JPH10302966A - Organic el element - Google Patents

Organic el element

Info

Publication number
JPH10302966A
JPH10302966A JP9120159A JP12015997A JPH10302966A JP H10302966 A JPH10302966 A JP H10302966A JP 9120159 A JP9120159 A JP 9120159A JP 12015997 A JP12015997 A JP 12015997A JP H10302966 A JPH10302966 A JP H10302966A
Authority
JP
Japan
Prior art keywords
organic
layer
negative electrode
cathode
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9120159A
Other languages
Japanese (ja)
Inventor
Masami Mori
匡見 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP9120159A priority Critical patent/JPH10302966A/en
Publication of JPH10302966A publication Critical patent/JPH10302966A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic EL element with good adhesivity and electron filling efficiency on an organic layer interface and less dark spots by providing a cathode containing aluminum and at least one type of SC, Y and rare earth metal element so as to be coated therewith in a spattering method. SOLUTION: On a substrate 21, at least a positive hole filling and transportation layer 23 and a luminous layer 24 are provided between an anode 22 and a cathode 25 located thereon and a protecting layer 26 is provided as the uppermost layer. The cathode 25 is coated with metal, compound or alloy with a small work function in a spattering method and the anode 22 is coated with tin doped indium oxide (ITO), zinc doped indiums oxide (IZO). ZnO, SnO2 , In2 O3 in a spattering method. The cathode 22 has a concentration gradient in the direction of a coat thickness so as to provide more rare earth metal element toward the interface side contacting an organic layer and has aluminum laminated on the opposite side of the interface side contacting the organic layer. In this way, an organic EL element with the cathode having less deterioration is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機化合物を用い
た有機EL発光素子(以下、有機EL素子という)に関
し、さらに詳細には、発光層に電子を供給する陰電極に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic EL device using an organic compound (hereinafter referred to as an organic EL device), and more particularly to a negative electrode for supplying electrons to a light emitting layer.

【0002】[0002]

【従来の技術】近年、有機EL素子が盛んに研究されて
いる。これは、錫ドープ酸化インジウム(ITO)など
の透明電極(陽電極)上にテトラフェニルジアミン(T
PD)などのホール輸送材料を蒸着により薄膜とし、さ
らにアルミキノリノール錯体(Alq3)などの蛍光物
質を発光層として積層し、さらにMgなどの仕事関数の
小さな金属電極(陰電極)を形成した基本構成を有する
素子で、10V前後の電圧で数100から1000cd/c
m2ときわめて高い輝度が得られることで注目されてい
る。
2. Description of the Related Art In recent years, organic EL devices have been actively studied. This is because a tetraphenyldiamine (T) is formed on a transparent electrode (positive electrode) such as tin-doped indium oxide (ITO).
Basic structure in which a hole transporting material such as PD) is formed into a thin film by vapor deposition, a fluorescent substance such as an aluminum quinolinol complex (Alq3) is laminated as a light emitting layer, and a metal electrode (negative electrode) such as Mg having a small work function is formed. With several 100 to 1000 cd / c at a voltage around 10 V
very high luminance and m 2 are noted by obtained.

【0003】このような有機EL素子の陰電極として用
いられる材料は、発光層へ電子を多く注入するものが有
効であると考えられている。換言すれば、仕事関数の小
さい材料ほど陰電極として適していると言える。仕事関
数の小さい材料としては種々のものがあるが、EL発光
素子の陰極として用いられるものとしては、例えば特開
平4−233194号公報に記載されているMgAg、
AlLiが一般的である。この理由として、有機EL発
光素子の製造プロセスが、抵抗加熱を用いた蒸着を主と
しているため、蒸着源は低温で蒸気圧の高いものに自ず
と制限されてしまうという事情がある。また、このよう
な抵抗加熱を用いた蒸着プロセスを用いているため、膜
界面での密着性が悪い。この結果、画素上にダークスポ
ットと呼ばれる非画像部が製造直後から生じたり、これ
が駆動に従い拡大し、これが素子寿命を律する要因とも
なっていた。
As a material used as a negative electrode of such an organic EL device, a material that injects a large amount of electrons into a light emitting layer is considered to be effective. In other words, it can be said that a material having a smaller work function is more suitable for the negative electrode. There are various materials having a small work function. Examples of materials used as a cathode of an EL light emitting element include MgAg described in JP-A-4-233194,
AlLi is common. The reason for this is that the manufacturing process of the organic EL light-emitting element mainly involves evaporation using resistance heating, so that the evaporation source is naturally limited to those having a low temperature and a high vapor pressure. In addition, since an evaporation process using such resistance heating is used, adhesion at a film interface is poor. As a result, a non-image portion called a dark spot on a pixel is generated immediately after manufacturing, and the non-image portion is enlarged according to driving, and this is a factor that determines the element life.

【0004】さらに、前記特開平4−233194号公
報には、低仕事関数の金属として、希土類金属を陰電極
に用いる点について記載されている。しかし、この陰電
極は、前記希土類金属元素を含むキャップ層より仕事関
数の高い金属を有する電子注入層と組み合わされて使用
され、アルミニウムとの合金として用いられる点につい
ての記載もない。しかも、実施例はMgAlからなる電
子注入層と、Alキャップ層についての記載のみであ
り、希土類金属元素を具体的に成膜するための方法につ
いての記載はない。また、この公報に記載されている有
機EL素子は、その構成膜を全て蒸着法により製膜して
おり、上記課題を解決するに至っていない。
Further, Japanese Patent Application Laid-Open No. 4-233194 describes that a rare earth metal is used for a negative electrode as a metal having a low work function. However, there is no description that this cathode is used in combination with an electron injection layer having a metal having a higher work function than the cap layer containing the rare earth metal element, and is used as an alloy with aluminum. Moreover, the embodiment only describes the electron injection layer made of MgAl and the Al cap layer, and does not describe a method for forming a rare earth metal element specifically. Further, the organic EL element described in this publication has all the constituent films formed by a vapor deposition method, and has not solved the above-mentioned problem.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、有機
層界面での密着性、電子注入効率が良好で、発光特性を
向上させ、有機層へのダメージも少なく、ダークスポッ
トの発生を抑制し、性能劣化の少ない陰電極を有する有
機EL素子を実現することである。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the adhesion at the interface of the organic layer and the electron injection efficiency, improve the light emission characteristics, reduce the damage to the organic layer, and suppress the generation of dark spots. It is another object of the present invention to realize an organic EL element having a negative electrode with little performance degradation.

【0006】[0006]

【課題を解決するための手段】以上のような目的は、以
下の(1)〜(7)の構成により達成される。 (1) スパッタ法にて成膜され、かつアルミニウムと
Sc、Yおよび希土類金属元素のうちの1種以上とを含
有する陰電極を有する有機EL素子。 (2) 前記陰電極は、膜厚方向の濃度勾配を有し、こ
の濃度勾配は、有機層に接する界面側に希土類金属元素
が多くなる勾配である上記(1)の有機EL素子。 (3) 前記陰電極は、さらに、有機層に接する界面側
と反対側にアルミニウムを積層した上記(1)または
(2)の有機EL素子。 (4) 前記希土類元素は、Sc,YならびにSm,C
e,Er,Eu,Gd,La,NdおよびYbのランタ
ノイド系元素のいずれかである上記(1)〜(3)のい
ずれかの有機EL素子。 (5) 前記スパッタ法は、成膜ガス圧力と基板ターゲ
ット間距離の積が20〜65Pa・cmを満たす成膜条件
で陰電極を成膜する上記(1)〜(4)のいずれかの有
機EL素子。 (6) 前記成膜ガスにAr、KrおよびXeの1種以
上を用いた上記(1)〜(5)のいずれかの有機EL素
子。 (7) 前記スパッタ法がDCスパッタ法である上記
(1)〜(6)のいずれかの有機EL素子。
The above objects are achieved by the following constitutions (1) to (7). (1) An organic EL element formed by a sputtering method and having a negative electrode containing aluminum and at least one of Sc, Y and rare earth metal elements. (2) The organic EL device according to (1), wherein the negative electrode has a concentration gradient in a film thickness direction, and the concentration gradient is a gradient in which a rare earth metal element increases on an interface side in contact with the organic layer. (3) The organic EL device according to (1) or (2), wherein the cathode is further laminated with aluminum on the side opposite to the interface side in contact with the organic layer. (4) The rare earth elements are Sc, Y and Sm, C
e. The organic EL device according to any one of (1) to (3) above, which is any one of lanthanoid elements of Er, Eu, Gd, La, Nd and Yb. (5) The organic sputtering method according to any one of (1) to (4), wherein the negative electrode is formed under film forming conditions in which a product of a film forming gas pressure and a distance between substrate targets satisfies 20 to 65 Pa · cm. EL element. (6) The organic EL device according to any one of (1) to (5), wherein at least one of Ar, Kr, and Xe is used as the film forming gas. (7) The organic EL device according to any one of (1) to (6), wherein the sputtering method is a DC sputtering method.

