JPH10299421A - Combined cycle power generating plant - Google Patents

Combined cycle power generating plant

Info

Publication number
JPH10299421A
JPH10299421A JP10324797A JP10324797A JPH10299421A JP H10299421 A JPH10299421 A JP H10299421A JP 10324797 A JP10324797 A JP 10324797A JP 10324797 A JP10324797 A JP 10324797A JP H10299421 A JPH10299421 A JP H10299421A
Authority
JP
Japan
Prior art keywords
steam
pressure
turbine
plant
pressure turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10324797A
Other languages
Japanese (ja)
Other versions
JP3586539B2 (en
Inventor
Kazuo Uematsu
一雄 上松
Kazuharu Hirokawa
一晴 廣川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10324797A priority Critical patent/JP3586539B2/en
Publication of JPH10299421A publication Critical patent/JPH10299421A/en
Application granted granted Critical
Publication of JP3586539B2 publication Critical patent/JP3586539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To safely restart a plant after shutdown, by providing a by-pass passage which connect an overheated steam supplying passage which supplies overheated steam to a high-pressure turbine with a cooling steam supplying passage which supplies exhaust gas from the high-pressure turbine as cooling steam to a high-temperature cooling part of a gas turbine. SOLUTION: In order to start a plate, a high-pressure turbine by-pass passage 21 is opened when self steam starts to be generated from an exhaust recovery boiler 30, initial steam is passed from a high-pressure heater 31b through a gas turbine plant 10, a reheaters 32a, 32b, and then the steam is dropped onto a condenser 25 through a intermediate-pressure turbine by-pass passage 35. When temperature of cooled steam through the by-pass route 21 increases and it is required to avoid this rising, a warm water spray 26 injects warm water into the by-pass passage 21 to adjust the temperature. Then, when self steam starts to be stably generated from the exhaust recovery boiler 30, the by-pass passage 21 is closed and high-pressure overheated steam supply passage 24 is introduced into the high-pressure turbine 20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガスタービンプラン
トと蒸気タービンプラントとを組み合わせたコンバイン
ドサイクル発電プラントにおいて、ガスタービン冷却部
へ冷却蒸気を供給する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for supplying cooling steam to a gas turbine cooling unit in a combined cycle power plant combining a gas turbine plant and a steam turbine plant.

【0002】[0002]

【従来の技術】コンバインドサイクル発電プラントは、
ガスタービンプラントと蒸気タービンプラントを組み合
わせた発電システムであり、熱エネルギーの高温域をガ
スタービンで、また、低温域を蒸気タービンでそれぞれ
分担して受持ち、熱エネルギーを有効に回収し、利用す
るようにしたものであり、近年特に脚光を浴びている発
電システムである。
2. Description of the Related Art A combined cycle power plant is
This is a power generation system that combines a gas turbine plant and a steam turbine plant.The high-temperature area of thermal energy is shared by the gas turbine, and the low-temperature area is shared by the steam turbine. This is a power generation system that has been particularly spotlighted in recent years.

【0003】このようなコンバインドサイクル発電プラ
ントにおいては、ガスタービンの冷却手法が技術開発の
一つの大きなテーマであり、特に点検工事等の後のプラ
ント立ち上げ時、毎週運転を停止するWSS,毎日運転
を停止するDSS等におけるプラント停止後の再起動に
際して、より効果的に作動するものを求めて試行錯誤が
重ねられている状況にある。
[0003] In such a combined cycle power plant, the cooling technique of the gas turbine is one of the major themes of the technical development. In particular, when the plant is started after inspection work, the WSS which stops the operation every week, the daily operation, etc. When restarting after a plant stop in a DSS or the like that shuts down, there is a situation in which trial and error are being repeated in search of a device that operates more effectively.

【0004】冷却方式が圧縮空気を使用した空気冷却方
式であった旧来の運転の場合では、ガスタービンを起動
すると圧縮機の主流または抽気が自動的に冷却空気とし
て供給されるために、格別の手当をしなくても燃焼器ま
たは翼部の冷却が開始され、格別問題なく安全な稼働状
態に入ることができた。
In the case of a conventional operation in which the cooling system is an air cooling system using compressed air, the main flow or bleed air of the compressor is automatically supplied as cooling air when the gas turbine is started. Even without any treatment, the combustor or wings started to cool down and could be safely operated without any particular problems.

