JPH10298772A - Copper-coated carbon powder, its production, and production of conductive member - Google Patents

Copper-coated carbon powder, its production, and production of conductive member

Info

Publication number
JPH10298772A
JPH10298772A JP10331297A JP10331297A JPH10298772A JP H10298772 A JPH10298772 A JP H10298772A JP 10331297 A JP10331297 A JP 10331297A JP 10331297 A JP10331297 A JP 10331297A JP H10298772 A JPH10298772 A JP H10298772A
Authority
JP
Japan
Prior art keywords
copper
carbonaceous powder
plating
metallic copper
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10331297A
Other languages
Japanese (ja)
Other versions
JP2999157B2 (en
Inventor
Koji Kawaguchi
康二 河口
Masami Kojima
正実 小嶌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWAGUCHI SHOTEN KK
M T CHEM KK
Original Assignee
KAWAGUCHI SHOTEN KK
M T CHEM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14350699&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10298772(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KAWAGUCHI SHOTEN KK, M T CHEM KK filed Critical KAWAGUCHI SHOTEN KK
Priority to JP10331297A priority Critical patent/JP2999157B2/en
Publication of JPH10298772A publication Critical patent/JPH10298772A/en
Application granted granted Critical
Publication of JP2999157B2 publication Critical patent/JP2999157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Motor Or Generator Current Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a loss due to non-plating, and to prevent the coarsening of particles by flocculation of the particles. SOLUTION: At the time of producing the copper-coated carbon powder by forming coating layers of metal copper on the surfaces of carbonaceous powder by electroless plating, mechanical motions, such as agitation, vibration and fluidization, are applied to the carbonaceous powder during the progression of a deposition reaction of the metal copper and the carbonaceous powder is previously subjected to a substrate plating treatment by a plating path contg. copper sulfate of the amt. to attain >=0.8 to <3.0% in terms of the metal copper as a copper component and thereafter, the carbonaceous powder is subjected to the plating reaction to deposit the metal copper in correspondence to the amts. of the injection while prescribed chemicals for plating, for example, respective solns. of copper sulfate, caustic soda and formalin, are successively injected to the soln.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属銅の被覆を備
えた炭素質粉末、およびその製造方法の関するものであ
り、さらにその金属銅の被覆を備えた炭素粉末から作ら
れる導電部材の製造方法の関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbonaceous powder provided with a metallic copper coating and a method for producing the same, and further relates to the production of a conductive member made from the carbon powder provided with the metallic copper coating. Regarding the method.

【0002】[0002]

【従来の技術】従来、電動機、整流機、あるいは発電機
の給電、整流、または集電用部品であるブラシの適当な
材料として、黒鉛質または金属黒鉛質が用いられてい
る。天然黒鉛質のブラシは、摩擦抵抗が小さいが軟質で
あるため摩耗し易いという問題があった。また人造黒鉛
のものは、摩擦抵抗が小さく、ある程度の硬度も備えて
いるが電気抵抗率がやや高いうえ、黒鉛原料を1600
℃で焼結したうえ、さらに電流加熱により2000℃以
上の高温度に加熱して黒鉛化するという工数のかかる製
造方法によって製造されるため、極めて高価格であっ
て、コストダウンが困難であるという問題があった。
2. Description of the Related Art Conventionally, graphite or metallic graphite has been used as a suitable material for a brush which is a component for supplying, rectifying, or collecting power to a motor, a rectifier, or a generator. The natural graphite brush has a problem that it has a small frictional resistance but is easily worn due to its softness. Artificial graphite has low frictional resistance and a certain degree of hardness, but has a somewhat high electrical resistivity and 1600 graphite raw material.
It is manufactured at a high temperature of 2000 ° C. or higher by current heating and then graphitized by sintering at a temperature of 2,000 ° C., which is extremely expensive and difficult to reduce cost. There was a problem.

【0003】また、ブラシ用材料に用いられる金属黒鉛
質は、銅粉末と黒鉛を混合して焼結して製作されるもの
であり、その混合比率を変えることによって、電気抵抗
率、摩擦係数などが調節できる利点があるが、銅粉末と
黒鉛は、それぞれが微粉末である場合には、その比重差
が大きいこともあって、均質な混合成形物を得るのが困
難であるという問題があった。
[0003] The metallic graphite used for the brush material is manufactured by mixing copper powder and graphite and sintering them. By changing the mixing ratio, the electrical resistivity, the coefficient of friction, and the like are changed. However, copper powder and graphite have a problem that when they are fine powders, it is difficult to obtain a homogeneous mixed molded product due to a large difference in specific gravity. Was.

【0004】また、炭素質粉末に銅をメッキすることに
より、炭素質粉末と銅粉末とを実質的に均質な混合状態
にすることも可能と考えられる。この炭素質粉末に銅を
電気メッキする方法としては、電気メッキ法と無電解メ
ッキ法が考えられるが、本発明者らは、設備費が比較的
軽易な後者の無電解メッキ法について、鋭意研究を行っ
た。その過程で、次の点が無電解メッキ法における解決
すべき重要な課題であることが分かった。
[0004] It is also considered that by plating copper on the carbonaceous powder, the carbonaceous powder and the copper powder can be mixed substantially homogeneously. As a method of electroplating copper on the carbonaceous powder, an electroplating method and an electroless plating method can be considered, but the present inventors have conducted intensive research on the latter electroless plating method, which has a relatively simple equipment cost. Was done. In the process, the following points were found to be important issues to be solved in the electroless plating method.

【0005】第1に、炭素質粉末に、技術文献等に紹介
されている組成、温度の無電解銅メッキ浴液を反応させ
た場合、金属銅がメッキされる炭素質粉末とメッキされ
ない炭素質粉末とが生じてしまい、一旦そのようになる
と、メッキ時間を相当かけてもメッキされない炭素質粉
末はそのまま変化しないので、最終的にはロスとして排
除しなければならず、銅被覆炭素質粉末の収率が極端に
低下するという問題があった。このロス率は、50%以
上に達する場合があり、無電解メッキ法を実用化の大き
な障害であった。
First, when an electroless copper plating bath having a composition and temperature introduced in technical literature is reacted with carbonaceous powder, carbonaceous powder on which metallic copper is plated and carbonaceous powder on which no copper is plated Once this occurs, the carbonaceous powder that is not plated does not change as it is even after a considerable amount of plating time, so it must ultimately be eliminated as a loss, and the copper-coated carbonaceous powder must be removed. There was a problem that the yield was extremely reduced. This loss rate may reach 50% or more, which has been a major obstacle to commercializing the electroless plating method.