【0007】[0007]

【作用】本発明で得られた陰電極を用いると、電子注入
効率が向上し、有機EL発光素子の初期発光輝度が高
く、輝度の半減期も長い。また、電極間で電流リークが
全く生じず、初期のダークスポットも極めて少なく、か
つ駆動後の発生も少ない。前述のとおり、電子注入効率
の向上、さらにはダークスポットの抑制は、有機EL素
子の重要な問題であったが、本発明によればこれが解消
し、発光特性が格段に向上する。後述の実施例からわか
るように、本発明の範囲外ではこのような効果は生じな
い。これは本発明に従い、電子注入効率が良好で、しか
も安定性のよい膜が成膜されたからであると考えられ
る。
When the negative electrode obtained by the present invention is used, the electron injection efficiency is improved, the initial emission luminance of the organic EL element is high, and the half-life of the luminance is long. Also, no current leakage occurs between the electrodes, the number of initial dark spots is extremely small, and the number of occurrences after driving is also small. As described above, the improvement of the electron injection efficiency and the suppression of the dark spot were important problems of the organic EL element. However, according to the present invention, this is solved and the light emission characteristics are remarkably improved. As will be understood from the examples described later, such an effect does not occur outside the scope of the present invention. This is presumably because a film having good electron injection efficiency and good stability was formed according to the present invention.

【0008】[0008]

【発明の実施の形態】以下、本発明の具体的構成につい
て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a specific configuration of the present invention will be described in detail.

【0009】本発明の有機EL発光素子は、スパッタ法
にて成膜され、かつアルミニウムと1種または2種以上
のScおよびYを含む希土類金属元素類とを含有する陰
電極を有する。
The organic EL light emitting device of the present invention has a negative electrode formed by sputtering and containing aluminum and one or more rare earth metal elements containing Sc and Y.

【0010】スパッタ法を用いることにより、成膜され
た陰電極膜は、蒸着の場合と比較して、スパッタされる
原子や原子団が比較的高い運動エネルギーを有するた
め、表面マイグレーション効果が働き、有機層界面での
密着性が向上する。また、プレスパッタを行うことで、
真空中で表面酸化物層を除去したり、逆スパッタにより
有機層界面に吸着した水分や酸素を除去できるので、ク
リーンな電極−有機層界面や電極を形成でき、その結果
安定した有機EL素子ができる。さらに、蒸気圧の大き
く異なる材料の混合物をターゲットとして用いても、生
成する膜とターゲットとの組成のズレは少なく、蒸着法
のように蒸気圧等による使用材料の制限もない。また、
蒸着法に比較して材料を長時間供給する必要がなく、膜
厚や膜質の均一性に優れ、生産性の点で有利である。
[0010] By using the sputtering method, the formed negative electrode film has a relatively high kinetic energy of the sputtered atoms and atomic groups as compared with the case of vapor deposition. Adhesion at the interface of the organic layer is improved. Also, by performing pre-sputtering,
Since the surface oxide layer can be removed in a vacuum or water and oxygen adsorbed at the organic layer interface can be removed by reverse sputtering, a clean electrode-organic layer interface and electrodes can be formed, resulting in a stable organic EL device. it can. Further, even when a mixture of materials having greatly different vapor pressures is used as a target, there is little deviation in composition between a film to be formed and the target, and there is no limitation on a material to be used due to vapor pressure or the like as in a vapor deposition method. Also,
Compared with the vapor deposition method, there is no need to supply a material for a long time, the film thickness and the film quality are excellent in uniformity, and it is advantageous in terms of productivity.

【0011】陰電極を構成するSc、Yおよび希土類金
属元素(ランタノイド系元素とアクチノイド系元素とを
含む。)の含有量は、組み合わされる安定な金属によ
り、最適な含有量を選択すればよく、特に限定されるも
のではないが、好ましくは、0.1〜99at%、特に1
〜60at%の範囲が好ましい。ScおよびYを含む希土
類金属元素の量が多いと成膜された陰電極の安定性が低
下し、少なすぎると本発明の効果が得られない。希土類
金属のみで陰電極を形成することができれば、仕事関数
が最も低くなるが、前述のように希土類金属元素は非常
に反応活性で不安定な材料であるため、比較的安定な金
属、例えば、アルミニウム等を混合することにより安定
化する。混合する安定な金属はアルミニウムに限定され
るものではなく、その他、Au,Ag,Cu,Co,C
r,Fe,Ga,In,Ir,Mo,Ni,Pd,P
t,Rh,Ru,Si,Sn,Ta,Th,W,Zn
等、仕事関数が比較的低く、電気伝導性の良好な金属、
およびこれらの合金を用いてもよい。これらの合金を用
いる場合の混合比は任意である。また、電気伝導性が、
金属と同等であれば、安定な化合物を用いてもよい。安
定な化合物としては、例えばIrO2、MoO2、Nb
O、OsO2、ReO2、ReO3,RuO2等が挙げられ
る。
The contents of Sc, Y and the rare earth metal elements (including the lanthanoid element and the actinoid element) constituting the negative electrode may be selected as appropriate depending on the stable metal to be combined. Although not particularly limited, it is preferably 0.1 to 99 at%, particularly 1 to 99 at%.
It is preferably in the range of 6060 at%. If the amount of the rare earth metal element containing Sc and Y is large, the stability of the formed negative electrode is reduced, and if the amount is too small, the effect of the present invention cannot be obtained. If the negative electrode can be formed only with the rare earth metal, the work function becomes the lowest, but as described above, the rare earth metal element is a material that is very reactive and unstable, and thus a relatively stable metal, for example, Stabilization is achieved by mixing aluminum or the like. The stable metal to be mixed is not limited to aluminum, but may be Au, Ag, Cu, Co, C
r, Fe, Ga, In, Ir, Mo, Ni, Pd, P
t, Rh, Ru, Si, Sn, Ta, Th, W, Zn
Metals with relatively low work function and good electrical conductivity,
And alloys thereof. The mixing ratio when these alloys are used is arbitrary. In addition, electric conductivity,
As long as it is equivalent to a metal, a stable compound may be used. Stable compounds include, for example, IrO 2 , MoO 2 , Nb
O, OsO 2 , ReO 2 , ReO 3 , RuO 2 and the like can be mentioned.

【0012】形成される陰電極は、有機層に接する界面
に希土類金属元素が多く、その反対側の面に安定な金属
が多くなるように、膜厚方向に希土類金属の濃度が変化
する濃度勾配を有する構造が好ましい。このような濃度
勾配を持たせることで、電子注入機能が必要な有機層界
面に、高濃度で低仕事関数の希土類金属元素を存在さ
せ、外気等との接触の恐れの多い反対側の面に反応活性
の高い希土類元素を低濃度で存在させることができ、高
い電子注入効率を保持しつつ、安定性を高めた陰電極を
実現できる。
The formed negative electrode has a concentration gradient in which the concentration of the rare earth metal changes in the film thickness direction so that the rare earth metal element is more at the interface in contact with the organic layer and the stable metal is more at the opposite surface. Is preferred. By having such a concentration gradient, a rare earth metal element having a high concentration and a low work function is present at the interface of the organic layer where the electron injection function is required, and the surface on the opposite side where there is a high possibility of contact with the outside air or the like is provided. A rare earth element having high reaction activity can be present at a low concentration, and a negative electrode with improved stability can be realized while maintaining high electron injection efficiency.

【0013】陰電極中に希土類元素の濃度勾配を持たせ
るには、例えば、安定な金属と希土類金属元素の混合ス
パッタターゲットと、安定な金属ターゲットとを同時に
使用し、それぞれの成膜レートをコントロールすること
により、容易に実現できる。また、このような連続的な
濃度勾配を持たせる以外、例えば非連続的(段階的)
に、希土類金属元素の混合比を変えた膜を製膜したり、
混合層の上に安定な金属層を製膜してもよい。この場合
の混合層の厚さは、好ましくは5〜80nm、安定な金属
層の厚さは100〜300nm程度が好ましい。このよう
に非連続的に成膜された陰電極は、電気抵抗を容易に低
くすることができる。
In order to provide a rare earth element concentration gradient in the negative electrode, for example, a mixed sputter target of a stable metal and a rare earth metal element and a stable metal target are used at the same time, and the respective film formation rates are controlled. By doing so, it can be easily realized. In addition, other than having such a continuous concentration gradient, for example, discontinuous (stepwise)
In addition, a film in which the mixing ratio of the rare earth metal element is changed is formed,
A stable metal layer may be formed on the mixed layer. In this case, the thickness of the mixed layer is preferably 5 to 80 nm, and the thickness of the stable metal layer is preferably about 100 to 300 nm. The negative electrode formed discontinuously as described above can easily reduce the electric resistance.

【0014】本発明に用いられる希土類元素類は、好ま
しくは、Sc、Yおよびランタノイド系元素を含み、よ
り好ましくは仕事関数が4eV以下である、Sc,Y,C
e,Nd,La,Sm,Eu,Gd,ErおよびYb等
が好ましい。仕事関数が小さい程、発光層に多く電子を
注入することができ、発光特性が向上する。中でも、特
に融点が1000℃以上である、Sc,Y,Nd,S
m,GdおよびEr等が好ましい。融点が1000℃以
上ある材料を用いることにより、薄膜が結晶化して異常
成長することが抑制され、陰電極の有機層界面での平滑
性が保たれて、ダークスポットやリークの発生が防止で
きる。
The rare earth element used in the present invention preferably contains Sc, Y and a lanthanoid element, and more preferably has a work function of 4 eV or less.
e, Nd, La, Sm, Eu, Gd, Er and Yb are preferred. The smaller the work function, the more electrons can be injected into the light emitting layer, and the light emitting characteristics are improved. Above all, Sc, Y, Nd, S having a melting point of 1000 ° C. or more
m, Gd and Er are preferred. By using a material having a melting point of 1000 ° C. or more, crystallization of the thin film and abnormal growth are suppressed, smoothness at the organic layer interface of the negative electrode is maintained, and dark spots and leaks can be prevented.