【0005】しかし、プラントの熱効率の向上が求めら
れ、冷却媒体として前記圧縮空気の使用から冷却蒸気を
用いることが検討されるようになった昨今では、プラン
ト再起動に際してのガスタービンの冷却技術は、未だ確
立したものがなく、更に一層の試行錯誤が重ねられてい
る状況にある。
[0005] However, the improvement of the thermal efficiency of the plant has been demanded and the use of the cooling steam instead of the compressed air as the cooling medium has been studied. However, there is no established one, and even more trial and error is being conducted.

【0006】[0006]

【発明が解決しようとする課題】前記したような燃焼器
または翼部を冷却する従来の蒸気冷却式ガスタービンで
は、ガスタービンが起動しても排熱回収ボイラからの自
缶蒸気の発生は遅れざるを得ないため、これが定常状態
に到達するまでの間、冷却蒸気通路の暖気等を含めて種
々の問題を残している。
In a conventional steam-cooled gas turbine for cooling a combustor or a blade as described above, the generation of steam from the exhaust heat recovery boiler is delayed even when the gas turbine is started. Until this situation reaches a steady state, various problems remain, such as warm air in the cooling steam passage.

【0007】本発明はこの様な従来のものにおける問題
点を解消し、プラント停止後の再起動に際して、これを
より早くかつ的確に、そして熱衝撃等の発生を抑えて安
全におこなうようにしたコンバインドサイクル発電プラ
ントを提供することを課題とするものである。
The present invention solves such a problem in the prior art, and makes it possible to restart the plant after stopping it more quickly and accurately and safely by suppressing the occurrence of thermal shock and the like. It is an object to provide a combined cycle power plant.

【0008】[0008]

【課題を解決するための手段】本発明は前記した課題を
解決するべくなされたもので、ガスタービンプラントと
蒸気タービンプラントを組合せるとともに、ガスタービ
ンの排熱を利用して蒸気タービン駆動用蒸気を発生させ
る排熱回収ボイラを備えて構成したコンバインドサイク
ル発電プラントにおいて、高圧過熱器から高圧タービン
へ過熱蒸気を供給する過熱蒸気供給経路と、高圧タービ
ン排気を冷却蒸気としてガスタービンの高温冷却部へ供
給する冷却蒸気供給経路との間を連絡した高圧タービン
バイパス経路を設けたコンバインドサイクル発電プラン
トを提供するものである。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a combination of a gas turbine plant and a steam turbine plant, and a steam turbine driving steam utilizing exhaust heat of the gas turbine. In a combined cycle power plant that is equipped with an exhaust heat recovery boiler that generates heat, a superheated steam supply path that supplies superheated steam from the high-pressure superheater to the high-pressure turbine, and the high-pressure turbine exhaust as cooling steam to the high-temperature cooling section of the gas turbine An object of the present invention is to provide a combined cycle power plant provided with a high-pressure turbine bypass path communicating with a cooling steam supply path to be supplied.

【0009】即ち、WSS,またはDSS等の操業手順
に従ってプラントを立ち上げるに際しては、あらかじめ
例えば補助ボイラを利用するかまたは自身の圧縮空気を
利用する等の方法で暖機しておいたガスタービンの蒸気
冷却通路に、自缶から発生初期蒸気を高圧タービンバイ
パス経路により供給して前記暖機を補助促進する。
That is, when starting up a plant in accordance with an operating procedure such as WSS or DSS, a gas turbine which has been warmed up in advance by, for example, using an auxiliary boiler or using its own compressed air is used. Initial steam generated from the canister is supplied to the steam cooling passage through a high-pressure turbine bypass path to assist the warm-up.

【0010】そして、自缶蒸気が安定して発生し始めた
ら前記バイパス経路を閉じて高圧過熱蒸気を高圧タービ
ンに導入し、その高圧排気を以てガスタービンの冷却を
行うようにして、このガスタービン冷却を熱衝撃等発生
させることなく安定して行わせるようにしたものであ
る。
When the self-starting steam starts to be generated stably, the bypass passage is closed, high-pressure superheated steam is introduced into the high-pressure turbine, and the gas turbine is cooled by using the high-pressure exhaust gas. Is performed stably without generating thermal shock or the like.

【0011】[0011]

【発明の実施の形態】本発明の実施の一形態を図1に基
づいて説明する。図はコンバインドサイクル発電プラン
トを構成するガスタービン、蒸気タービン及び排熱回収
ボイラの3者の相対的な配列関係を主要配管系列を含め
て概略的に示すものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG. The figure schematically shows the relative arrangement of the three components of the combined cycle power plant including the gas turbine, the steam turbine, and the exhaust heat recovery boiler, including the main piping system.

【0012】10はガスタービンプラントを示し、ガス
タービンと、同ガスタービンへ作動ガスを供給する燃焼
器及び圧縮空気を供給する空気圧縮機等が対になって構
成しており、かつ更に詳細に言えば動翼を中心とした高
温冷却部と、静翼を中心とした高温冷却部と、そして燃
焼器の壁面を対象として形成された高温冷却部がそれぞ
れ設けられている。
Reference numeral 10 denotes a gas turbine plant, which comprises a gas turbine, a combustor for supplying a working gas to the gas turbine, an air compressor for supplying compressed air, and the like. In other words, a high-temperature cooling section centered on the moving blade, a high-temperature cooling section centered on the stationary blade, and a high-temperature cooling section formed on the wall surface of the combustor are provided.

【0013】20は高圧タービンで、中圧タービン27
または図示省略の低圧タービン等と対になってコンバイ
ンドサイクルのボトミングサイクルとしての蒸気タービ
ン部分を構成している。
Reference numeral 20 denotes a high-pressure turbine.
Alternatively, a steam turbine portion as a bottoming cycle of a combined cycle is configured in combination with a low-pressure turbine or the like (not shown).

【0014】21は高圧タービンバイパス経路で、後述
する排熱回収ボイラ30からの蒸気を前記高圧タービン
20へ供給する過熱蒸気供給経路24と、同高圧タービ
ン20の高圧排気をガスタービンプラント10の高温冷
却部または後述する排熱回収ボイラ30中の第1再熱器
32aへ供給する冷却蒸気供給経路22との間を連絡し
ている。
Reference numeral 21 denotes a high-pressure turbine bypass path, which is a superheated steam supply path 24 for supplying steam from an exhaust heat recovery boiler 30 to be described later to the high-pressure turbine 20, and a high-pressure exhaust gas from the high-pressure turbine 20 to a high temperature of the gas turbine plant 10. It is in communication with a cooling section or a cooling steam supply path 22 to be supplied to a first reheater 32a in the exhaust heat recovery boiler 30 described later.

【0015】23は回収経路で、前記ガスタービンプラ
ント10の高温冷却部を冷却した冷却蒸気を直接的に、
または後述する排熱回収ボイラ30中の第2再熱器32
bを経由して送気され、前記中圧タービン27へ供給す
る経路を構成している。
Reference numeral 23 denotes a recovery path which directly cools the cooling steam which has cooled the high-temperature cooling section of the gas turbine plant 10.
Alternatively, a second reheater 32 in an exhaust heat recovery boiler 30 described later
b, and constitutes a path to be supplied to the intermediate-pressure turbine 27.

【0016】24は過熱蒸気供給経路、25は復水器
で、過熱蒸気供給経路24は排熱回収ボイラ30中の第
2過熱器31bの過熱蒸気を前記高圧タービン20へ供
給し、また、復水器25は図示省略の経路で各蒸気ター
ビン部分に連絡すると共に、中圧タービンバイパス経路
35を経て前記回収経路23と連絡可能となるように配
置されている。
Reference numeral 24 denotes a superheated steam supply path, and reference numeral 25 denotes a condenser. The superheated steam supply path 24 supplies the superheated steam of the second superheater 31b in the exhaust heat recovery boiler 30 to the high-pressure turbine 20. The water dispenser 25 is arranged so as to communicate with each steam turbine section through a path not shown, and to be able to communicate with the recovery path 23 via a medium-pressure turbine bypass path 35.

【0017】また、26は温水スプレーで、排熱回収ボ
イラ30中の図示省略の高圧蒸発器または節炭器に連絡
しており、必要に応じて温水の供給を受け、前記バイパ
ス経路21中に噴射するように構成されている。
Reference numeral 26 denotes a hot water spray, which is connected to a high-pressure evaporator or a economizer (not shown) in the exhaust heat recovery boiler 30, receives hot water as required, and It is configured to inject.

【0018】30は排熱回収ボイラで、一般的には、低
圧、中圧および高圧の3圧形式であるが、ここでは説明
の都合上高圧第1過熱器31aと高圧第2過熱器31
b、及び第1再熱器32aと第2再熱器32bを代表と
して示し、他の詳細は省略している。
Reference numeral 30 denotes a waste heat recovery boiler, which is generally of a three-pressure type of a low pressure, a medium pressure and a high pressure. Here, for the sake of explanation, a high pressure first superheater 31a and a high pressure second superheater 31 are used.
b, the first reheater 32a and the second reheater 32b are shown as representatives, and other details are omitted.

【0019】33は高圧蒸気経路、34は再熱蒸気経路
で、高圧蒸気経路33は図示省略の高圧蒸発器からの高
圧蒸気を高圧第1過熱器31a、更に高圧第2過熱器3
1bへ供給し、また再熱蒸気経路34は第2再熱器32
bからの再熱蒸気を前記中圧タービン27へ供給する経
路を構成している。
Reference numeral 33 denotes a high-pressure steam path, reference numeral 34 denotes a reheat steam path, and high-pressure steam path 33 transfers high-pressure steam from a high-pressure evaporator (not shown) to a high-pressure first superheater 31a, and further to a high-pressure second superheater 3a.
1b, and the reheat steam path 34 is connected to the second reheater 32.
A path for supplying the reheated steam from b to the intermediate-pressure turbine 27 is formed.

【0020】なお、前記各蒸気経路には、特に必要とす
る位置には図中バルブを表示したが、この経路の各所に
適宜バルブが設けられており、プラントの立ち上げから
定常作動に亘って必要な蒸気経路が適宜構成されるよう
になっている。
In each of the above steam paths, valves are shown in the figure at positions that are particularly necessary. Valves are provided as appropriate at various points in the paths, and are provided from the start-up of the plant to steady operation. Necessary steam paths are appropriately configured.

【0021】本実施の形態は前記のように形成されてお
り、その作動状況を説明すると次のようになる。即ち発
電プラントは週に一度運転を停止してまた再起動するW
SSまた毎日運転を停止して翌日再起動するDSS、そ
して定期点検作業の完了後というようにいわゆるプラン
トの立ち上げにを行うことがしばしばある。
The present embodiment is formed as described above. The operation of the embodiment will be described below. That is, the power plant stops operating once a week and restarts again.
SS or DSS, which is stopped every day and restarted the next day, and so-called plant startup is often performed, such as after completion of periodic inspection work.

【0022】このプラントの立ち上げに際しては、あら
かじめ補助ボイラを利用するかまたは自身の圧縮空気を
利用する等の方法でガスタービンプラント10を暖機し
ておく。
When starting up the plant, the gas turbine plant 10 is warmed up in advance by using an auxiliary boiler or using its own compressed air.

【0023】その後排熱回収ボイラ30から十分な蒸気
が発生するまでには時間を要するので、同排熱回収ボイ
ラ30からいわゆる自缶蒸気が発生し始めたら、前記高
圧タービンバイパス経路21を開通し、初期蒸気を高圧
第2過熱器31bから高圧タービンバイパス経路21、
ガスタービンプラント10、更に第1再熱器32a、第
2再熱器32bと経由した後、中圧タービンバイパス経
路35を経て復水器25へ落とす経路を形成する。
After that, it takes time for sufficient steam to be generated from the exhaust heat recovery boiler 30. Therefore, when so-called self-canned steam starts to be generated from the exhaust heat recovery boiler 30, the high-pressure turbine bypass path 21 is opened. , The initial steam from the high-pressure second superheater 31b to the high-pressure turbine bypass path 21,
After passing through the gas turbine plant 10 and further through the first reheater 32a and the second reheater 32b, a path is formed to drop to the condenser 25 via the intermediate pressure turbine bypass path 35.

【0024】なおこの時、この蒸気は中圧タービンを通
らない様に回収経路23のバルブを制御するので、復水
器25に至る中圧タービンバイパス経路35では、その
手前に設けられた制御弁によりガスタービンの冷却部雰
囲気ガス圧力以上の圧力を保ち、ガスが蒸気通路内に逆
流しないように制御されている。
At this time, the valve of the recovery path 23 is controlled so that this steam does not pass through the intermediate pressure turbine. Therefore, in the intermediate pressure turbine bypass path 35 leading to the condenser 25, a control valve provided in front thereof is provided. Thus, the pressure of the gas in the cooling section of the gas turbine is maintained at or above the gas pressure, and the gas is controlled so as not to flow back into the steam passage.

【0025】一方、前記高圧タービンバイパス経路21
を流れる冷却蒸気が次第に高温化してくるので、この高
温化を防ぐ必要があるときには、温水スプレー26によ
り図示省略の高圧蒸発器または節炭器からの温水を高圧
タービンバイパス経路21中に噴射して温度調節をする
ようにしている。
On the other hand, the high-pressure turbine bypass path 21
When it is necessary to prevent the high temperature, the cooling water flowing from the high-pressure evaporator or the economizer (not shown) is injected into the high-pressure turbine bypass path 21 by the hot water spray 26 when it is necessary to prevent the high temperature. The temperature is adjusted.

【0026】そして、自缶蒸気が排熱回収ボイラ30か
ら安定して発生し始めたら前記バイパス経路21を閉
じ、過熱蒸気供給経路24を経て高圧過熱蒸気を高圧タ
ービン20に導入し、その高圧排気を冷却蒸気供給経路
22からガスタービンプラント10に供給して動翼、静
翼または燃焼器等の高温冷却部の冷却を行い、その後回
収経路23を経由して中圧タービン27で回収する。
When the self-starting steam starts to be generated stably from the exhaust heat recovery boiler 30, the bypass path 21 is closed, and the high-pressure superheated steam is introduced into the high-pressure turbine 20 via the superheated steam supply path 24, and the high-pressure exhaust gas is discharged. Is supplied from the cooling steam supply path 22 to the gas turbine plant 10 to cool a high-temperature cooling section such as a moving blade, a stationary blade, or a combustor, and thereafter, is recovered by the medium-pressure turbine 27 via the recovery path 23.

【0027】このようにして、本実施の形態によれば、
タービンプラント10を確実に暖機した後徐々に加熱を
していくので、定常運転に至って通常の冷却蒸気が入っ
てきてもそこで熱衝撃が発生する恐れもなく、冷却系統
を安全に維持して所期の冷却を的確に実行することがで
きるものである。
As described above, according to the present embodiment,
Since the turbine plant 10 is gradually heated after being surely warmed up, even if normal cooling steam enters and the normal cooling steam enters, there is no fear that a thermal shock will occur there, and the cooling system is maintained safely. The intended cooling can be performed accurately.

【0028】以上、本発明を図示の実施の形態について
説明したが、本発明はかかる実施の形態に限定されず、
本発明の範囲内でその具体的構造に種々の変更を加えて
もよいことはいうまでもない。
Although the present invention has been described with reference to the illustrated embodiment, the present invention is not limited to such an embodiment.
It goes without saying that various changes may be made to the specific structure within the scope of the present invention.

【0029】[0029]

【発明の効果】以上本発明によれば、ガスタービンプラ
ントと蒸気タービンプラントを組合せるとともに、ガス
タービンの排熱を利用して蒸気タービン駆動用蒸気を発
生させる排熱回収ボイラを備えて構成したコンバインド
サイクル発電プラントにおいて、高圧過熱器から高圧タ
ービンへ過熱蒸気を供給する過熱蒸気供給経路と、高圧
タービン排気を冷却蒸気としてガスタービンの高温冷却
部へ供給する冷却蒸気供給経路との間を連絡した高圧タ
ービンバイパス経路を設け、プラントを立ち上げるに際
し、あらかじめ例えば補助ボイラを利用するかまたは自
身の圧縮空気を利用する等の方法で暖機しておいたガス
タービンの蒸気冷却通路に、自缶から発生初期蒸気を高
圧タービンバイパス経路により供給して前記暖機を補助
促進し、自缶蒸気が安定して発生し始めたら前記高圧タ
ービンバイパス経路を閉じて高圧過熱蒸気を高圧タービ
ンに導入し、その高圧排気を以てガスタービンの冷却を
行うようにして、このガスタービン冷却を熱衝撃等発生
させることなく安定して行わせるようにしたことによ
り、操業の安定性を向上し、信頼性の高いプラントを得
ることが出来たものである。
As described above, according to the present invention, a gas turbine plant and a steam turbine plant are combined, and an exhaust heat recovery boiler for generating steam for driving the steam turbine by using exhaust heat of the gas turbine is provided. In a combined cycle power plant, a connection was made between a superheated steam supply path that supplies superheated steam from the high-pressure superheater to the high-pressure turbine and a cooling steam supply path that supplies high-pressure turbine exhaust as cooling steam to the high-temperature cooling section of the gas turbine. A high-pressure turbine bypass path is provided, and when starting up the plant, the steam canister of the gas turbine, which has been warmed up in advance by using, for example, an auxiliary boiler or using its own compressed air, The generated initial steam is supplied through a high-pressure turbine bypass path to assist the warm-up, When stable generation starts, the high-pressure turbine bypass path is closed, high-pressure superheated steam is introduced into the high-pressure turbine, and the high-pressure exhaust gas is used to cool the gas turbine. As a result, the stability of operation was improved, and a highly reliable plant was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係わるコンバインドサ
イクル発電プラントの要部を模式的に示す説明図。
FIG. 1 is an explanatory view schematically showing a main part of a combined cycle power plant according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 ガスタービンプラント 20 高圧タービン 21 高圧タービンバイパス経路 22 冷却蒸気供給経路 23 回収経路 24 過熱蒸気供給経路 25 復水器 26 温水スプレー 27 中圧タービン 30 排熱回収ボイラ 31a 高圧第1過熱器 31b 高圧第2過熱器 32a 第1再熱器 32b 第2再熱器 33 高圧蒸気経路 34 再熱蒸気経路 35 中圧タービンバイパス経路 10 Gas Turbine Plant 20 High Pressure Turbine 21 High Pressure Turbine Bypass Path 22 Cooling Steam Supply Path 23 Recovery Path 24 Superheated Steam Supply Path 25 Condenser 26 Hot Water Spray 27 Medium Pressure Turbine 30 Waste Heat Recovery Boiler 31a High Pressure First Superheater 31b High Pressure 2 superheater 32a first reheater 32b second reheater 33 high-pressure steam path 34 reheat steam path 35 medium-pressure turbine bypass path

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02C 7/26 F02C 7/26 Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F02C 7/26 F02C 7/26 Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンプラントと蒸気タービンプ
ラントを組合せるとともに、ガスタービンの排熱を利用
して蒸気タービン駆動用蒸気を発生させる排熱回収ボイ
ラを備えて構成したコンバインドサイクル発電プラント
において、高圧過熱器から高圧タービンへ過熱蒸気を供
給する過熱蒸気供給経路と、高圧タービン排気を冷却蒸
気としてガスタービンの高温冷却部へ供給する冷却蒸気
供給経路との間を連絡した高圧タービンバイパス経路を
設けたことを特徴とするコンバインドサイクル発電プラ
ント。
1. A combined cycle power plant comprising a gas turbine plant and a steam turbine plant and comprising a waste heat recovery boiler for generating steam for driving a steam turbine by using waste heat of the gas turbine. A high-pressure turbine bypass path communicating between a superheated steam supply path that supplies superheated steam from the superheater to the high-pressure turbine and a cooling steam supply path that supplies high-pressure turbine exhaust as cooling steam to the high-temperature cooling section of the gas turbine is provided. A combined cycle power plant comprising:
JP10324797A 1997-04-21 1997-04-21 Combined cycle power plant Expired - Fee Related JP3586539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10324797A JP3586539B2 (en) 1997-04-21 1997-04-21 Combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10324797A JP3586539B2 (en) 1997-04-21 1997-04-21 Combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH10299421A true JPH10299421A (en) 1998-11-10
JP3586539B2 JP3586539B2 (en) 2004-11-10

Family

ID=14349122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10324797A Expired - Fee Related JP3586539B2 (en) 1997-04-21 1997-04-21 Combined cycle power plant

Country Status (1)

Country Link
JP (1) JP3586539B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144948A (en) * 2012-01-13 2013-07-25 Mitsubishi Heavy Ind Ltd Combined cycle power generation plant, and control method thereof
CN103527267A (en) * 2013-10-14 2014-01-22 西安热工研究院有限公司 Direct air-cooling unit system with plate-type evaporative condenser unit adopted
WO2014060761A3 (en) * 2012-10-17 2015-06-18 Norgren Limited Vehicle waste heat recovery system
CN109441575A (en) * 2018-09-30 2019-03-08 国网天津市电力公司电力科学研究院 The method of steam combined cycle power generating unit heat supply period heat network system operation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013144948A (en) * 2012-01-13 2013-07-25 Mitsubishi Heavy Ind Ltd Combined cycle power generation plant, and control method thereof
WO2014060761A3 (en) * 2012-10-17 2015-06-18 Norgren Limited Vehicle waste heat recovery system
CN103527267A (en) * 2013-10-14 2014-01-22 西安热工研究院有限公司 Direct air-cooling unit system with plate-type evaporative condenser unit adopted
CN103527267B (en) * 2013-10-14 2015-05-27 西安热工研究院有限公司 Direct air-cooling unit system with plate-type evaporative condenser unit adopted
CN109441575A (en) * 2018-09-30 2019-03-08 国网天津市电力公司电力科学研究院 The method of steam combined cycle power generating unit heat supply period heat network system operation
CN109441575B (en) * 2018-09-30 2022-02-22 国网天津市电力公司电力科学研究院 Method for operating heat supply network system of steam combined cycle generator set in heat supply period

Also Published As

Publication number Publication date
JP3586539B2 (en) 2004-11-10

Similar Documents

Publication Publication Date Title
JP3481983B2 (en) How to start a steam turbine
US6422022B2 (en) Apparatus and methods for supplying auxiliary steam in a combined cycle system
JP5604074B2 (en) Steam temperature control device that uses fuel gas heater drain to reduce feed pump size
JPH09112292A (en) Combined-cycle-system with steam cooling type gas turbine
JP3068925B2 (en) Combined cycle power plant
JP3716188B2 (en) Gas turbine combined plant
US6370880B1 (en) Fuel gas moisturization control system for start-up, high load operation and shutdown
US8327615B2 (en) Combined cycle powered generating plant having reduced start-up time
US20220195896A1 (en) Steam turbine plant and operation method, combined cycle plant and operation method
US20010042369A1 (en) Steam cooled type combined cycle power generation plant and operation method thereof
JPH1122419A (en) Combined cycle power plant
JPH10299421A (en) Combined cycle power generating plant
JP2000248962A (en) Operating method for combined cycle generating plant
JP5734117B2 (en) Combined cycle power plant and operation method thereof
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JP3553314B2 (en) Cooling steam supply method for combined cycle power plant
JP3586537B2 (en) Cooling steam supply method for combined cycle power plant
JP4090584B2 (en) Combined cycle power plant
JP2005344528A (en) Combined cycle power generating plant and method for starting the same
JP2004068652A (en) Combined cycle power generation plant and its starting method
JP4209060B2 (en) Steam cooling rapid start system
JPH1047082A (en) Steam cooling gas turbine
JP4473464B2 (en) Operation method of combined cycle power plant
JP2642954B2 (en) How to start a reheat combined plant
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees