and the bandwidth is narrowed. Therefore, the aperture length L s1 is allowed up to 60 μm in consideration of impedance matching.

【0053】続いて、図9に、本発明の第4の実施例に
おける開口長等を説明するための図を示し、図10に図
9のフィルタの通過特性のグラフを示す。
Next, FIG. 9 shows a diagram for explaining the aperture length and the like in the fourth embodiment of the present invention, and FIG. 10 shows a graph of the pass characteristic of the filter of FIG.

【0054】図9に示す本発明の第4の実施例は、第3
の実施例における直列共振器S1 の開口長Ls1を他段の
直列共振器S2 ,S3 よりも短かく形成すると共に、該
直列共振器S2 ,S3 の開口長Ls2,Ls3を順次長く形
成したもので、耐電力性の向上は第3の実施例と同様で
ある。
The fourth embodiment of the present invention shown in FIG. 9 is the third embodiment.
Together than the series resonators S 1 of aperture length L s1 other stages of the series resonators S 2, S 3 is formed shorter in the embodiment, the series resonator S 2, aperture length of the S 3 L s2, L The s3 is formed to be long in sequence, and the improvement in power resistance is the same as that of the third embodiment.

【0055】そこで、図9(a)に示すように、並列共
振器P1 〜P3 の対数を50対、開口長を150 μm (L
p1=Lp2=Lp3)とする。また、直列共振器S1 〜S3
の対数を100 対とし、開口長を順次、Ls1=70μm ,
s2=75μm ,Ls3=80μm と長くして形成したも
ので、このときのフィルタの通過特性が図10(A)に
示される。
Therefore, as shown in FIG. 9A, the number of parallel resonators P 1 to P 3 is 50 and the aperture length is 150 μm (L
Let p1 = L p2 = L p3 ). In addition, the series resonators S 1 to S 3
The logarithm of 100 is set as 100 pairs, and the aperture length is sequentially set to L s1 = 70 μm,
It is formed by making L s2 = 75 μm and L s3 = 80 μm long, and the pass characteristic of the filter at this time is shown in FIG. 10 (A).

【0056】同様に、図9(b)では開口長をLs1=6
0μm ,Ls2=70μm ,Ls3=80μm とし、図9
(c)では開口長をLs1=50μm ,Ls2=65μm ,
s3=80μm とし、図9(d)では開口長をLs1=4
0μm ,Ls2=60μm ,Ls3=80μm としたもの
で、それぞれのフィルタの通過特性が図10(B)〜
(D)に示される。
Similarly, in FIG. 9B, the opening length is set to L s1 = 6.
Assuming that 0 μm, L s2 = 70 μm, and L s3 = 80 μm,
In (c), the opening length is L s1 = 50 μm, L s2 = 65 μm,
L s3 = 80 μm, and the aperture length is L s1 = 4 in FIG. 9D.
0 μm, L s2 = 60 μm, L s3 = 80 μm, and the pass characteristics of each filter are shown in FIG.
It is shown in (D).

【0057】この場合、図9(a)〜(d)の各容量比
が順次増大し、3段目の容量比0.938 を従来のSAWフ
ィルタとすると、その差が大きくなるほど、帯域幅が狭
くなり、挿入損失が大きくなる。この場合、図9(b)
までは特性の劣化がない。
In this case, when the capacitance ratios of FIGS. 9A to 9D are sequentially increased and the capacitance ratio of the third stage is 0.938 in the conventional SAW filter, the larger the difference, the narrower the bandwidth becomes. , Insertion loss becomes large. In this case, FIG. 9 (b)
There is no deterioration of characteristics.

【0058】次に、図11に、本発明の第5の実施例を
説明するための図を示す。図11に示す本発明の第5の
実施例は、初段の直列共振器S1 の対数を他段の直列共
振器S2 ,S3 よりも多く形成すると共に、開口長Ls1
を短く形成したものである。
Next, FIG. 11 shows a diagram for explaining the fifth embodiment of the present invention. In the fifth embodiment of the present invention shown in FIG. 11, the number of logarithms of the first-stage series resonator S 1 is larger than that of the other-stage series resonators S 2 and S 3 , and the opening length L s1.
Is formed short.