【0006】第2には、炭素質粉末に金属銅が一応メッ
キされる場合でも、析出した金属銅が互いに結合しあう
傾向があるため、一次粒子であった炭素質粉末そのもの
も凝集して、集合した二次粒子である顆粒状態になった
り、ついには大きく固まった団子状態になってしまうと
いう問題があった。このように、一次粒子状態の炭素質
粉末に金属銅を被覆した粉末状態の銅被覆炭素質粉末を
得ること困難であった。また、このような凝集状態の粗
粒または塊状の銅被覆炭素質を粉砕機で粒度を一次粒子
の状態に復帰させることも試みられたが、この場合に
は、強度の低い炭素質部分が破断することになり、被覆
金属銅層が破壊され炭素質が露出した状態となり、結果
不均質なものしか得られなかった。
Second, even when metallic carbon is plated on the carbonaceous powder for a time, the precipitated metallic copper tends to bond with each other. There has been a problem that the secondary particles are aggregated into a granular state, and finally into a large solidified dumpling state. As described above, it has been difficult to obtain a copper-coated carbonaceous powder in a powder state in which carbonaceous powder in a primary particle state is coated with metallic copper. In addition, it has been attempted to return the particle size of the coagulated coarse or lump copper-coated carbonaceous material to the state of primary particles using a pulverizer, but in this case, the carbonaceous part having low strength is broken. As a result, the coated metal copper layer was destroyed and the carbonaceous material was exposed, and as a result, only a heterogeneous material was obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の諸問
題点を解決するためになされたものであり、第1に、銅
金属と炭素質粉末とを実質的に均質に混合することが可
能となる銅被覆炭素質粉末を提供するにあり、第2に
は、炭素質粉末表面に金属銅を析出させて被覆させるに
際して、収率が良好であって、かつ凝集して粒子が粗大
化するのを防止して、当初の1次粒子の状態を維持する
ことができる銅被覆炭素質粉末の製造方法を提供する。
第3には、それら銅被覆炭素質粉末を材料として使用
し、導電性と摺動潤滑性を兼ね備えた導電部材の製造方
法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. First, it is necessary to mix copper metal and carbonaceous powder substantially uniformly. In order to provide a copper-coated carbonaceous powder that can be used, secondly, when depositing and coating metallic copper on the surface of the carbonaceous powder, the yield is good and the particles are agglomerated due to aggregation. And a method for producing a copper-coated carbonaceous powder capable of maintaining the state of the primary particles at the beginning.
Thirdly, the present invention provides a method for producing a conductive member using the copper-coated carbonaceous powder as a material and having both conductivity and sliding lubrication.

【0008】[0008]

【課題を解決するための手段】上記の問題は、内部が一
次粒子の炭素質粉末からなり、その表面に無電解メッキ
により得た金属銅の被覆層を備えたことを特徴とする銅
被覆炭素質粉末により解決することができる。そして、
この銅被覆炭素質粉末の発明は、炭素質粉末に対する金
属銅の被覆量が、25重量%〜40重量%である形態、
または、炭素質粉末に対する金属銅の被覆量が、32重
量%〜38重量%である形態に具体化することができ
る。
SUMMARY OF THE INVENTION The above-mentioned problem is caused by the fact that the inside is made of carbonaceous powder of primary particles, and the surface thereof is provided with a coating layer of metallic copper obtained by electroless plating. This can be solved by using a powdery material. And
In the invention of the copper-coated carbonaceous powder, a form in which the coating amount of metallic copper to the carbonaceous powder is 25% by weight to 40% by weight,
Alternatively, it can be embodied in a form in which the coating amount of metallic copper on the carbonaceous powder is 32% by weight to 38% by weight.

【0009】また、前記第2の問題は、無電解メッキに
より浴液中の炭素質粉末の表面に金属銅の被覆層を析出
させるにあたり、金属銅の析出によって前記炭素質粉末
が凝集しないよう機械的に運動させるとともに、前記炭
素質粉末に対して金属銅換算で0.8%〜3.0%の銅
成分を含む銅塩を配合したメッキ浴によって下地メッキ
処理を予め行うことを特徴とする銅被覆炭素質粉末の製
造方法、によって解決することができる。
The second problem is that, when depositing a coating layer of metallic copper on the surface of the carbonaceous powder in the bath solution by electroless plating, the carbonaceous powder is prevented from aggregating due to the deposition of metallic copper. And a base plating treatment is performed in advance by a plating bath in which a copper salt containing a copper component of 0.8% to 3.0% in terms of metallic copper is mixed with the carbonaceous powder. The problem can be solved by a method for producing a copper-coated carbonaceous powder.

【0010】なお、この銅被覆炭素質粉末の製造方法
は、前記下地メッキ処理を行った後に、所定のメッキ用
薬剤を浴液に逐次注入して、その注入量に対応して金属
銅を析出するメッキ反応を制御するとともに、所定量の
金属銅の被覆層を析出させる形態に好ましく具体化する
ことができる。
In this method of producing a copper-coated carbonaceous powder, a predetermined plating agent is sequentially injected into a bath solution after the base plating treatment is performed, and metallic copper is deposited in accordance with the injection amount. The present invention can be preferably embodied in a form in which a plating reaction to be performed is controlled and a predetermined amount of a metal copper coating layer is deposited.