【0015】スパッタ法を用いて陰電極を成膜する際、
スパッタガスにAr、Kr、Xeのいずれか、あるいは
これらの少なくとも1種以上のガスを含む混合ガスを用
い、特にDCスパッタ法にて電極を成膜し、成膜ガス圧
力と基板ターゲット間距離の積が20〜65Pa・cmを
満たす成膜条件にすることが好ましい。
When a negative electrode is formed by a sputtering method,
An electrode is formed by a DC sputtering method using any of Ar, Kr, and Xe or a mixed gas containing at least one of these gases as a sputtering gas. It is preferable that the film formation conditions satisfy the product of 20 to 65 Pa · cm.

【0016】スパッタガスは、通常のスパッタ装置に使
用される不活性ガスや、反応性スパッタではこれに加え
てN2、H2、O2、C24、NH3等の反応性ガスが使用
可能であるが、好ましくはAr、Kr、Xeのいずれ
か、あるいはこれらの少なくとも1種以上のガスを含む
混合ガスを用いることが好ましい。これらは不活性ガス
であり、かつ、比較的原子量が大きいため好ましく、特
にAr、Kr、Xe単体が好ましい。Ar、Kr、Xe
ガスを用いることにより、スパッタされた原子が基板ま
で到達する途中、上記ガスと衝突を繰り返し、運動エネ
ルギーを減少させて、基板に到着する。この事からスパ
ッタされた原子の持つ運動エネルギーが有機EL構造体
に与える物理的ダメージが少なくなる。また、Ar、K
r、Xeの少なくとも1種以上のガスを含む混合ガスを
用いても良く、この様な混合ガスを用いる場合、Ar、
Kr、Xeの分圧の合計は50%以上として主スパッタ
ガスとして用いる。このようにAr、Kr、Xeの少な
くとも1種と任意のガスを組み合わせた混合ガスを用い
ることにより、上記の効果を維持したまま、反応性スパ
ッタを行うこともできる。
The sputtering gas may be an inert gas used in a usual sputtering apparatus, or a reactive gas such as N 2 , H 2 , O 2 , C 2 H 4 , NH 3 or the like in the case of reactive sputtering. Although it can be used, it is preferable to use any of Ar, Kr, and Xe, or a mixed gas containing at least one or more of these gases. These are preferred because they are inert gases and have a relatively large atomic weight. Particularly, Ar, Kr, and Xe alone are preferred. Ar, Kr, Xe
By using a gas, the sputtered atoms repeatedly collide with the gas while reaching the substrate while arriving at the substrate, and reach the substrate with reduced kinetic energy. For this reason, physical damage caused by the kinetic energy of the sputtered atoms to the organic EL structure is reduced. Ar, K
A mixed gas containing at least one gas of r and Xe may be used. When such a mixed gas is used, Ar,
The total partial pressure of Kr and Xe is set to 50% or more and used as a main sputtering gas. By using a mixed gas obtained by combining at least one of Ar, Kr, and Xe with an arbitrary gas, reactive sputtering can be performed while maintaining the above effects.

【0017】スパッタガスにAr、Kr、Xeのいずれ
かを主スパッタガスとして用いる場合、好ましくは上記
基板ターゲット間距離の積は、それぞれ、 Arを用いた場合:25〜55Pa・cm、特に30〜5
0Pa・cm、 Krを用いた場合:20〜50Pa・cm、特に25〜4
5Pa・cm、 Xeを用いた場合:20〜50Pa・cm、特に20〜4
0Pa・cm の範囲が好ましく、これらの条件であればいずれかのス
パッタガスを用いても好ましい結果を得ることができる
が、特にArを用いることが好ましい。
When any of Ar, Kr, and Xe is used as the main sputtering gas as the sputtering gas, the product of the distance between the substrate targets is preferably 25 to 55 Pa · cm, particularly 30 to 55 Pa · cm, respectively. 5
When 0 Pa · cm and Kr are used: 20 to 50 Pa · cm, especially 25 to 4
When using 5 Pa · cm and Xe: 20 to 50 Pa · cm, especially 20 to 4
A range of 0 Pa · cm 2 is preferable. Under these conditions, a preferable result can be obtained by using any sputtering gas, but it is particularly preferable to use Ar.

【0018】スパッタ法としてはRF電源を用いた高周
波スパッタ法等も可能であるが、有機EL素子構造体へ
のダメージを少なくするためにはDCスパッタ法を用い
ることが好ましい。DCスパッタ装置の電力としては、
好ましくは0.1〜4W/cm2、特に0.5〜1W/cm2
の範囲である。また、成膜レートは5〜100nm/分、
特に10〜50nm/分の範囲が好ましい。
As a sputtering method, a high frequency sputtering method using an RF power source or the like is possible, but it is preferable to use a DC sputtering method in order to reduce damage to the organic EL element structure. As the power of the DC sputtering device,
Preferably 0.1 to 4 W / cm 2 , especially 0.5 to 1 W / cm 2
Range. The film formation rate is 5 to 100 nm / min.
Particularly, a range of 10 to 50 nm / min is preferable.

【0019】陰電極薄膜の厚さは、電子注入を十分行え
る一定以上の厚さとすれば良く、50nm以上、好ましく
は100nm以上とすればよい。また、その上限値には特
に制限はないが、通常膜厚は100〜500nm程度とす
ればよい。
The thickness of the negative electrode thin film may be a certain thickness or more for sufficiently injecting electrons, and may be 50 nm or more, preferably 100 nm or more. Although the upper limit is not particularly limited, the film thickness may be usually about 100 to 500 nm.

【0020】本発明の有機EL素子は、前述のような反
応性スパッタを利用して、保護膜として陰電極の構成材
料の酸化物、窒化物あるいは炭化物の1種以上を設けて
もよい。この場合、保護膜の原材料は、通常は陰電極材
料と同一組成とするが、それと組成比の異なるものであ
っても、あるいはその材料成分中の1種以上を欠くもの
であっても良い。このように、陰電極と同一材料等を用
いることにより、陰電極との連続成膜が可能となる。
In the organic EL device of the present invention, one or more oxides, nitrides or carbides of the constituent material of the negative electrode may be provided as a protective film by utilizing the above-mentioned reactive sputtering. In this case, the raw material of the protective film usually has the same composition as the negative electrode material, but may have a different composition ratio from the negative electrode material, or may lack one or more of the material components. In this manner, by using the same material or the like as the negative electrode, continuous film formation with the negative electrode becomes possible.

【0021】このような酸化物のO量、窒化物のN量あ
るいは炭化物のC量は、この化学量論組成から偏倚して
いても良く、それらの組成の0.5〜2倍の範囲であれ
ばよい。
The O content of such an oxide, the N content of a nitride or the C content of a carbide may deviate from this stoichiometric composition, and may be in the range of 0.5 to 2 times the composition. I just need.

【0022】ターゲットとしては好ましくは陰電極と同
一材料の焼結体を用い、反応性ガスとしては、酸化物を
形成する場合、O2 、CO等が挙げられ、窒化物を形成
する場合、N2 、NH3 、NO、NO2 、N2 O等が挙
げられ、炭化物を形成する場合、CH4 、C2 2 、C
2 4 等が挙げられる。これらの反応性ガスは単独で用
いても、2種以上を混合して用いても良い。
As the target, a sintered body of the same material as that of the negative electrode is preferably used. As the reactive gas, O 2 , CO or the like is used for forming an oxide, and N 2 is used for forming a nitride. 2 , NH 3 , NO, NO 2 , N 2 O and the like. When forming a carbide, CH 4 , C 2 H 2 , C 2
2 H 4 and the like. These reactive gases may be used alone or as a mixture of two or more.

【0023】保護膜の厚さは、水分や酸素あるいは有機
溶媒の進入を防止するため、一定以上の厚さとすればよ
く、好ましくは50nm以上、さらに100nm以上、特に
100〜1000nmの範囲が好ましい。
The thickness of the protective film may be a certain thickness or more, preferably 50 nm or more, more preferably 100 nm or more, particularly preferably 100 to 1000 nm, in order to prevent moisture, oxygen or an organic solvent from entering.

【0024】陰電極と保護膜とを併せた全体の厚さとし
ては、特に制限はないが、通常100〜1000nm程度
とすればよい。
The total thickness of the negative electrode and the protective film is not particularly limited, but may be generally about 100 to 1000 nm.

【0025】このような保護膜を設けることにより、陰
電極の酸化等がさらに防止され、有機EL素子を長期間
安定に駆動することができる。
By providing such a protective film, oxidation of the negative electrode and the like are further prevented, and the organic EL element can be driven stably for a long period of time.

【0026】本発明で製造される有機EL発光素子は、
基板上に陽電極と、その上に陰電極を有するこれらの電
極に挟まれて、それぞれ少なくとも1層の電荷輸送層お
よび発光層を有し、さらに最上層として保護層を有す
る。なお、電荷輸送層は省略可能である。そして、陰電
極は、前述のとおり、スパッタ法で成膜される仕事関数
の小さい金属、化合物または合金で構成され、陽電極
は、錫ドープ酸化インジウム(ITO)、亜鉛ドープ酸
化インジウム(IZO)、ZnO、SnO2、In23
等をスパッタ法で成膜した構成からなる。
The organic EL device manufactured according to the present invention comprises:
The substrate has at least one charge transport layer and at least one light emitting layer sandwiched between a positive electrode and a negative electrode on the substrate, and further has a protective layer as the uppermost layer. Note that the charge transport layer can be omitted. As described above, the negative electrode is formed of a metal, compound or alloy having a small work function formed by a sputtering method, and the positive electrode is formed of tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), ZnO, SnO 2 , In 2 O 3
Etc. are formed by sputtering.

【0027】本発明により製造される有機EL発光素子
の構成例を図1に示す。図1に示されるEL素子は、基
板21上に、陽電極22、正孔注入・輸送層23、発光
および電子注入輸送層24、陰電極25、保護層26を
順次有する。
FIG. 1 shows an example of the structure of an organic EL device manufactured according to the present invention. The EL device shown in FIG. 1 has a positive electrode 22, a hole injection / transport layer 23, a light emission and electron injection / transport layer 24, a negative electrode 25, and a protective layer 26 in this order on a substrate 21.

【0028】本発明の有機EL素子は、図示例に限ら
ず、種々の構成とすることができ、例えば発光層を単独
で設け、この発光層と陰電極との間に電子注入輸送層を
介在させた構造とすることもできる。また、必要に応
じ、正孔注入・輸送層23と発光層とを混合しても良
い。
The organic EL device of the present invention is not limited to the illustrated example, but may have various structures. For example, a light emitting layer is provided alone, and an electron injection / transport layer is interposed between the light emitting layer and the negative electrode. It is also possible to adopt a structure in which they have been made. Further, if necessary, the hole injection / transport layer 23 and the light emitting layer may be mixed.

【0029】陰電極は前述のように成膜し、発光層等の
有機物層は真空蒸着等により、陽電極は蒸着やスパッタ
等により成膜することができるが、これらの膜のそれぞ
れは、必要に応じてマスク蒸着または膜形成後にエッチ
ングなどの方法によってパターニングでき、これによっ
て、所望の発光パターンを得ることができる。さらに
は、基板が薄膜トランジスタ(TFT)であって、その
パターンに応じて各膜を形成することでそのまま表示お
よび駆動パターンとすることもできる。
The negative electrode can be formed as described above, the organic layer such as the light-emitting layer can be formed by vacuum deposition, and the positive electrode can be formed by vapor deposition or sputtering. Depending on the conditions, patterning can be performed by a method such as etching after mask evaporation or film formation, whereby a desired light emitting pattern can be obtained. Further, the substrate is a thin film transistor (TFT), and by forming each film according to the pattern, a display and drive pattern can be used as it is.

【0030】電極成膜後に、前記保護膜あるいは/およ
びAl等の金属材料、SiOX 等の無機材料、テフロン
等の有機材料等を用いた他の保護膜を形成すればよい。
この保護膜は、透明でも不透明であってもよい。一般
に、他の保護膜の厚さは50〜1200nm程度とする。
保護膜は前記した反応性スパッタ法の他に、一般的なス
パッタ法、蒸着法等により形成すればよい。
[0030] After the electrode film formation, the protective film or / and Al, a metal material, an inorganic material such as SiO X, may be formed of other protective film using an organic material such as Teflon or the like.
This protective film may be transparent or opaque. Generally, the thickness of the other protective film is about 50 to 1200 nm.
The protective film may be formed by a general sputtering method, a vapor deposition method, or the like, in addition to the reactive sputtering method described above.

【0031】さらに、素子の有機層や電極の酸化を防ぐ
ために素子上に封止層を形成することが好ましい。封止
層は、湿気の侵入を防ぐために市販の低吸湿性の光硬化
性接着剤、エポキシ系接着剤、シリコーン系接着剤、架
橋エチレン−酢酸ビニル共重合体接着剤シート等の接着
性樹脂層を用いて、ガラス板等の封止板を接着し密封す
る。ガラス板以外にも金属板、プラスチック板等を用い
ることもできる。
Further, it is preferable to form a sealing layer on the element in order to prevent oxidation of the organic layer and the electrode of the element. The sealing layer is made of an adhesive resin layer such as a commercially available low-moisture-absorbing light-curing adhesive, an epoxy-based adhesive, a silicone-based adhesive, and a cross-linked ethylene-vinyl acetate copolymer adhesive sheet to prevent moisture from entering. Is used to adhere and seal a sealing plate such as a glass plate. Besides a glass plate, a metal plate, a plastic plate or the like can be used.

【0032】次に、本発明のEL素子に設けられる有機
物質層について述べる。
Next, the organic material layer provided in the EL device of the present invention will be described.

【0033】発光層は、正孔(ホール)および電子の注
入機能、それらの輸送機能、正孔と電子の再結合により
励起子を生成させる機能を有する。発光層には比較的電
子的にニュートラルな化合物を用いることが好ましい。
The light emitting layer has a function of injecting holes (holes) and electrons, a function of transporting them, and a function of generating excitons by recombination of holes and electrons. It is preferable to use a relatively electronically neutral compound for the light emitting layer.

【0034】電荷輸送層は、陽電極からの正孔の注入を
容易にする機能、正孔を輸送する機能および電子を妨げ
る機能を有し、正孔注入輸送層とも称される。
The charge transport layer has a function of facilitating the injection of holes from the positive electrode, a function of transporting holes, and a function of blocking electrons, and is also called a hole injection transport layer.

【0035】このほか、必要に応じ、例えば発光層に用
いる化合物の電子注入輸送機能がさほど高くないときな
ど、前述のように、発光層と陰電極との間に、陰電極か
らの電子の注入を容易にする機能、電子を輸送する機能
および正孔を妨げる機能を有する電子注入輸送層を設け
てもよい。
In addition, if necessary, for example, when the electron injecting / transporting function of the compound used in the light emitting layer is not so high, injection of electrons from the negative electrode between the light emitting layer and the negative electrode as described above. May be provided with an electron injecting and transporting layer having a function of facilitating electron transport, a function of transporting electrons, and a function of blocking holes.

【0036】正孔注入輸送層および電子注入輸送層は、
発光層へ注入される正孔や電子を増大・閉じ込めさせ、
再結合領域を最適化させ、発光効率を改善する。
The hole injection transport layer and the electron injection transport layer
Increases and confines holes and electrons injected into the light emitting layer,
Optimize the recombination region and improve luminous efficiency.

【0037】なお、正孔注入輸送層および電子注入輸送
層は、それぞれにおいて、注入機能を持つ層と輸送機能
を持つ層とに別個に設けてもよい。
The hole injecting / transporting layer and the electron injecting / transporting layer may be provided separately for a layer having an injection function and a layer having a transport function.

【0038】発光層の厚さ、正孔注入輸送層の厚さおよ
び電子注入輸送層の厚さは特に限定されず、形成方法に
よっても異なるが、通常、5〜500nm程度、特に10
〜300nmとすることが好ましい。
The thickness of the light emitting layer, the thickness of the hole injecting and transporting layer, and the thickness of the electron injecting and transporting layer are not particularly limited, and vary depending on the forming method.
It is preferable to set it to 300 nm.

【0039】正孔注入輸送層の厚さおよび電子注入輸送
層の厚さは、再結合・発光領域の設定にもよるが、発光
層の厚さと同程度もしくは1/10〜10倍程度とすれ
ばよい。電子もしくは正孔の、各々の注入層と輸送層を
分ける場合は、注入層は1nm以上、輸送層は20nm以上
とするのが好ましい。このときの注入層、輸送層の厚さ
の上限は、通常、注入層で500nm程度、輸送層で50
0nm程度である。このような膜厚については注入輸送層
を2層設けるときも同じである。
The thickness of the hole injecting / transporting layer and the thickness of the electron injecting / transporting layer depend on the setting of the recombination / light emitting region, but may be about the same as the thickness of the light emitting layer or about 1/10 to 10 times. I just need. When the injection layer and the transport layer for electrons or holes are separated from each other, it is preferable that the injection layer has a thickness of 1 nm or more and the transport layer has a thickness of 20 nm or more. At this time, the upper limit of the thickness of the injection layer and the transport layer is usually about 500 nm for the injection layer and 50 nm for the transport layer.
It is about 0 nm. Such a film thickness is the same when two injection / transport layers are provided.

【0040】また、組み合せる発光層や電子注入輸送層
や正孔注入輸送層のキャリア移動度やキャリア密度(イ
オン化ポテンシャル・電子親和力により決まる)を考慮
しながら、膜厚をコントロールすることで、再結合領域
・発光領域を自由に設計することが可能であり、発光色
の設計や、両電極の干渉効果による発光輝度・発光スペ
クトルの制御や、発光の空間分布の制御を可能にでき
る。
Further, by controlling the film thickness in consideration of the carrier mobility and carrier density (determined by ionization potential and electron affinity) of the light emitting layer, the electron injection / transport layer, and the hole injection / transport layer to be combined, it is possible to reduce the thickness. It is possible to freely design the coupling region and the light emitting region, and it is possible to design the light emission color, control the light emission luminance and light emission spectrum by the interference effect of both electrodes, and control the spatial distribution of light emission.

【0041】本発明のEL素子の発光層には発光機能を
有する化合物である蛍光性物質を含有させる。この蛍光
性物質としては、例えば、特開昭63−264692号
公報等に開示されているようなトリス(8−キノリノラ
ト)アルミニウム〔Alq3〕等の金属錯体色素が挙げ
られる。この他、これに加え、あるいは単体で、キナク
リドン、クマリン、ルブレン、スチリル系色素、その他
テトラフェニルブタジエン、アントラセン、ベリレン、
コロネン、12−フタロベリノン誘導体等を用いること
もできる。発光層は電子注入輸送層を兼ねたものであっ
てもよく、このような場合はトリス(8−キノリノラ
ト)アルミニウム等を使用することが好ましい。これら
の蛍光性物質を蒸着すればよい。
The light emitting layer of the EL device of the present invention contains a fluorescent substance which is a compound having a light emitting function. Examples of the fluorescent substance include metal complex dyes such as tris (8-quinolinolato) aluminum [Alq3] disclosed in JP-A-63-264692. In addition, in addition or alone, quinacridone, coumarin, rubrene, styryl dyes, other tetraphenylbutadiene, anthracene, berylene,
Coronene, a 12-phthaloberinone derivative, or the like can also be used. The light emitting layer may also serve as the electron injection / transport layer. In such a case, it is preferable to use tris (8-quinolinolato) aluminum or the like. These fluorescent substances may be deposited.

【0042】また、必要に応じて設けられる電子注入輸
送層には、トリス(8−キノリノラト)アルミニウム等
の有機金属錯体、オキサジアゾール誘導体、ベリレン誘
導体、ピリジン誘導体、ピリミジン誘導体、キノリン誘
導体、キノキサリン誘導体、ジフェニルキノン誘導体、
ニトロ置換フルオレン誘導体等を用いることができる。
上述のように、電子注入輸送層は発光層を兼ね備えたも
のであってもよく、このような場合はトリス(8−キノ
リノラト)アルミニウム等を使用することが好ましい。
電子注入輸送層の形成も発光層と同様に蒸着等によれば
よい。
The electron injecting and transporting layer, which is provided as necessary, includes an organometallic complex such as tris (8-quinolinolato) aluminum, an oxadiazole derivative, a berylen derivative, a pyridine derivative, a pyrimidine derivative, a quinoline derivative, and a quinoxaline derivative. , A diphenylquinone derivative,
Nitro-substituted fluorene derivatives and the like can be used.
As described above, the electron injection / transport layer may also have a light emitting layer. In such a case, it is preferable to use tris (8-quinolinolato) aluminum or the like.
The formation of the electron injecting and transporting layer may be performed by vapor deposition or the like, similarly to the light emitting layer.

【0043】なお、電子注入輸送層を電子注入層と電子
輸送層とに分けて積層する場合は、電子注入輸送層用の
化合物の中から好ましい組合せを選択して用いることが
できる。このとき、陰電極側から電子親和力の値の大き
い化合物の層の順に積層することが好ましい。このよう
な積層順については電子注入輸送層を2層以上設けると
きも同様である。
When the electron injecting and transporting layer is divided into an electron injecting layer and an electron transporting layer, a preferable combination can be selected from the compounds for the electron injecting and transporting layer. At this time, it is preferable to stack the layers of the compound having the higher electron affinity from the cathode side. This stacking order is the same when two or more electron injection / transport layers are provided.

【0044】また、正孔注入輸送層には、例えば、特開
昭63−295695号公報、特開平2−191694
号公報、特開平3−792号公報、特開平5−2346
81号公報、特開平5−239455号公報、特開平5
−299174号公報、特開平7−126225号公
報、特開平7−126226号公報、特開平8−100
172号公報、EP0650955A1等に記載されて
いる各種有機化合物を用いることができる。例えば、テ
トラアリールベンジシン化合物(テトラアリールジアミ
ンないしテトラフェニルジアミン:TPD)、芳香族三
級アミン、ヒドラゾン誘導体、カルバゾール誘導体、ト
リアゾール誘導体、イミダゾール誘導体、アミノ基を有
するオキサジアジール誘導体、ポリチオフェン等であ
る。これらの化合物は2種以上を併用してもよく、併用
するときは別層にして積層したり、混合したりすればよ
い。
The hole injecting and transporting layer is described, for example, in JP-A-63-295695 and JP-A-2-191694.
JP, JP-A-3-792, JP-A-5-2346
No. 81, JP-A-5-239455, JP-A-5
JP-A-299174, JP-A-7-126225, JP-A-7-126226, JP-A-8-100
Various organic compounds described in JP-A-172, EP0650955A1, and the like can be used. For example, a tetraarylbendicine compound (tetraaryldiamine or tetraphenyldiamine: TPD), an aromatic tertiary amine, a hydrazone derivative, a carbazole derivative, a triazole derivative, an imidazole derivative, an oxadiazil derivative having an amino group, polythiophene, or the like. . Two or more of these compounds may be used in combination, and when they are used in combination, they may be stacked as separate layers or mixed.

【0045】正孔注入輸送層を正孔注入層と正孔輸送層
とに分けて積層する場合は、正孔注入輸送層用の化合物
のなかから好ましい組合せを選択して用いることができ
る。このとき、陽電極(ITO等)側からイオン化ポテ
ンシャルの小さい化合物の層の順に積層することが好ま
しい。また陽電極表面には薄膜性の良好な化合物を用い
ることが好ましい。このような積層順については、正孔
注入輸送層を2層以上設けるときも同様である。このよ
うな積層順にすることによって、駆動電圧が低下し、電
流リークの発生やダークスポットの発生・成長を防ぐこ
とができる。また、素子化する場合、蒸着を用いている
ので1〜10nm程度の薄い膜も、均一かつピンホールフ
リーとすることができるため、正孔注入層にイオン化ポ
テンシャルが小さく、可視部に吸収をもつような化合物
を用いても、発光色の色調変化や再吸収による効率の低
下を防ぐことができる。
When the hole injecting and transporting layer is divided into a hole injecting layer and a hole transporting layer, a preferable combination can be selected from the compounds for the hole injecting and transporting layer. At this time, it is preferable to stack the layers of the compound having the smaller ionization potential in order from the positive electrode (ITO or the like) side. It is preferable to use a compound having a good thin film property on the surface of the positive electrode. Such a stacking order is the same when two or more hole injection / transport layers are provided. With such a stacking order, the driving voltage is reduced, and the occurrence of current leakage and the occurrence and growth of dark spots can be prevented. In the case of forming an element, a thin film of about 1 to 10 nm can be made uniform and pinhole-free because of the use of vapor deposition, so that the hole injection layer has a small ionization potential and has absorption in the visible part. Even when such a compound is used, it is possible to prevent a change in the color tone of the emission color or a decrease in efficiency due to reabsorption.

【0046】正孔注入輸送層は、発光層等と同様に上記
の化合物を蒸着すればよい。
The above compound may be deposited on the hole injection / transport layer in the same manner as in the light emitting layer.

【0047】本発明において、陽電極として用いられる
透明電極は、好ましくは発光した光の透過率が80%以
上となるように陽電極の材料および厚さを決定すること
が好ましい。具体的には、例えば、錫ドープ酸化インジ
ウム(ITO)、亜鉛ドープ酸化インジウム(IZ
O)、ZnO、SnO2、In23などを陽電極に用い
ることが好ましい。また、陽電極の厚さは10〜500
nm程度とすることが好ましい。素子の信頼性を向上させ
るために駆動電圧が低いことが必要であるが、好ましい
ものとして、10〜30Ω/□(膜厚50〜300nm)
のITOが挙げられる。実際に使用する場合には、IT
O等の陽電極界面での反射による干渉効果が、光取り出
し効率や色純度を十分に満足するように、電極の膜厚や
光学定数を設定すればよい。
In the present invention, the material and thickness of the transparent electrode used as the positive electrode are preferably determined so that the transmittance of emitted light is preferably 80% or more. Specifically, for example, tin-doped indium oxide (ITO), zinc-doped indium oxide (IZ)
O), ZnO, SnO 2 , In 2 O 3 and the like are preferably used for the positive electrode. The thickness of the positive electrode is 10 to 500.
It is preferable to set it to about nm. It is necessary that the driving voltage be low in order to improve the reliability of the device, but it is preferable that the driving voltage be 10 to 30 Ω / □ (film thickness: 50 to 300 nm).
ITO. If you actually use it,
The electrode thickness and optical constants may be set so that the interference effect of O or the like at the positive electrode interface sufficiently satisfies the light extraction efficiency and color purity.

【0048】ディスプレイのような大きなデバイスにお
いては、ITO等の陽電極の抵抗が大きく、電圧降下が
起きるので、Alなどのメタル配線をしてもよい。
In a large device such as a display, since the resistance of the positive electrode such as ITO is large and a voltage drop occurs, metal wiring such as Al may be provided.

【0049】基板材料としては、基板側から発光した光
を取り出す構成の場合、ガラスや石英、樹脂等の透明な
いし半透明材料を用いる。また、基板に色フィルター膜
や蛍光性物質を含む色変換膜、あるいは誘電体反射膜を
用いて発光色をコントロールしてもよい。また、前記逆
積層の場合には、基板は透明でも不透明であってもよ
く、不透明である場合にはセラミックス等を使用しても
よい。
As a substrate material, in the case of a configuration in which light emitted from the substrate side is extracted, a transparent or translucent material such as glass, quartz, or resin is used. Further, the emission color may be controlled by using a color filter film, a color conversion film containing a fluorescent substance, or a dielectric reflection film on the substrate. In the case of the reverse lamination, the substrate may be transparent or opaque, and when opaque, ceramics or the like may be used.

【0050】色フィルター膜には、液晶ディスプレイ等
で用いられているカラーフィルターを用いれば良いが、
有機ELの発光する光に合わせてカラーフィルターの特
性を調整し、取り出し効率・色純度を最適化すればよ
い。
As the color filter film, a color filter used in a liquid crystal display or the like may be used.
The characteristics of the color filter may be adjusted in accordance with the light emitted from the organic EL to optimize the extraction efficiency and the color purity.

【0051】また、EL素子材料や蛍光変換層が光吸収
するような短波長の外光をカットできるカラーフィルタ
ーを用いれば、素子の耐光性・表示のコントラストも向
上する。
When a color filter capable of cutting off short-wavelength external light that is absorbed by the EL element material or the fluorescent conversion layer is used, the light resistance of the element and the display contrast are improved.

【0052】また、誘電体多層膜のような光学薄膜を用
いてカラーフィルターの代わりにしても良い。
Further, an optical thin film such as a dielectric multilayer film may be used instead of the color filter.

【0053】蛍光変換フィルター膜は、EL発光の光を
吸収し、蛍光変換膜中の蛍光体から光を放出させること
で、発光色の色変換を行うものであるが、組成として
は、バインダー、蛍光材料、光吸収材料の三つから形成
される。
The fluorescent conversion filter film absorbs EL light and emits light from the phosphor in the fluorescent conversion film to perform color conversion of the emission color. It is formed from a fluorescent material and a light absorbing material.

【0054】蛍光材料は、基本的には蛍光量子収率が高
いものを用いれば良く、EL発光波長域に吸収が強いこ
とが望ましい。実際には、レーザー色素などが適してお
り、ローダミン系化合物・ペリレン系化合物・シアニン
系化合物・フタロシアニン系化合物(サブフタロ等も含
む)ナフタロイミド系化合物・縮合環炭化水素系化合物
・縮合複素環系化合物・スチリル系化合物・クマリン系
化合物等を用いればよい。
As the fluorescent material, basically, a material having a high fluorescence quantum yield may be used, and it is desirable that the material has strong absorption in an EL emission wavelength region. Actually, laser dyes are suitable, and rhodamine compounds, perylene compounds, cyanine compounds, phthalocyanine compounds (including subphthalo, etc.) naphthaloimide compounds, condensed ring hydrocarbon compounds, condensed heterocyclic compounds, A styryl compound, a coumarin compound, or the like may be used.

【0055】バインダーは基本的に蛍光を消光しないよ
うな材料を選べば良く、フォトリソグラフィー・印刷等
で微細なパターニングが出来るようなものが好ましい。
また、ITOの成膜時にダメージを受けないような材料
が好ましい。
As the binder, basically, a material which does not quench the fluorescence may be selected, and a binder which can be finely patterned by photolithography, printing or the like is preferable.
Further, a material that does not suffer damage during the deposition of ITO is preferable.

【0056】光吸収材料は、蛍光材料の光吸収が足りな
い場合に用いるが、必要の無い場合は用いなくても良
い。また、光吸収材料は、蛍光性材料の蛍光を消光しな
いような材料を選べば良い。
The light absorbing material is used when the light absorption of the fluorescent material is insufficient, but may be omitted when unnecessary. As the light absorbing material, a material that does not quench the fluorescence of the fluorescent material may be selected.

【0057】正孔注入輸送層、発光層および電子注入輸
送層の形成には、均質な薄膜が形成できることから真空
蒸着法を用いることが好ましい。真空蒸着法を用いた場
合、アモルファス状態または結晶粒径が0.1μm 以下
の均質な薄膜が得られる。結晶粒径が0.1μm を超え
ていると、不均一な発光となり、素子の駆動電圧を高く
しなければならなくなり、電荷の注入効率も著しく低下
する。
For forming the hole injecting and transporting layer, the light emitting layer and the electron injecting and transporting layer, it is preferable to use a vacuum deposition method since a uniform thin film can be formed. When a vacuum deposition method is used, a homogeneous thin film having an amorphous state or a crystal grain size of 0.1 μm or less can be obtained. If the crystal grain size exceeds 0.1 μm, the light emission becomes non-uniform, the driving voltage of the device must be increased, and the charge injection efficiency is significantly reduced.

【0058】真空蒸着の条件は特に限定されないが、1
-4Pa以下の真空度とし、蒸着速度は0.01〜1nm/
sec 程度とすることが好ましい。また、真空中で連続し
て各層を形成することが好ましい。真空中で連続して形
成すれば、各層の界面に不純物が吸着することを防げる
ため、高特性が得られる。また、素子の駆動電圧を低く
したり、ダークスポットの成長・発生を抑えたりするこ
とができる。
The conditions for vacuum deposition are not particularly limited.
The degree of vacuum is 0 -4 Pa or less, and the deposition rate is 0.01 to 1 nm /
It is preferable to set it to about sec. Further, it is preferable to form each layer continuously in a vacuum. If they are formed continuously in a vacuum, impurities can be prevented from adsorbing at the interface between the layers, so that high characteristics can be obtained. Further, the driving voltage of the element can be reduced, and the growth and generation of dark spots can be suppressed.

【0059】これら各層の形成に真空蒸着法を用いる場
合において、1層に複数の化合物を含有させる場合、化
合物を入れた各ボートを個別に温度制御して共蒸着する
ことが好ましい。
In the case where a plurality of compounds are contained in one layer when a vacuum evaporation method is used for forming each of these layers, it is preferable to co-deposit each boat containing the compounds by individually controlling the temperature.

【0060】本発明の有機EL素子は、通常、直流駆動
型のEL素子として用いられるが、交流駆動またはパル
ス駆動とすることもできる。印加電圧は、通常、2〜2
0V程度とされる。
The organic EL device of the present invention is usually used as a DC drive type EL device, but it can be AC drive or pulse drive. The applied voltage is usually 2 to 2
It is about 0V.

【0061】[0061]

【実施例】以下、本発明の具体的実施例を比較例ととも
に示し、本発明をさらに詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail by showing specific examples of the present invention together with comparative examples.

【0062】〈実施例1〉ガラス基板上に透明電極とし
て厚さ200nmのITOをスパッタ法にて形成した後パ
ターニングし、中性洗剤、アセトン、エタノールを用い
て超音波洗浄し、次いで煮沸エタノール中から引き上げ
乾燥した。この透明電極表面をUV/O3洗浄した後、
真空蒸着装置の基板ホルダーにて固定して、槽内を1×
10-4Pa以下まで減圧した。
Example 1 A 200-nm-thick ITO was formed as a transparent electrode on a glass substrate by sputtering, followed by patterning, ultrasonic cleaning using a neutral detergent, acetone and ethanol, and then boiling in ethanol. And dried. After cleaning the transparent electrode surface with UV / O 3 ,
Fix it with the substrate holder of the vacuum evaporation equipment, and
The pressure was reduced to 10 −4 Pa or less.

【0063】次いで減圧状態を保ったまま、N,N’−
ジフェニル−m−トリル−4,4’−ジアミン−1,
1’−ビフェニル(TPD)を蒸着速度0.2nm/secで
55nmの厚さに蒸着し、正孔注入輸送層とした。
Next, N, N'-
Diphenyl-m-tolyl-4,4'-diamine-1,
1′-biphenyl (TPD) was deposited at a deposition rate of 0.2 nm / sec to a thickness of 55 nm to form a hole injection transport layer.

【0064】さらに、減圧を保ったまま、Alq3:ト
リス(8−キノリノラト)アルミニウムを蒸着速度0.
2nm/secで50nmの厚さに蒸着して、電子注入輸送・発
光層とした。
Further, while maintaining the reduced pressure, Alq3: tris (8-quinolinolato) aluminum was evaporated at a vapor deposition rate of 0.1.
Evaporation was performed at a thickness of 50 nm at 2 nm / sec to form an electron injection / transport / light-emitting layer.

【0065】次いで、真空蒸着装置からスパッタ装置に
移し、DCスパッタ法にてAl・Sm(Sm:20at
%)をターゲットとして陰電極を200nmの厚さに成膜
した。このときのスパッタガスにはArを用い、ガス圧
4.5Pa、ターゲットと基板間距離(Ts)9.0cm
とした。また、投入電力は100Wであった。
Next, the wafer was transferred from the vacuum evaporation apparatus to a sputtering apparatus, and Al.Sm (Sm: 20 at
%) As a target, and a negative electrode was formed to a thickness of 200 nm. At this time, Ar was used as the sputtering gas, the gas pressure was 4.5 Pa, and the distance between the target and the substrate (Ts) was 9.0 cm.
And The input power was 100W.

【0066】最後にSiO2を200nmの厚さにスパッ
タして保護層として、有機EL素子を得た。この有機E
L発光素子は、それぞれ2本ずつの平行ストライプ状陰
電極と、8本の平行ストライプ状陽電極を互いに直交さ
せ、2×2mm縦横の素子単体(画素)を互いに2mmの間
隔で配置し、8×2の16画素の素子としたものであ
る。
Finally, SiO 2 was sputtered to a thickness of 200 nm to obtain an organic EL device as a protective layer. This organic E
In the L light emitting element, two parallel striped negative electrodes and eight parallel striped positive electrodes are orthogonal to each other, and element elements (pixels) of 2 × 2 mm vertically and horizontally are arranged at an interval of 2 mm from each other. It is an element of × 2 16 pixels.

【0067】この有機薄膜発光素子にN2雰囲気で直流
電圧を印加し、10mA/cm2の一定電流密度で連続駆動さ
せた。初期には、9V、350cd/cm2の緑色(発光極大
波長λmax =520nm)の発光が確認できた。輝度の半
減時間は800時間で、その間の駆動電圧の上昇は2V
であった。
A DC voltage was applied to this organic thin-film light emitting device in an N 2 atmosphere, and the device was continuously driven at a constant current density of 10 mA / cm 2 . Initially, green light emission (maximum emission wavelength λmax = 520 nm) of 9 V and 350 cd / cm 2 was confirmed. The half-life of luminance is 800 hours, during which the drive voltage rises by 2V
Met.

【0068】得られた有機EL素子について、160画
素(10素子分)の初期発光輝を調べ、その平均輝度を
求め、発光半減期、ダークスポットの発生有無(発光開
始から200時間経過後)について評価し、結果を表1
に示した。ダークスポットの発生の有無については、以
下の基準により評価した。 ◎:ダークスポット全くなし ○:発光面の10mm角領域に2個以下確認できる。 ×:発光面の10mm角領域に3個以上確認できる。
With respect to the obtained organic EL element, the initial luminance of 160 pixels (for 10 elements) was examined, the average luminance was obtained, and the half-life of light emission and the occurrence of dark spots (after 200 hours from the start of light emission). Table 1
It was shown to. The occurrence of dark spots was evaluated according to the following criteria. ◎: No dark spots ○: Two or less spots can be confirmed in a 10 mm square area of the light emitting surface. X: Three or more can be confirmed in a 10 mm square area of the light emitting surface.

【0069】〈実施例2〉実施例1の有機EL発光素子
の形成において、実施例1と同様なAl・Smターゲッ
トおよび純Alターゲットの2元スパッタターゲットと
し、投入電力をAl・SmターゲットはDC100〜0
w、純Alターゲットは0〜500wへと時間と共に変
化させ、その他は実施例1と同様にして膜厚200nmの
陰電極を成膜し、有機EL素子を得た。
Example 2 In forming the organic EL light emitting device of Example 1, a binary sputtering target of the same Al.Sm target and pure Al target as in Example 1 was used, and the input power was set to DC100. ~ 0
A negative electrode having a thickness of 200 nm was formed in the same manner as in Example 1 except that the w, pure Al target was changed from 0 to 500 w with time, and an organic EL device was obtained.

【0070】成膜された陰電極の組成を調べたところ、
有機層に接する界面にSmが多く、その反対側に向かっ
て、膜厚方向に順次Smの濃度が減少していることが確
認された。また、この有機EL素子について実施例1と
同様にして評価したところ、発光半減期が1000時間
に増加し、希土類金属の濃度勾配有することで、陰電極
の劣化を防止できることがわかった。結果を表1に示
す。
When the composition of the formed negative electrode was examined,
It was confirmed that the amount of Sm was large at the interface in contact with the organic layer, and the concentration of Sm gradually decreased in the thickness direction toward the opposite side. In addition, when this organic EL device was evaluated in the same manner as in Example 1, it was found that the emission half-life increased to 1000 hours, and that the negative electrode could be prevented from deteriorating due to the rare earth metal concentration gradient. Table 1 shows the results.

【0071】〈実施例3〉実施例1の有機EL発光素子
の形成において、実施例1と同様なAl・Smターゲッ
トおよび純Alターゲットをそれぞれ用い、先ず実施例
1と同様にしてAl・Smターゲットを用いて陰電極を
50nm成膜し、さらに純Alターゲットを用いてAl薄
膜を150nm積層した。その他は実施例1と同様にして
有機EL素子を得た。
Example 3 In forming the organic EL device of Example 1, an Al.Sm target and a pure Al target similar to those in Example 1 were used. First, an Al.Sm target was formed in the same manner as in Example 1. Was used to form a 50 nm negative electrode, and an Al thin film was laminated to a thickness of 150 nm using a pure Al target. Otherwise, the procedure of Example 1 was followed to obtain an organic EL device.

【0072】この有機EL素子について実施例1と同様
にして評価したところ、初期駆動電圧が8.5V と低下
し、発光半減期が1000時間に増加していることが確
認された。結果を表1に示す。
When this organic EL device was evaluated in the same manner as in Example 1, it was confirmed that the initial drive voltage was reduced to 8.5 V and the light emission half-life was increased to 1000 hours. Table 1 shows the results.

【0073】〈実施例4〉実施例1の有機EL発光素子
の形成において、スパッタガスをKrにかえ、ガス圧
3.5Pa、ターゲットと基板間距離(Ts)9.0cm
とした。他は同様にして有機EL素子を成膜した。得ら
れた有機EL素子について実施例1と同様にして評価し
た。その結果を表1に示す。
Example 4 In forming the organic EL device of Example 1, the sputtering gas was changed to Kr, the gas pressure was 3.5 Pa, and the distance between the target and the substrate (Ts) was 9.0 cm.
And Otherwise, an organic EL element was formed in the same manner. The obtained organic EL device was evaluated in the same manner as in Example 1. Table 1 shows the results.

【0074】〈実施例5〉実施例1の有機EL発光素子
の形成において、スパッタガスをXeにかえ、成膜ガス
圧を2.5Pa、ターゲットと基板間距離Ts=9.0c
mとした他は同様にして有機EL素子を成膜した。得ら
れた有機EL素子について実施例1と同様にして評価し
た。その結果を表1に示す。
Example 5 In the formation of the organic EL device of Example 1, the sputtering gas was changed to Xe, the film forming gas pressure was 2.5 Pa, and the distance Ts between the target and the substrate was 9.0 c.
An organic EL element was formed in the same manner except that m was set. The obtained organic EL device was evaluated in the same manner as in Example 1. Table 1 shows the results.

【0075】〈実施例6〉実施例1の有機EL発光素子
の形成において、成膜ガス圧を2.5Pa、Ts=9.
0cmとした他は同様にして有機EL素子を成膜した。得
られた有機EL素子について実施例1と同様にして評価
した。その結果を表1に示す。
Example 6 In the formation of the organic EL device of Example 1, the film forming gas pressure was 2.5 Pa and Ts = 9.
An organic EL element was formed in the same manner except that the distance was set to 0 cm. The obtained organic EL device was evaluated in the same manner as in Example 1. Table 1 shows the results.

【0076】〈実施例7〉実施例1の有機EL発光素子
の形成において、成膜ガス圧を6.0Pa、Ts=9.
0cmとした他は同様にして有機EL素子を成膜した。得
られた有機EL素子について実施例1と同様にして評価
した。その結果を表1に示す。
Example 7 In the formation of the organic EL device of Example 1, the film forming gas pressure was 6.0 Pa and Ts = 9.
An organic EL element was formed in the same manner except that the distance was set to 0 cm. The obtained organic EL device was evaluated in the same manner as in Example 1. Table 1 shows the results.

【0077】〈実施例8〉実施例1の有機EL発光素子
の形成において、成膜ガス圧を8.0Pa、Ts=5.
0cmにかえた他は同様にして有機EL素子を成膜した。
得られた有機EL素子について実施例1と同様にして評
価した。その結果を表1に示す。
Example 8 In the formation of the organic EL device of Example 1, the film forming gas pressure was 8.0 Pa and Ts = 5.
An organic EL element was formed in the same manner except that the thickness was changed to 0 cm.
The obtained organic EL device was evaluated in the same manner as in Example 1. Table 1 shows the results.

【0078】〈実施例9〉実施例1の有機EL発光素子
の形成において、成膜ガス圧を12Pa、Ts=5.0c
mにかえた他は同様にして有機EL素子を成膜した。得
られた有機EL素子について実施例1と同様にして評価
した。その結果を表1に示す。
Embodiment 9 In forming the organic EL light emitting device of Embodiment 1, the film forming gas pressure was 12 Pa and Ts = 5.0 c.
An organic EL element was formed in the same manner except that m was changed. The obtained organic EL device was evaluated in the same manner as in Example 1. Table 1 shows the results.

【0079】〈実施例10〉実施例1の有機EL発光素
子の形成において、成膜ガス圧を8.0Pa、Ts=
7.5cmにかえた他は同様にして有機EL素子を成膜し
た。得られた有機EL素子について実施例1と同様にし
て評価した。その結果を表1に示す。
Example 10 In forming the organic EL device of Example 1, the film forming gas pressure was 8.0 Pa and Ts =
An organic EL device was formed in the same manner except that the size was changed to 7.5 cm. The obtained organic EL device was evaluated in the same manner as in Example 1. Table 1 shows the results.

【0080】〈実施例11〉実施例1の有機EL発光素
子の形成において、成膜ガス圧を2.5Pa、Ts=1
5cmにかえた他は同様にして有機EL素子を成膜した。
得られた有機EL素子について実施例1と同様にして評
価した。その結果を表1に示す。
<Embodiment 11> In forming the organic EL device of Embodiment 1, the film forming gas pressure was 2.5 Pa and Ts = 1.
An organic EL element was formed in the same manner except that the size was changed to 5 cm.
The obtained organic EL device was evaluated in the same manner as in Example 1. Table 1 shows the results.

【0081】〈実施例12〉実施例1において、ターゲ
ットとしてAl・Sm(Sm:20at%)の代わりに、
Al・Ce(Ce:5at%)、Al・Er(Er:10
at%)、Al・Eu(Eu:10at%)、Al・Gd
(Gd:10at%)、Al・La(La:10at%)、
Al・Nd(Nd:10at%)、Al・Sc(Sc:1
0at%)、Al・Y(Y:10at%)、Al・Yb(Y
b:5at%)をそれぞれ用い、その他は実施例1と同様
にして有機EL発光素子を作製した。
<Embodiment 12> In Embodiment 1, instead of Al.Sm (Sm: 20 at%) as the target,
Al. Ce (Ce: 5 at%), Al. Er (Er: 10
at%), Al-Eu (Eu: 10 at%), Al-Gd
(Gd: 10 at%), Al.La (La: 10 at%),
Al.Nd (Nd: 10 at%), Al.Sc (Sc: 1)
0 at%), Al.Y (Y: 10 at%), Al.Yb (Y
b: 5 at%), and the other steps were the same as in Example 1 to produce an organic EL light emitting device.

【0082】得られた有機EL素子について、実施例1
と同様にに評価したところ、それぞれの有機EL素子に
ついて実施例1と同様の結果を得ることができた。
Example 1 of the obtained organic EL device
As a result, the same results as in Example 1 were obtained for each organic EL element.

【0083】〈比較例1〉実施例1の有機EL発光素子
の形成において、Al・Smターゲットに代えて純Al
ターゲットを用い、その他は実施例1と同様にして有機
EL素子を得た。
Comparative Example 1 In forming the organic EL device of Example 1, pure Al was used instead of the Al.Sm target.
An organic EL device was obtained in the same manner as in Example 1 except that a target was used.

【0084】得られた有機EL素子に、N2雰囲気で直
流電圧を印加し、10mA/cm2の一定電流密度で連続駆動
させた。初期には、9V、200cd/cm2の緑色(発光極
大波長λmax =520nm)の発光が確認でき、実施例1
より初期の発光輝度が低下していた。また、ダークスポ
ットの発生は少ないものの輝度の半減時間は600時
間、その間の駆動電圧の上昇は2Vで、輝度の半減時間
も低下していた。
A direct current voltage was applied to the obtained organic EL device in an N 2 atmosphere, and the device was continuously driven at a constant current density of 10 mA / cm 2 . Initially, green light emission (maximum emission wavelength λmax = 520 nm) of 9 V and 200 cd / cm 2 was confirmed.
The light emission luminance in the earlier stage was lower. Further, although the occurrence of dark spots was small, the half-time of luminance was 600 hours, during which the drive voltage increased by 2 V, and the half-time of luminance was also reduced.

【0085】この有機EL素子について実施例1と同様
にして評価した。結果を表1に示す。
This organic EL device was evaluated in the same manner as in Example 1. Table 1 shows the results.

【0086】〈比較例2〉実施例1の有機EL発光素子
の形成において、ガス圧を1.0Paにかえた他は同様
にして有機EL素子を成膜した。得られた有機EL素子
について実施例1と同様にして評価したところ、初期発
光輝度の平均値、発光半減期共に低下していた。また、
ダークスポットの発生も顕著であった。結果を表1に示
す。
Comparative Example 2 An organic EL device was formed in the same manner as in Example 1, except that the gas pressure was changed to 1.0 Pa. When the obtained organic EL device was evaluated in the same manner as in Example 1, both the average value of the initial light emission luminance and the light emission half-life decreased. Also,
The occurrence of dark spots was also remarkable. Table 1 shows the results.

【0087】〈比較例3〉実施例1の有機EL発光素子
の形成において、ガス圧を12Paにかえた他は同様に
して有機EL素子を成膜した。得られた有機EL素子に
ついて実施例1と同様にして評価したところ、初期発光
輝度の平均値、発光半減期共に低下していた。また、ダ
ークスポットの発生も顕著であった。結果を表1に示
す。
Comparative Example 3 An organic EL device was formed in the same manner as in Example 1, except that the gas pressure was changed to 12 Pa. When the obtained organic EL device was evaluated in the same manner as in Example 1, both the average value of the initial light emission luminance and the light emission half-life decreased. The generation of dark spots was also remarkable. Table 1 shows the results.

【0088】〈比較例4〉実施例1の有機EL素子の製
造法において、ガス圧1.0Pa、Ts=5.0cmにか
えた他は同様にして有機EL素子を成膜した。得られた
有機EL素子について実施例1と同様にして評価したと
ころ、初期発光輝度の平均値、発光半減期共に低下して
いた。また、ダークスポットの発生も顕著であった。結
果を表1に示す。
Comparative Example 4 An organic EL device was formed in the same manner as in Example 1 except that the gas pressure was changed to 1.0 Pa and Ts = 5.0 cm. When the obtained organic EL device was evaluated in the same manner as in Example 1, both the average value of the initial light emission luminance and the light emission half-life decreased. The generation of dark spots was also remarkable. Table 1 shows the results.

【0089】[0089]

【表1】 [Table 1]

【0090】[0090]

【発明の効果】有機層界面での密着性、電子注入効率が
良好で、発光特性を向上させ、有機層へのダメージも少
なく、ダークスポットの発生を抑制し、性能劣化の少な
い陰電極を有する有機EL素子を実現できる。
EFFECTS OF THE INVENTION A negative electrode having good adhesion at the interface of the organic layer, good electron injection efficiency, improved light emission characteristics, little damage to the organic layer, suppressed generation of dark spots, and little performance deterioration. An organic EL element can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】有機EL素子の構成例を示す概念図である。FIG. 1 is a conceptual diagram illustrating a configuration example of an organic EL element.

【符号の説明】[Explanation of symbols]

21 基板 22 陽電極 23 正孔注入・輸送層 24 発光層 25 陰電極 26 保護層 DESCRIPTION OF SYMBOLS 21 Substrate 22 Positive electrode 23 Hole injection / transport layer 24 Light emitting layer 25 Negative electrode 26 Protective layer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 スパッタ法にて成膜され、かつアルミニ
ウムとSc、Yおよび希土類金属元素のうちの1種以上
とを含有する陰電極を有する有機EL素子。
1. An organic EL device formed by a sputtering method and having a negative electrode containing aluminum and at least one of Sc, Y and rare earth metal elements.
【請求項2】 前記陰電極は、膜厚方向の濃度勾配を有
し、 この濃度勾配は、有機層に接する界面側に希土類金属元
素が多くなる勾配である請求項1の有機EL素子。
2. The organic EL device according to claim 1, wherein the cathode has a concentration gradient in a film thickness direction, and the concentration gradient is a gradient in which a rare earth metal element increases on an interface side in contact with the organic layer.
【請求項3】 前記陰電極は、さらに、有機層に接する
界面側と反対側にアルミニウムを積層した請求項1また
は2の有機EL素子。
3. The organic EL device according to claim 1, wherein said cathode further comprises aluminum laminated on the side opposite to the interface side in contact with the organic layer.
【請求項4】 前記希土類元素は、Sc,YならびにS
m,Ce,Er,Eu,Gd,La,NdおよびYbの
ランタノイド系元素のいずれかである請求項1〜3のい
ずれかの有機EL素子。
4. The rare earth element includes Sc, Y and S
The organic EL device according to any one of claims 1 to 3, wherein the organic EL device is any one of lanthanoid elements of m, Ce, Er, Eu, Gd, La, Nd and Yb.
【請求項5】 前記スパッタ法は、成膜ガス圧力と基板
ターゲット間距離の積が20〜65Pa・cmを満たす成
膜条件で陰電極を成膜する請求項1〜4のいずれかの有
機EL素子。
5. The organic EL device according to claim 1, wherein in the sputtering method, the negative electrode is formed under film forming conditions in which a product of a film forming gas pressure and a distance between substrate targets satisfies 20 to 65 Pa · cm. element.
【請求項6】 前記成膜ガスにAr、KrおよびXeの
1種以上を用いた請求項1〜5のいずれかの有機EL素
子。
6. The organic EL device according to claim 1, wherein at least one of Ar, Kr and Xe is used as said film forming gas.
【請求項7】 前記スパッタ法がDCスパッタ法である
請求項1〜6のいずれかの有機EL素子。
7. The organic EL device according to claim 1, wherein said sputtering method is a DC sputtering method.
JP9120159A 1997-04-23 1997-04-23 Organic el element Withdrawn JPH10302966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9120159A JPH10302966A (en) 1997-04-23 1997-04-23 Organic el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9120159A JPH10302966A (en) 1997-04-23 1997-04-23 Organic el element

Publications (1)

Publication Number Publication Date
JPH10302966A true JPH10302966A (en) 1998-11-13

Family

ID=14779422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9120159A Withdrawn JPH10302966A (en) 1997-04-23 1997-04-23 Organic el element

Country Status (1)

Country Link
JP (1) JPH10302966A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164359A (en) * 1998-11-25 2000-06-16 Idemitsu Kosan Co Ltd Organic electroluminescent element
JP2002289360A (en) * 2001-03-27 2002-10-04 Univ Toyama Organic electric field light emitting device
US6797414B2 (en) * 2001-06-08 2004-09-28 Samsung Sdi Co., Ltd. Organic EL device and method of manufacturing organic EL device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164359A (en) * 1998-11-25 2000-06-16 Idemitsu Kosan Co Ltd Organic electroluminescent element
JP2002289360A (en) * 2001-03-27 2002-10-04 Univ Toyama Organic electric field light emitting device
US6797414B2 (en) * 2001-06-08 2004-09-28 Samsung Sdi Co., Ltd. Organic EL device and method of manufacturing organic EL device
KR100477105B1 (en) * 2001-06-08 2005-03-17 삼성에스디아이 주식회사 Organic el device and method of manufacturing organic el device

Similar Documents

Publication Publication Date Title
US6118212A (en) Organic electroluminescent light emitting devices
US6281627B1 (en) Organic electroluminescent device with a high resistant inorganic electron injecting layer
JPH1126169A (en) Organic el element and its manufacture
JPH1131590A (en) Organic el element
JPH1187068A (en) Organic el element and manufacture thereof
JP2002367784A (en) Organic el element
JPH1145779A (en) Method and device for manufacturing organic el element
JPH1167459A (en) Organic electroluminescent element and its manufacture
JP2000294375A (en) Organic el element
US6172458B1 (en) Organic electroluminescent device with electrode of aluminum-lithium alloy
JPH1167444A (en) Organic el element
US6359384B1 (en) Organic electroluminescent device with electron injecting electrode containing ALLi alloy
JPH1140365A (en) Organic el element and its manufacture
JP2001155867A (en) Organic el display device
US6187457B1 (en) Organic EL element and method of producing the same
JPH1161398A (en) Production of electrode and electrode
JPH1140352A (en) Organic el element and manufacture thereof
JPH11126689A (en) Manufacture of organic electroluminescent element and organic el element
JPH1167460A (en) Organic electroluminescent element and its manufacture
JPH11111466A (en) Electrode of organic el element
JPH11329746A (en) Organic el element
JP4507305B2 (en) Organic EL device and method for manufacturing the same
JPH10302966A (en) Organic el element
JP4132458B2 (en) Organic EL device
JPH11135264A (en) Organic el element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706