【0059】これにより、直列共振器S1 のくし形電極
25a,25b全体の抵抗値を減少させ、かつ各電極指
24a,24bに流れる電流を減少させて、温度上昇を
抑制し、耐電力性を向上させることができるものであ
る。
As a result, the resistance value of the entire comb-shaped electrodes 25a, 25b of the series resonator S 1 is reduced, and the current flowing through each electrode finger 24a, 24b is reduced, so that the temperature rise is suppressed and the power resistance is improved. Can be improved.

【0060】例えば、図11(A)に示すように、並列
共振器P1 〜P3 の対数を50対、開口長を150 μm
(Lp1=Lp2=Lp3)とし、直列共振器S2 ,S3 の対
数を100 対、開口長を80μm (Ls2=Ls3)としたも
ので、直列共振器S1 の対数を150 対、開口長Ls1を5
0μm としたものである。この場合のフィルタの通過特
性が図11(B)に示される。
For example, as shown in FIG. 11A, the number of parallel resonators P 1 to P 3 is 50 and the aperture length is 150 μm.
(L p1 = L p2 = L p3) and then, the series resonator S 2, 100 pairs the logarithm of S 3, the aperture length obtained by a 80μm (L s2 = L s3) , the logarithm of the series resonators S 1 150 pairs, opening length L s1 is 5
It is 0 μm. The pass characteristic of the filter in this case is shown in FIG.

【0061】この場合、直列共振器S1 の容量比は他段
と同じであり、特性劣化が防止されているが、差が許容
される範囲で開口長及び対数を変化させてもよい。
In this case, the capacitance ratio of the series resonator S 1 is the same as that of the other stages and the characteristic deterioration is prevented. However, the aperture length and the logarithm may be changed within the range in which the difference is allowed.

【0062】次に、図12に、本発明の第6の実施例を
説明するための図を示す。図12に示す本発明の第6の
実施例は、初段の直列共振器S1 〜S3 の開口長を順次
長く形成すると共に、対数を順次少なくしたもので、こ
れによる耐電力性向上の原理は第5の実施例と同様であ
る。
Next, FIG. 12 shows a diagram for explaining the sixth embodiment of the present invention. In the sixth embodiment of the present invention shown in FIG. 12, the opening lengths of the first-stage series resonators S 1 to S 3 are sequentially increased and the number of logarithms is sequentially decreased. Is the same as in the fifth embodiment.

【0063】例えば、図12(A)に示すように、並列
共振器P1 〜P3 の対数を50対、開口長を150 μm
(Lp1=Lp2=Lp3)とする。また、直列共振器S1
3 の対数を順次150 対、115 対、100 対と短く形成
し、開口長を順次、Ls1=70μm ,Ls2=75μm ,
s3=80μm と長くして形成したもので、このときの
フィルタの通過特性が図12(B)に示される。
For example, as shown in FIG. 12A, the number of parallel resonators P 1 to P 3 is 50 and the aperture length is 150 μm.
(L p1 = L p2 = L p3 ) In addition, the series resonator S 1 ~
The logarithm of S 3 is sequentially shortened to 150 pairs, 115 pairs, and 100 pairs, and the opening lengths are sequentially set to L s1 = 70 μm, L s2 = 75 μm,
It is formed by making L s3 = 80 μm long, and the pass characteristic of the filter at this time is shown in FIG. 12 (B).

【0064】この場合、直列共振器S1 の容量比は他段
と同じであり、特性劣化が防止されているが、差が許容
される範囲で開口長及び対数を変化させてもよい。
In this case, the capacitance ratio of the series resonator S 1 is the same as that of the other stages, and the characteristic deterioration is prevented, but the aperture length and the logarithm may be changed within the range in which the difference is allowed.