【0011】また、この銅被覆炭素質粉末の製造方法
は、無電解メッキにより炭素質粉末の表面に金属銅の被
覆層を析出させるにあたり、酒石酸カリソーダ水溶液に
炭素質粉末を混合する第1ステップ、この浴液を攪拌し
ながら、前記炭素質粉末に対して金属銅換算で0.8%
〜3.0%の銅成分を含む硫酸銅、この硫酸銅1グラム
に対して、0.5〜1.2グラムの割合の苛性ソーダ、
および同じく3〜8ccの割合の濃度37%換算のホル
マリンを注入して混合し、前記炭素質粉末が浮遊性から
沈降性に変化するまで金属銅の析出反応を行わせる第2
ステップ、さらに、この浴液を攪拌しながら、前記炭素
質粉末に対して金属銅換算で25%〜40%の銅成分を
含む硫酸銅水溶液、この硫酸銅1グラムに対して、0.
5〜1.2グラムの割合の苛性ソーダを含む水溶液、お
よび同じく0.5〜2.0ccの割合の濃度37%換算
のホルマリンとを定量ポンプにより継続的に送入して、
金属銅の析出反応を完了させる第3ステップを含み、少
なくとも前記第2ステップ、第3ステップを浴温度40
〜60℃の範囲内で行うことを特徴とする形態に具体化
することもできる。
In the method of producing a copper-coated carbonaceous powder, a first step of mixing the carbonaceous powder with an aqueous solution of potassium sodium tartrate for depositing a coating layer of metallic copper on the surface of the carbonaceous powder by electroless plating, While stirring the bath solution, 0.8% in terms of metallic copper was added to the carbonaceous powder.
Copper sulfate containing about 3.0% of a copper component, caustic soda in a ratio of 0.5 to 1.2 grams per gram of the copper sulfate;
Also, formalin in a concentration of 37% in a ratio of 3 to 8 cc is injected and mixed, and a precipitation reaction of metallic copper is performed until the carbonaceous powder changes from floating to sedimentable.
Step, and further, while stirring the bath, an aqueous solution of copper sulfate containing a copper component of 25% to 40% in terms of metallic copper with respect to the carbonaceous powder.
An aqueous solution containing 5 to 1.2 grams of caustic soda and a 37% equivalent of formalin, also at a rate of 0.5 to 2.0 cc, were continuously fed by a metering pump.
A third step of completing the metal copper precipitation reaction, wherein at least the second step and the third step are performed at a bath temperature of 40.
It can also be embodied in a form characterized in that it is performed within the range of -60 ° C.

【0012】さらに、第3の問題は、炭素質粉末の表面
に無電解メッキにより得た、金属銅の被覆層を25重量
%〜40重量%、より好ましくは32重量%〜38重量
%備え、かつその平均粒径が0.2〜5.0μmの範囲
内にある銅被覆炭素質粉末を加圧成形し、焼結すること
を特徴とする導電部材の製造方法、によって解決するこ
とができる。
A third problem is that a coating layer of metallic copper obtained by electroless plating on the surface of carbonaceous powder is provided in an amount of 25 to 40% by weight, more preferably 32 to 38% by weight, In addition, the present invention can solve the above problem by a method for producing a conductive member, which is characterized in that copper-coated carbonaceous powder having an average particle diameter in the range of 0.2 to 5.0 μm is molded by pressure and sintered.

【0013】[0013]

【発明の実施の形態】次に、本発明の実施形態を、先
ず、銅被覆炭素質粉末の製造方法に基づいて説明する。
本発明の銅被覆炭素質粉末の製造方法の特徴は、第1に
無電解メッキにより炭素質粉末の表面に金属銅の被覆層
を形成させるにあたり、金属銅の析出反応の進行中に
は、前記炭素質粉末相互間に析出した金属銅によるブリ
ッジが生じないように、炭素質粉末を含む浴液を充分に
攪拌、振動、流動などの機械的運動を与えて、前記炭素
質粉末が凝集による粗粒化を防止するところにある。
Next, an embodiment of the present invention will be described based on a method for producing a copper-coated carbonaceous powder.
The feature of the method for producing a copper-coated carbonaceous powder of the present invention is that, first, in forming a metal copper coating layer on the surface of the carbonaceous powder by electroless plating, during the progress of the metal copper precipitation reaction, The bath liquid containing the carbonaceous powder is sufficiently agitated, vibrated, and subjected to mechanical movement such as flow so as to prevent the formation of bridges due to metallic copper precipitated between the carbonaceous powders. It is to prevent granulation.

【0014】また、第2には、所定量のメッキを行う前
段階として、あらかじめ、前記炭素質粉末に対して銅成
分として金属銅換算で0.8%〜3.0%含む銅塩、例
えば硫酸銅を含むメッキ浴によって下地メッキ処理を行
うこと点に特徴がある。この下地メッキ処理を行うこと
により、前述したような、メッキ処理されるべき炭素質
粉末のうち、かなりの割合でメッキが付着しない炭素質
粉末が生じるというロスを効果的に防止することができ
るのである。その理由は詳らかではないが、前記所定量
の銅塩を用いたときには、金属銅の被覆層の成長が急激
に助長されるだけの濃度にならないためと思われる。
[0014] Secondly, as a step prior to plating a predetermined amount, a copper salt containing 0.8% to 3.0% in terms of metallic copper as a copper component with respect to the carbonaceous powder in advance, for example, It is characterized in that the base plating treatment is performed by a plating bath containing copper sulfate. By performing the base plating process, it is possible to effectively prevent a loss that a carbonaceous powder to which plating does not adhere is generated in a considerable proportion of the carbonaceous powder to be plated, as described above. is there. The reason for this is not clear, but it is considered that when the above-mentioned predetermined amount of copper salt is used, the concentration does not become such that the growth of the metallic copper coating layer is rapidly promoted.

【0015】なお、この目的に適する銅塩の所定量は、
炭素質粉末に対して銅成分として金属銅換算で3.0%
以下であるが、これをさらに2.0%以下とするのがロ
ス防止上特に好ましいが、この段階で少なくとも下地メ
ッキとしての効果を発現させるためには、0.8%以上
とする必要がある。
The predetermined amount of the copper salt suitable for this purpose is as follows:
3.0% in terms of metallic copper as a copper component with respect to the carbonaceous powder
Although it is below, it is particularly preferable to further reduce this to 2.0% or less from the viewpoint of preventing loss, but at this stage, it is necessary to set it to 0.8% or more in order to exert at least the effect as a base plating. .