【0065】なお、図示しないが、初段の直列共振器S
1 の開口長Ls1を他段の直列共振器S2 ,S3 の開口長
s2,Ls3(Ls2=Ls3)よりも短かく形成すると共
に、直列共振器S1 〜S3 の対数を順次少なく形成して
も同様の効果を有する。また、逆に直列共振器S1 の対
数を他段の直列共振器S2 ,S3 の対数(S2 ,S3
対数は同じ)より多く形成すると共に、開口長Ls1〜L
s3を順次長く形成しても同様の効果を有するものであ
る。
Although not shown, the first-stage series resonator S
The opening length L s1 of 1 is made shorter than the opening lengths L s2 , L s3 (L s2 = L s3 ) of the series resonators S 2 , S 3 of the other stages, and the series resonators S 1 -S 3 are Even if the number of logarithms is sequentially decreased, the same effect can be obtained. On the contrary, the number of logarithms of the series resonator S 1 is made larger than the logarithms of the series resonators S 2 and S 3 of the other stages (the logarithms of S 2 and S 3 are the same), and the opening lengths L s1 to L s.
The same effect can be obtained by forming s3 sequentially longer.

【0066】[0066]

【発明の効果】以上のように本発明によれば、初段の第
2の共振器の対数を他段の第1の共振器よりも多く形成
し、又は開口長を短かく形成することにより、くし形電
極の各電極指に流れる電流が減少し、またくし形電極全
体の抵抗値が減少され、温度上昇が抑制されて耐電力性
を向上させることができるものである。
As described above, according to the present invention, the number of logarithms of the first-stage second resonator is made larger than that of the first-stage resonator of the other stage, or the opening length is made shorter. The current flowing through each electrode finger of the comb-shaped electrode is reduced, the resistance value of the entire comb-shaped electrode is reduced, the temperature rise is suppressed, and the power resistance can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment of the present invention.

【図2】図1の開口長、対数、容量比を説明するための
図である。
FIG. 2 is a diagram for explaining an aperture length, a logarithm, and a capacitance ratio of FIG.

【図3】図1のフィルタの通過特性のグラフである。FIG. 3 is a graph of pass characteristics of the filter of FIG.

【図4】本発明の第2の実施例における開口長等を説明
するための図である。
FIG. 4 is a diagram for explaining an opening length and the like in a second embodiment of the present invention.

【図5】図4のフィルタの通過特性のグラフである。5 is a graph of pass characteristics of the filter of FIG.

【図6】本発明の第3の実施例の構成図である。FIG. 6 is a configuration diagram of a third embodiment of the present invention.

【図7】図6の開口長等を説明するための図である。FIG. 7 is a diagram for explaining the opening length and the like of FIG.

【図8】図7のフィルタの通過特性のグラフである。8 is a graph of pass characteristics of the filter of FIG.

【図9】本発明の第4の実施例における開口長等を説明
するための図である。
FIG. 9 is a diagram for explaining the opening length and the like in the fourth embodiment of the present invention.

【図10】図9のフィルタの通過特性のグラフである。10 is a graph of pass characteristics of the filter of FIG.

【図11】本発明の第5の実施例を説明するための図で
ある。
FIG. 11 is a diagram for explaining the fifth embodiment of the present invention.

【図12】本発明の第6の実施例を説明するための図で
ある。
FIG. 12 is a diagram for explaining the sixth embodiment of the present invention.

【図13】梯子型のSAWフィルタの構成図である。FIG. 13 is a configuration diagram of a ladder-type SAW filter.

【図14】図13におけるSAW共振器の構成図であ
る。
14 is a configuration diagram of the SAW resonator in FIG.

【図15】図13のフィルタ特性を説明するための図で
ある。
FIG. 15 is a diagram for explaining the filter characteristic of FIG.

【図16】加速寿命試験のグラフである。FIG. 16 is a graph of an accelerated life test.

【図17】フィルタの温度上昇のグラフである。FIG. 17 is a graph of filter temperature rise.

【図18】フィルタの温度上昇と劣化を説明するための
図である。
FIG. 18 is a diagram for explaining temperature rise and deterioration of the filter.

【符号の説明】[Explanation of symbols]

21A ,21B SAWフィルタ 22 第1の共振器 23 第2の共振器 24a,24b 電極指 25a,25b くし形電極21 A , 21 B SAW filter 22 First resonator 23 Second resonator 24a, 24b Electrode fingers 25a, 25b Comb-shaped electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷口 元治 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motoharu Taniguchi 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Fujitsu Limited

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 所定数の電極指(24a,24b)を有
するくし形電極(25a,25b)が互いにかみ合い状
態で整合された一端子対弾性表面波共振器であって、所
定の共振周波数(frp )を有する第1の共振器(22)
を並列腕に、該第1の共振器の反共振周波数(fap )に
少なくとも略一致する共振周波数(frs )をもつ第2の
共振器(23)を直列腕に複数段配置される梯子型の弾
性表面波フィルタにおいて、 入力側より初段に配置される前記第2の共振器(S1
の前記かみ合い状態の電極指(24a,24b)の対数
を、他段の前記第2の共振器(S2 ,S3 )の対数より
多く形成することを特徴とする弾性表面波フィルタ。
1. A one-terminal-pair surface acoustic wave resonator in which comb-shaped electrodes (25a, 25b) having a predetermined number of electrode fingers (24a, 24b) are meshed and aligned with each other, and a predetermined resonance frequency ( frp) first resonator (22)
In a parallel arm, and a second resonator (23) having a resonance frequency (frs) at least approximately matching the anti-resonance frequency (fap) of the first resonator is arranged in a plurality of stages in a ladder type arm. In the surface acoustic wave filter, the second resonator (S 1 ) arranged in the first stage from the input side.
The meshing state of the electrode fingers (24a, 24b) the logarithm of the other stage a second resonator (S 2, S 3) SAW filter, which comprises more forming the logarithm of the.
【請求項2】 前記初段の第2の共振器(S1 )の次段
以降における前記第2の共振器(S2 ,S3 )の前記か
み合い状態の電極指(24a,24b)の対数を、順次
少なく形成することを特徴とする請求項1記載の弾性表
面波フィルタ。
2. The logarithm of the electrode fingers (24a, 24b) in the meshed state of the second resonator (S 2 , S 3 ) after the second resonator (S 1 ) in the first stage and subsequent stages is defined as follows. 2. The surface acoustic wave filter according to claim 1, wherein the surface acoustic wave filter is formed in smaller numbers in sequence.
【請求項3】 所定数の電極指(24a,24b)を有
するくし形電極(25a,25b)が互いにかみ合い状
態で整合された一端子対弾性表面波共振器であって、所
定数の共振周波数(frp )を有する第1の共振器(2
2)を並列腕に、該第1の共振器の反共振周波数(fap
)に少なくとも略一致する共振周波数(frs )をもつ
第2の共振器(23)を直列腕に複数段配置される梯子
型の弾性表面波フィルタにおいて、 入力側より初段に配置される前記第2の共振器(S1
における前記かみ合い状態の重複する電極指(24a,
24b)長を、他段の前記第2の共振器(S2,S3
の該重複する電極指(24a,24b)長より短く形成
することを特徴とする弾性表面波フィルタ。
3. A one-terminal-pair surface acoustic wave resonator in which comb-shaped electrodes (25a, 25b) having a predetermined number of electrode fingers (24a, 24b) are meshed and aligned with each other, and a predetermined number of resonance frequencies are provided. The first resonator (2 having (frp))
2) as a parallel arm, and the anti-resonance frequency (fap
In a ladder type surface acoustic wave filter in which a plurality of second resonators (23) having a resonance frequency (frs) at least substantially equal to (1) are arranged in a series arm, the second resonator (23) arranged in the first stage from the input side. Resonator (S 1 )
Of the overlapping electrode fingers (24a, 24a,
24b) the length of the second resonator (S 2 , S 3 ) of the other stage
The surface acoustic wave filter is formed to be shorter than the length of the overlapping electrode fingers (24a, 24b).
【請求項4】 前記初段の第2の共振器(S1 )の次段
以降における前記第2の共振器(S2 ,S3 )の前記か
み合い状態の重複する電極指(24a,24b)長を、
順次長く形成することを特徴とする請求項3記載の弾性
表面波フィルタ。
Wherein said first-stage second resonator (S 1) of said at following stages second resonator (S 2, S 3) the engagement overlapping electrode fingers (24a, 24b) of the state of the length To
The surface acoustic wave filter according to claim 3, wherein the surface acoustic wave filter is formed so as to be sequentially long.
【請求項5】 前記初段の第2の共振器(S1 )におけ
る前記かみ合い状態の電極指(24a,24b)の対数
を、他段の前記第2の共振器(S2 ,S3 )の対数より
多く形成することを特徴とする請求項3又は4記載の弾
性表面波フィルタ。
5. The logarithm of the electrode fingers (24a, 24b) in the engaged state in the second resonator (S 1 ) of the first stage is set to that of the second resonator (S 2 , S 3 ) of the other stage. 5. The surface acoustic wave filter according to claim 3, wherein the surface acoustic wave filter is formed in a number larger than a logarithm.
【請求項6】 前記初段の第2の共振器(S1 )の次段
以降における前記かみ合い状態の電極指(24a,24
b)の対数を、順次少なく形成することを特徴とする請
求項5記載の弾性表面波フィルタ。
6. The electrode fingers (24a, 24a) in the engaged state after the second resonator (S 1 ) in the first stage and subsequent stages.
6. The surface acoustic wave filter according to claim 5, wherein the logarithm of b) is sequentially reduced.
JP18518192A 1992-07-13 1992-07-13 Surface acoustic wave filter Expired - Lifetime JP3194540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18518192A JP3194540B2 (en) 1992-07-13 1992-07-13 Surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18518192A JP3194540B2 (en) 1992-07-13 1992-07-13 Surface acoustic wave filter

Publications (2)

Publication Number Publication Date
JPH0629779A true JPH0629779A (en) 1994-02-04
JP3194540B2 JP3194540B2 (en) 2001-07-30

Family

ID=16166263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18518192A Expired - Lifetime JP3194540B2 (en) 1992-07-13 1992-07-13 Surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JP3194540B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0682410A1 (en) * 1994-05-11 1995-11-15 Murata Manufacturing Co., Ltd. Elastic surface wave apparatus
US5589806A (en) * 1994-01-12 1996-12-31 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter having parallel/serial resonator connection based on transmitting and receiving frequencies
US5592135A (en) * 1994-01-20 1997-01-07 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter with different filter portions satisfying complex conjugate relationship of impedances
US5914646A (en) * 1994-03-16 1999-06-22 Fujitsu Limited Surface acoustic wave filter with larger driving electrode areas in some parallel resonators, and packaging thereof
US6437662B1 (en) * 1999-08-11 2002-08-20 Murata Manufacturing Co., Ltd. Surface acoustic wave filter, duplexer and communication apparatus with combined substrate and number of finger pairs reducing pass band ripples
US6861925B2 (en) 2001-10-26 2005-03-01 Oki Electric Industry Co., Ltd. Surface acoustic wave filter
US6891449B2 (en) * 2000-04-03 2005-05-10 Matsushita Electric Industrial Co., Ltd. Antenna duplexer
US6911878B2 (en) 2001-10-26 2005-06-28 Oki Electric Industry Co., Ltd. Acoustic wave branching filter having transmitting filter with optimal power handling
US6922119B2 (en) 2002-01-09 2005-07-26 Alps Electric Co., Ltd. Surface acoustic wave filter adapted to restrain undue temperature rise
US8004370B2 (en) 2006-03-31 2011-08-23 Kyocera Corporation Surface acoustic wave element, surface acoustic wave apparatus, and communication apparatus
JP2012533252A (en) * 2009-07-13 2012-12-20 エプコス アーゲー SAW filter circuit with enhanced ESD tolerance

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589806A (en) * 1994-01-12 1996-12-31 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter having parallel/serial resonator connection based on transmitting and receiving frequencies
US5592135A (en) * 1994-01-20 1997-01-07 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave filter with different filter portions satisfying complex conjugate relationship of impedances
US5914646A (en) * 1994-03-16 1999-06-22 Fujitsu Limited Surface acoustic wave filter with larger driving electrode areas in some parallel resonators, and packaging thereof
EP0682410A1 (en) * 1994-05-11 1995-11-15 Murata Manufacturing Co., Ltd. Elastic surface wave apparatus
US6437662B1 (en) * 1999-08-11 2002-08-20 Murata Manufacturing Co., Ltd. Surface acoustic wave filter, duplexer and communication apparatus with combined substrate and number of finger pairs reducing pass band ripples
US6891449B2 (en) * 2000-04-03 2005-05-10 Matsushita Electric Industrial Co., Ltd. Antenna duplexer
US6861925B2 (en) 2001-10-26 2005-03-01 Oki Electric Industry Co., Ltd. Surface acoustic wave filter
US6911878B2 (en) 2001-10-26 2005-06-28 Oki Electric Industry Co., Ltd. Acoustic wave branching filter having transmitting filter with optimal power handling
US7420440B2 (en) 2001-10-26 2008-09-02 Oki Electric Industry Co., Ltd. Transmitting filter including SAW resonators
US6922119B2 (en) 2002-01-09 2005-07-26 Alps Electric Co., Ltd. Surface acoustic wave filter adapted to restrain undue temperature rise
US8004370B2 (en) 2006-03-31 2011-08-23 Kyocera Corporation Surface acoustic wave element, surface acoustic wave apparatus, and communication apparatus
JP2012533252A (en) * 2009-07-13 2012-12-20 エプコス アーゲー SAW filter circuit with enhanced ESD tolerance
US9035726B2 (en) 2009-07-13 2015-05-19 Epcos Ag SAW filter circuit having improved ESD resistance

Also Published As

Publication number Publication date
JP3194540B2 (en) 2001-07-30

Similar Documents

Publication Publication Date Title
JP3388475B2 (en) Duplexer
JP6773128B2 (en) SAW filter device
CN110663175B (en) Elastic wave device, filter, high-frequency front-end circuit, and communication device
JP3285790B2 (en) Oscillator circuit
EP0757438B1 (en) Surface acoustic wave device
CN111448759A (en) Multiplexer, high-frequency front-end circuit and communication device
JPH05183380A (en) Surface acoustic wave filter
JP3241293B2 (en) Surface acoustic wave device and duplexer using the same
JP3194540B2 (en) Surface acoustic wave filter
JP2001285025A (en) Antenna common-use unit
JP3259459B2 (en) Duplexer
JP3838128B2 (en) Surface acoustic wave device and communication device equipped with the same
US10924084B2 (en) Acoustic wave device, duplexer, and filter device
JP3699595B2 (en) Surface acoustic wave filter
JPH11312951A (en) Surface acoustic wave filter
JP3246906B2 (en) Branching filter
JPH11330904A (en) Resonator type surface acoustic wave filter
US11146300B2 (en) Multiplexer, high-frequency front-end circuit, and communication device
GB2365639A (en) Lattice-type surface acoustic wave filter
JPH06188673A (en) Surface acoustic wave filter
JP3152419B2 (en) Surface acoustic wave filter
JP2001230657A (en) Surface acoustic wave filter
JPH0865097A (en) Surface acoustic wave filter device
JP3327433B2 (en) Surface acoustic wave filter
JPH10303697A (en) Surface acoustic wave filter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 12