【0016】さらには、前記の下地メッキ処理を行った
後で、無電解銅メッキ用薬剤、例えば、硫酸銅、苛性ソ
ーダおよびホルマリンの各溶液を、前記浴液に逐次継続
的に注入しつつ、金属銅の析出するメッキ反応をその注
入量に対応して逐次継続的に行わせるのが好ましい形態
である。このようにすることにより、適度な速度でメッ
キ反応を行わせながら、析出銅がブリッジを生じること
のないように、急激な反応を抑止して粗粒化を防止する
利点が得られるのである。
Further, after performing the above-described underplating treatment, while continuously injecting each of the electroless copper plating agents such as copper sulfate, caustic soda and formalin solutions into the bath solution, In a preferred embodiment, the plating reaction for depositing copper is performed continuously and continuously in accordance with the amount of the injected copper. By doing so, it is possible to obtain the advantage of suppressing abrupt reaction and preventing coarsening so that the deposited copper does not form a bridge while performing a plating reaction at an appropriate speed.

【0017】さらにこのような銅被覆炭素質粉末の製造
方法をより具体的に説明する。先ず、第1ステップの操
作は、無電解メッキを行う前処理段階として、酒石酸カ
リソーダ水溶液に原料の炭素質粉末を混合する。この操
作の目的は、次の第2ステップ以降において炭素質粉末
に集中的にメッキ処理が行われるようにするためのもの
であり、炭素質粉末1kg当たり、酒石酸カリソーダ濃
度約20%水溶液を4リットルを準備すればよく、また
浴の適温は40℃〜50℃である。
Further, a method for producing such a copper-coated carbonaceous powder will be described more specifically. First, the operation of the first step is to mix a raw material carbonaceous powder with an aqueous solution of potassium sodium tartrate as a pretreatment step for performing electroless plating. The purpose of this operation is to carry out the plating treatment intensively on the carbonaceous powder in the second and subsequent steps. For 1 kg of the carbonaceous powder, 4 liters of an aqueous solution of about 20% by weight of caustic tartrate is used. And the optimum temperature of the bath is 40 ° C to 50 ° C.

【0018】次に第2ステップとして、下地メッキ処理
を行う。この場合、前記炭素質粉末に対して金属銅換算
で0.8%〜3.0%の銅成分を含む硫酸銅を添加する
が、同時に、さらにこの硫酸銅1グラムに対して、0.
5〜1.2グラムの苛性ソーダ、および濃度37%換算
のホルマリン3〜8ccを第1ステップで準備した浴液
に投入して混合し、ごく微量の金属銅の析出反応を行わ
せるようにするのである。なお、この場合の硫酸銅の添
加量は、金属銅換算で0.8%〜3.0%が好ましい
が、前述のようにメッキ不良をより確実に減少させるに
はさらに2.0%以下とするのがよい。
Next, as a second step, a base plating process is performed. In this case, copper sulfate containing a copper component of 0.8% to 3.0% in terms of metal copper is added to the carbonaceous powder, and at the same time, 0.1 g of copper sulfate is added to 1 gram of the copper sulfate.
5 to 1.2 grams of caustic soda and 3 to 8 cc of formalin in a concentration of 37% are put into the bath solution prepared in the first step and mixed to cause a precipitation reaction of a very small amount of metallic copper. is there. In this case, the addition amount of copper sulfate is preferably 0.8% to 3.0% in terms of metallic copper, but as described above, it is further 2.0% or less in order to more reliably reduce poor plating. Good to do.

【0019】そして、この第2ステップの下地メッキ処
理では、浴温度40〜50℃、好ましくは45から50
℃の範囲内に維持しながら、充分に攪拌して、炭素質粉
末を動きの少ない浮遊状態にすることなく、常時内方に
巻き込むような流動状態に維持する。この操作では、前
記炭素質粉末が浮遊性から沈降性に変化するまで行う
が、その場合、当初のpHは8〜8.5であったものが
メッキ反応が進むに従い、徐々に上昇して10を超える
ようになる。この間の反応所要時間は、ほぼ10分から
15分で充分である。
In the second step, the bath temperature is 40 to 50 ° C., preferably 45 to 50 ° C.
While maintaining the temperature within the range of ° C., the carbonaceous powder is sufficiently stirred to maintain a fluid state in which the carbonaceous powder is always inwardly rolled in without a floating state with little movement. This operation is performed until the carbonaceous powder changes from floating to sedimentable. In this case, the initial pH was 8 to 8.5, but gradually increased to 10 as the plating reaction progressed. Will be exceeded. The time required for the reaction during this period is approximately 10 to 15 minutes.

【0020】第3ステップとして、仕上げメッキ処理を
行う。ここでは、先ず、硫酸銅、苛性ソーダおよびホル
マリンの各溶液をあらかじめ準備しておく。ここで硫酸
銅の分量は、炭素質粉末にメッキすべき金属銅の目標値
を基準にするのであるが、50%を超える値に設定する
のは好ましくない。また、同時に併用される苛性ソーダ
およびホルマリンの分量は、この硫酸銅1グラムに対し
て、0.5〜1.2グラムの苛性ソーダを含む水溶液、
および濃度37%換算のホルマリン0.5〜2.0cc
であり、このような比率で準備した硫酸銅、苛性ソーダ
およびホルマリンを、先の第2のステップを終了した浴
液に、その比率を維持しながら定量ポンプで継続的に3
0分〜60分かけて送入して、金属銅の析出反応を徐々
に進行させるのである。この場合、硫酸銅、苛性ソー
ダ、ホルマリンのうち、ホルマリンだけは最初に全量を
一時に添加してもメッキ処理は可能であるが、硫酸銅と
苛性ソーダは、このように徐々に送入する必要がある。
As a third step, a finish plating process is performed. Here, first, each solution of copper sulfate, caustic soda and formalin is prepared in advance. Here, the amount of copper sulfate is based on the target value of metallic copper to be plated on the carbonaceous powder, but it is not preferable to set the amount to more than 50%. The amount of caustic soda and formalin used simultaneously is 0.5 g to 1.2 g of an aqueous solution containing caustic soda per 1 g of the copper sulfate.
0.5% to 2.0cc formalin and 37% concentration
Copper sulphate, caustic soda and formalin prepared in such a ratio were continuously added to the bath solution after the completion of the second step by a metering pump while maintaining the ratio.
It is fed over 0 to 60 minutes to gradually advance the precipitation reaction of metallic copper. In this case, of the copper sulfate, caustic soda, and formalin, plating treatment is possible even if only the formalin is initially added in its entirety at once, but copper sulfate and caustic soda need to be gradually fed in this way. .

【0021】この場合、前記薬剤の送入速度は、金属銅
の析出状態に応じて調節して、炭素質粉末相互間に金属
銅のブリッジが生じない速度をあらかじめ定めておいて
もよい。また、合計送入量は、金属銅のメッキ目標値に
応じて定められるが、硫酸銅の送入量として、炭素質粉
末に対する金属銅換算50重量%以下とするのが、メッ
キ処理中の炭素質粉末粒子の凝集、粗大化を抑制する点
から好ましい。また、後記のように給電部材用原料の用
途には、25〜40重量%が適当であり、さらには32
〜38重量%に相当する分量が好ましい
In this case, the feeding speed of the chemical may be adjusted in accordance with the state of deposition of metallic copper, and the speed at which metallic copper does not bridge between carbonaceous powders may be determined in advance. The total feed amount is determined in accordance with the target value of copper metal plating. However, the amount of copper sulfate to be fed should be 50% by weight or less in terms of metal copper based on carbonaceous powder. From the viewpoint of suppressing aggregation and coarsening of porous powder particles. Further, as described later, 25 to 40% by weight is appropriate for the use of the raw material for the power supply member.
A quantity corresponding to ~ 38% by weight is preferred

【0022】この第3のステップにおいては、このよう
に所定量のメッキ反応薬剤の全量を同時に反応に供する
のではなく、反応浴液に所定の時間をかけて逐次送入し
ながらメッキ反応を行わせるところに本発明の重要な特
徴が存在するのである。また、このステップにおいて
も、浴温度40〜60℃、好ましくは45から55℃の
範囲内に冷却手段により維持しながら、炭素質粉末を静
止状態にすることなく、常時流動状態に維持することが
必要である。
In the third step, the plating reaction is carried out by sequentially feeding the reaction solution into the reaction bath solution for a predetermined time, instead of simultaneously supplying a predetermined amount of the plating reaction agent to the reaction solution. This is where the important features of the present invention reside. Also in this step, it is possible to keep the carbonaceous powder in a constantly flowing state without keeping the bath temperature in the range of 40 to 60 ° C., preferably 45 to 55 ° C. by the cooling means. is necessary.

【0023】以上のメッキ操作が終了した後、脱液処理
を行う。ここでは、メッキ反応が終了した銅被覆炭素質
粉末を沈降させ、上澄み液を除去してから2、3回水洗
と脱水を繰り返して、メッキ用薬剤を除去する。次い
で、変色防止剤,例えば,リン酸ソーダ水溶液に浸漬混
合してから,前記と同様に脱液、水洗、脱水を行う。最
後にアセトンで湿らせた後、脱水機で充分に水分を取
り、弱温風の乾燥機で充分に乾燥すれば、銅金属色の銅
被覆炭素質粉末を得ることができる。
After the above plating operation is completed, a dewatering process is performed. Here, the copper-coated carbonaceous powder on which the plating reaction has been completed is settled, the supernatant is removed, and then washing and dehydration are repeated a few times to remove the plating agent. Next, after immersion and mixing in a discoloration inhibitor, for example, an aqueous sodium phosphate solution, dewatering, washing and dehydration are performed in the same manner as described above. Finally, after moistening with acetone, if a sufficient amount of water is removed by a dehydrator and sufficiently dried by a dryer with weak warm air, a copper-coated carbonaceous powder of a copper metal color can be obtained.

【0024】以上説明した本発明の実施形態によれば、
無電解メッキにより浴液中の炭素質粉末の表面に金属銅
の被覆層を形成させるにあたり、第2ステップである下
地メッキ処理によって、先ず原料の炭素質粉末に微弱な
メッキ処理を行い、その後の仕上げメッキ処理において
金属銅が付着しないというロスが防止できる。
According to the embodiment of the present invention described above,
In forming a coating layer of metallic copper on the surface of the carbonaceous powder in the bath solution by electroless plating, a weak plating process is first performed on the raw carbonaceous powder by a base plating process, which is the second step, and thereafter, The loss that metal copper does not adhere in the finish plating process can be prevented.

【0025】その後第3ステップとして、メッキ用薬剤
の注入量に応じて、メッキ反応が緩やかに継続的に行わ
れるから、金属銅が急激に析出するような激しい反応が
起きない。さらに、このメッキ操作中は、浴液を充分に
攪拌して、炭素質粉末を沈降状態にすることなく、常時
流動状態に維持するから、析出した金属銅が炭素質粉末
相互を結び付けるような余裕がないので、炭素質粉末が
凝集して一次粒子が集合して顆粒状態になることがな
い。従って、一次粒子状態の個々の炭素質粉末粒子に金
属銅が被覆した銅被覆炭素質粉末を得ることができるの
である。
Then, as a third step, the plating reaction is carried out slowly and continuously in accordance with the injection amount of the plating agent, so that a violent reaction such as rapid precipitation of metallic copper does not occur. Further, during the plating operation, the bath liquid is sufficiently stirred to keep the carbonaceous powder in a fluidized state at all times without causing the carbonaceous powder to settle, so that there is enough room for the precipitated metallic copper to bind the carbonaceous powder to each other. Therefore, the carbonaceous powder does not agglomerate and the primary particles are not aggregated into a granular state. Therefore, it is possible to obtain a copper-coated carbonaceous powder in which individual carbonaceous powder particles in a primary particle state are coated with metallic copper.

【0026】かくして得られる銅被覆炭素質粉末の金属
銅の被覆量については、例えば、反応に供する銅塩の重
量をなどを調節することにより、適宜に増減させること
が可能であるが、メッキ時の粒子の粗大化を抑制するに
は、50重量%以下とするのが適当であり、また、電動
機の給電用の導電部材を焼結法により製作するための粉
末としては、焼結体の電気伝導性、潤滑性をバランスさ
せる観点からは、重量比で25〜40重量%が好ましい
範囲であり、さらには重量比で32〜38重量%が特に
好適な被覆量である。
The amount of metallic copper coated on the copper-coated carbonaceous powder thus obtained can be appropriately increased or decreased by, for example, adjusting the weight of the copper salt to be subjected to the reaction. In order to suppress the coarsening of the particles, it is appropriate that the content is not more than 50% by weight, and the powder for producing the conductive member for supplying electric power of the electric motor by the sintering method is an electric power of a sintered body. From the viewpoint of balancing conductivity and lubricity, a preferable range is 25 to 40% by weight in weight ratio, and a particularly preferable coating amount is 32 to 38% by weight in weight ratio.

【0027】また、このような金属銅の被覆層を備え、
かつその平均粒径が0.2〜5.0μmの範囲内にある
銅被覆炭素質粉末に適宜な結合材を添加し、これを所定
形状の金型に充填して、加圧成形し、これを還元雰囲気
炉中で、最高温度750℃〜850℃で加熱することに
より焼結すれば、十分な強度を持つ導電部材を得ること
ができる。なお、必要に応じて、さらに切削加工などを
施し、所望の形状に加工することもできる。なお、本発
明のおいて炭素質粉末として適用される炭素質材料に
は、コークスのような無定形炭素、および黒鉛のような
天然黒鉛、人造黒鉛などの結晶質炭素のいずれでも適用
できるものである。
[0027] Further, such a metal copper coating layer is provided,
An appropriate binder is added to the copper-coated carbonaceous powder having an average particle size in the range of 0.2 to 5.0 μm, and the resultant is filled in a mold having a predetermined shape, and is subjected to pressure molding. Is heated in a reducing atmosphere furnace at a maximum temperature of 750 ° C. to 850 ° C. to obtain a conductive member having sufficient strength. In addition, if necessary, a cutting process or the like may be further performed so that a desired shape can be formed. The carbonaceous material used as the carbonaceous powder in the present invention may be any of amorphous carbon such as coke, natural graphite such as graphite, and crystalline carbon such as artificial graphite. is there.

【0028】[0028]

【実施例】次に、本発明の実施例を本発明の範囲外の比
較例を参照しながら説明する。この実施例におけるメッ
キ条件を、表1に整理して示す。ここに示す以外の条件
については、先に説明した実施形態の内容に準じて行っ
た。また、この実施例と比較例の条件の異なる点を表2
にまとめて示す。比較例1、2は、いずれも本発明の下
地メッキ処理を欠く方法であり、特に比較例2は、実施
例のメッキ用薬剤を所定時間かけて継続的に浴液に注入
するのに対して、同量のメッキ用薬剤を一時に浴液に注
入してメッキを行わせるものである。
Next, examples of the present invention will be described with reference to comparative examples outside the scope of the present invention. Table 1 summarizes the plating conditions in this example. Conditions other than those shown here were performed according to the contents of the embodiment described above. Table 2 shows the difference between the conditions of this example and the comparative example.
Are shown together. Comparative Examples 1 and 2 are methods each of which lacks the base plating treatment of the present invention. Particularly, Comparative Example 2 is a method in which the plating agent of Example is continuously injected into the bath solution for a predetermined time. That is, the same amount of plating agent is injected into the bath solution at a time to perform plating.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】この実施例によれば、仕上げメッキ処理に
おいてメッキが付着しないで浴液に浮遊するような炭素
質粉末のロスは殆ど認められなかったのに対して、比較
例1の場合にロス率は約35%に、また比較例2の場合
には約55%のも達するという顕著な相違が見られた。
According to this example, almost no loss of the carbonaceous powder floating in the bath solution without plating was observed in the finish plating process, whereas the loss rate in the comparative example 1 was small. Remarkably reached about 35%, and about 55% in Comparative Example 2.

【0032】また、仕上げメッキ処理後の銅被覆炭素粉
末の状態を比較すると、顕微鏡観察の結果、実施例の場
合は、顆粒状の二次粒子に凝集した部分が観察されない
とともに、粒表面に炭素分が露出しているような不完全
な被覆層も観察されなかった。一方、比較例1の場合
は、約80%以上の粒子が顆粒状の二次粒子に凝集した
形態を呈していた。比較例3の場合は、メッキ処理の途
中から、炭素粉末が塊状に固まる状況が肉眼で観察さ
れ、その終期には全体が一つの団子状態の固まりとな
り、個々の粒子に分離することが不可能であった。
When the state of the copper-coated carbon powder after the finish plating treatment is compared, microscopic observation shows that, in the case of the embodiment, no agglomerated portion was observed in the granular secondary particles, and the carbon surface No imperfect coating layer, such as exposed parts, was observed. On the other hand, in the case of Comparative Example 1, about 80% or more of the particles were in a form of agglomerated into granular secondary particles. In the case of Comparative Example 3, a situation in which the carbon powder solidified in a lump was observed with the naked eye during the plating process. At the end of the plating process, the whole became a single lump-like mass, and it was impossible to separate the individual particles. Met.

【0033】また、上記の実施例において、仕上げメッ
キ処理に使用する硫酸銅の重量を調節することにより、
炭素質粉末原料に対する金属銅の被覆量、すなわち金属
化率を±2重量%以内の精度で制御することができた。
そして、金属化率が35±2重量%の被覆層を備え、か
つその平均粒径が0.5、1.5、および3.5μmの
3種類の銅被覆炭素質粉末をこの実施例に準じて製作
し、これを所定形状に加圧成形し、還元雰囲下、最高温
度800℃で焼結して、電動機の給電ブラシを製作し
た。これらはいずれも、人造黒鉛のように製造コストが
高いということがなく、充分な摩耗強度を備え、電気抵
抗率が低く、かつ摩擦抵抗も充分に低いので、給電ブラ
シのような導電部材として、黒鉛材料の欠点を補う好ま
しい物性を備えていることが分かった。
In the above embodiment, by adjusting the weight of copper sulfate used for the finish plating,
The coating amount of the metallic copper on the carbonaceous powder raw material, that is, the metallization ratio could be controlled with an accuracy within ± 2% by weight.
Then, three types of copper-coated carbonaceous powders having a coating layer having a metallization ratio of 35 ± 2% by weight and having an average particle size of 0.5, 1.5, and 3.5 μm were prepared according to this example. This was press-formed into a predetermined shape, and sintered at a maximum temperature of 800 ° C. in a reducing atmosphere to produce a power supply brush of an electric motor. All of these do not have the high manufacturing costs of artificial graphite, have sufficient wear strength, have low electrical resistivity, and have sufficiently low frictional resistance, so as conductive members such as power supply brushes, It has been found that the graphite material has favorable physical properties to compensate for the disadvantages.

【0034】[0034]

【発明の効果】本発明の銅被覆炭素粉末、その製造方
法、および導電部材の製造方法は、以上に説明したよう
に構成されているので、第1に、銅金属と炭素質粉末と
を実質的に均質状態に混合することが可能となる銅被覆
炭素質粉末が提供でき、また第2に炭素質粉末表面に金
属銅を析出させて被覆させるに際して、メッキ不良のロ
スを極力少なくし、さらに粒子が凝集して粒子が粗大化
するのを防止して、当初の1次粒子の状態を維持するこ
とができる銅被覆炭素質粉末の製造方法を提供する。さ
らに、第3に、導電性と摺動潤滑性を兼ね備えた導電部
材の製造方法を提供することが可能となる。よって本発
明は従来の問題点を解消した新規は発明として、その工
業的価値は極めて大なるものがある。
The copper-coated carbon powder, the method for producing the same, and the method for producing a conductive member according to the present invention are constructed as described above. Secondly, it is possible to provide a copper-coated carbonaceous powder capable of being mixed in a homogeneous state, and secondly, when depositing and coating metallic copper on the surface of the carbonaceous powder to minimize the loss of plating failure, Provided is a method for producing a copper-coated carbonaceous powder capable of preventing the particles from agglomerating and coarsening, thereby maintaining the initial state of the primary particles. Third, it is possible to provide a method for manufacturing a conductive member having both conductivity and sliding lubrication. Therefore, the present invention is a novel invention which has solved the conventional problems, and has a very large industrial value.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 内部が一次粒子の炭素質粉末からなり、
その表面に無電解メッキにより得た金属銅の被覆層を備
えたことを特徴とする銅被覆炭素質粉末。
Claims (1) The inside is made of carbonaceous powder of primary particles,
A copper-coated carbonaceous powder comprising a metal copper coating layer obtained by electroless plating on its surface.
【請求項2】 炭素質粉末に対する金属銅の被覆量が、
25重量%〜40重量%である請求項1に記載の銅被覆
炭素質粉末。
2. The coating amount of metallic copper on carbonaceous powder is as follows:
The copper-coated carbonaceous powder according to claim 1, wherein the amount is 25% by weight to 40% by weight.
【請求項3】 炭素質粉末に対する金属銅の被覆量が、
32重量%〜38重量%重量比である請求項1に記載の
銅被覆炭素質粉末。
3. The coating amount of metallic copper on carbonaceous powder is as follows:
The copper-coated carbonaceous powder according to claim 1, wherein the weight ratio is 32% by weight to 38% by weight.
【請求項4】 無電解メッキにより浴液中の炭素質粉末
の表面に金属銅の被覆層を析出させるにあたり、金属銅
の析出によって前記炭素質粉末が凝集しないよう機械的
に運動させるとともに、前記炭素質粉末に対して金属銅
換算で0.8%〜3.0%の銅成分を含む銅塩を配合し
たメッキ浴によって下地メッキ処理を予め行うことを特
徴とする銅被覆炭素質粉末の製造方法。
4. When depositing a coating layer of metallic copper on the surface of the carbonaceous powder in the bath solution by electroless plating, the carbonaceous powder is mechanically moved so as not to aggregate due to the deposition of metallic copper, Producing a copper-coated carbonaceous powder, wherein a base plating treatment is performed in advance by a plating bath in which a copper salt containing a copper component of 0.8% to 3.0% in terms of metallic copper is added to the carbonaceous powder. Method.
【請求項5】前記下地メッキ処理を行った後に、所定の
メッキ用薬剤を浴液に逐次注入して、その注入量に対応
して金属銅を析出するメッキ反応を制御するとともに、
所定量の金属銅の被覆層を析出させる請求項4に記載の
銅被覆炭素質粉末の製造方法。
5. After performing the base plating treatment, a predetermined plating agent is sequentially injected into the bath solution, and a plating reaction for depositing metallic copper is controlled in accordance with the injection amount, and
The method for producing a copper-coated carbonaceous powder according to claim 4, wherein a predetermined amount of a metallic copper coating layer is deposited.
【請求項6】 無電解メッキにより炭素質粉末の表面に
金属銅の被覆層を析出させるにあたり、酒石酸カリソー
ダ水溶液に炭素質粉末を混合する第1ステップ、この浴
液を攪拌しながら、前記炭素質粉末に対して金属銅換算
で0.8%〜3.0%の銅成分を含む硫酸銅、この硫酸
銅1グラムに対して、0.5〜1.2グラムの割合の苛
性ソーダ、および同じく3〜8ccの割合の濃度37%
換算のホルマリンを注入して混合し、前記炭素質粉末が
浮遊性から沈降性に変化するまで金属銅の析出反応を行
わせる第2ステップ、さらに、この浴液を攪拌しなが
ら、前記炭素質粉末に対して金属銅換算で25%〜40
%の銅成分を含む硫酸銅水溶液、この硫酸銅1グラムに
対して、0.5〜1.2グラムの割合の苛性ソーダを含
む水溶液、および同じく0.5〜2.0ccの割合の濃
度37%換算のホルマリンとを定量ポンプにより継続的
に送入して、金属銅の析出反応を完了させる第3ステッ
プを含み、少なくとも前記第2ステップ、第3ステップ
を浴温度40〜60℃の範囲内で行うことを特徴とする
銅被覆炭素質粉末の製造方法。
6. A first step of mixing a carbonaceous powder with an aqueous solution of potassium sodium tartrate to deposit a metallic copper coating layer on the surface of the carbonaceous powder by electroless plating. Copper sulfate containing a copper component of 0.8% to 3.0% in terms of metallic copper with respect to powder, 0.5 to 1.2 grams of caustic soda per 1 gram of copper sulfate, and 3 37% concentration of ~ 8cc
A second step of injecting and mixing the converted formalin and performing a precipitation reaction of metallic copper until the carbonaceous powder changes from floating to sedimentable, and further, while stirring the bath solution, 25% to 40 in metal copper equivalent
% Aqueous copper sulfate solution containing 0.5% to 1.2 grams of caustic soda per gram of copper sulfate, and 37% concentration of 0.5% to 2.0 cc. The method further includes a third step of continuously feeding the converted formalin with a constant-rate pump to complete the precipitation reaction of metallic copper, wherein at least the second step and the third step are performed at a bath temperature of 40 to 60 ° C. Producing a copper-coated carbonaceous powder.
【請求項7】 炭素質粉末の表面に無電解メッキにより
析出した金属銅の被覆層を25重量%〜40重量%備
え、かつその平均粒径が0.2〜5.0μmの範囲内に
ある銅被覆炭素質粉末を加圧成形し、焼結することを特
徴とする導電部材の製造方法。
7. A coating layer of metallic copper deposited by electroless plating on the surface of a carbonaceous powder in an amount of 25% by weight to 40% by weight, and has an average particle diameter in a range of 0.2 to 5.0 μm. A method for producing a conductive member, comprising press-forming and sintering copper-coated carbonaceous powder.
JP10331297A 1997-04-21 1997-04-21 Copper coated carbon powder Expired - Fee Related JP2999157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10331297A JP2999157B2 (en) 1997-04-21 1997-04-21 Copper coated carbon powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10331297A JP2999157B2 (en) 1997-04-21 1997-04-21 Copper coated carbon powder

Publications (2)

Publication Number Publication Date
JPH10298772A true JPH10298772A (en) 1998-11-10
JP2999157B2 JP2999157B2 (en) 2000-01-17

Family

ID=14350699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10331297A Expired - Fee Related JP2999157B2 (en) 1997-04-21 1997-04-21 Copper coated carbon powder

Country Status (1)

Country Link
JP (1) JP2999157B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851055B2 (en) 2005-03-29 2010-12-14 Hitachi Metals, Ltd. High-thermal-conductivity graphite-particles-dispersed-composite and its production method
CN106809922A (en) * 2017-01-23 2017-06-09 五邑大学 A kind of preparation method of multi-element metal micro-electrolysis stuffing
WO2021060725A1 (en) * 2019-09-27 2021-04-01 (주)제이비에이치 Heat dissipation particles and preparation method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851055B2 (en) 2005-03-29 2010-12-14 Hitachi Metals, Ltd. High-thermal-conductivity graphite-particles-dispersed-composite and its production method
CN106809922A (en) * 2017-01-23 2017-06-09 五邑大学 A kind of preparation method of multi-element metal micro-electrolysis stuffing
CN106809922B (en) * 2017-01-23 2019-04-19 五邑大学 A kind of preparation method of multi-element metal micro-electrolysis stuffing
WO2021060725A1 (en) * 2019-09-27 2021-04-01 (주)제이비에이치 Heat dissipation particles and preparation method therefor

Also Published As

Publication number Publication date
JP2999157B2 (en) 2000-01-17

Similar Documents

Publication Publication Date Title
CN109183102B (en) Dispersion pulse electroplating method for heavy powder
Pai et al. Copper coating on graphite particles
US10472709B2 (en) High strength, high conductivity electroformed copper alloys and methods of making
JP2508847B2 (en) Method for producing silver-coated glass flakes with SiO2 coating
JP4095629B2 (en) Method for producing amorphous metal powder coated with metal (Methodfor Manufacturing Metal-Coated Amorphous Metal Powder)
JP2999157B2 (en) Copper coated carbon powder
CN101288905B (en) Preparation method of copper cladding tungsten composite powder
CN1025056C (en) Cobalt-nickel-phosphorus non-crystalline alloy plating solution and coat
Zuo et al. Effect of activators on the properties of nickel coated diamond composite powders
JP4331538B2 (en) Copper-coated graphite powder and method for producing the same
JPH1167200A (en) Manufacture of high-density nickel hydroxide active material
KR101697941B1 (en) Manufacturing method of grid for lead-acid battery
CN114293232A (en) Method for preparing tungsten dispersion strengthened copper composite material by electroforming
CN110184631B (en) Cyanide-free gold plating electroplating solution and preparation method and electroplating process thereof
JPH0249390B2 (en)
JP3689861B2 (en) Electroless copper plating method and plating powder
JPH08232073A (en) Electroless composite plating film and its production
CN101429653A (en) Production method for forming function gradient composite coating and its plating liquid
CN101348907A (en) Preparation of functionally graded composite coating and plating solution therefor
JP3967192B2 (en) Copper copper SiC composite powder and method for producing the same, and metal copper SiC composite powder sintered body and method for producing the same
JPH01149902A (en) Fine granular complex powder
CN106087010A (en) A kind of scaffold composite plating solution of coating flat smooth
JP2012092376A (en) Method of manufacturing tin plated copper powder
CN100455704C (en) Thermal growing Cr2O3 film type Cu-Ni-Cr nano composite coating and preparation and use
JP3663791B2 (en) Alkali metal-containing plate-shaped molybdenum oxide and process for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991022

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees