JP3689861B2 - Electroless copper plating method and plating powder - Google Patents

Electroless copper plating method and plating powder Download PDF

Info

Publication number
JP3689861B2
JP3689861B2 JP2000288663A JP2000288663A JP3689861B2 JP 3689861 B2 JP3689861 B2 JP 3689861B2 JP 2000288663 A JP2000288663 A JP 2000288663A JP 2000288663 A JP2000288663 A JP 2000288663A JP 3689861 B2 JP3689861 B2 JP 3689861B2
Authority
JP
Japan
Prior art keywords
powder
copper
plating
metal
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000288663A
Other languages
Japanese (ja)
Other versions
JP2002097578A (en
Inventor
英晃 栗原
彰 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP2000288663A priority Critical patent/JP3689861B2/en
Publication of JP2002097578A publication Critical patent/JP2002097578A/en
Application granted granted Critical
Publication of JP3689861B2 publication Critical patent/JP3689861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、含油軸受、カーボンブラシ、摺動材、摩擦材料、耐磨耗材、溶射材料などの原料として広く用いられるメッキ粉末と、該メッキ粉末を得るための無電解メッキ方法に関するもので、金属被覆粉末製造技術及びそれら材料を使用する技術分野に属するものである。
【0002】
【従来の技術】
無機質粉末、例えば、黒鉛粉末、金属窒化物粉末、金属炭化物粉末、金属硫化物粉末、金属酸化物粉末又は金属硼化物粉末に金属被膜を施したものは、金属粉末と混合された後、焼結を行うことにより、前記した含油軸受、カーボンブラシ、摺動材、摩擦材料、耐磨耗材、溶射材料などで広く用いられている。
【0003】
しかし、これらの粉末単体では、金属粉末と混合しても見掛け密度や表面状態の差異などにより、均一な混合粉末を得ることが困難であるとともに、粉末が黒鉛粉末などの場合は、焼結中や溶射中に消耗するという問題があり、金属窒化物粉末などの硬い粉末の場合は、成形金型の寿命を低下させるという解決すべき多くの課題を有している。
【0004】
これらの問題を解決する手段として、従来、粉末表面を銅、ニッケルなどの金属で被覆する種々の方法が提案され、それらにより得られる金属被覆粉末には、被膜が均一で、混合又は溶射時に、金属の被膜が剥離しないという優れた被膜密着性を有するものがある。
【0005】
それらの方法は、例えば、無機質粉末の表面を、亜鉛、錫、鉛などの熔融物を用い、それらの被覆を施した(熔融被覆)後に、無電解メッキ(化学メッキ)により、銅、ニッケル又はコバルトなどの金属の被覆を施す方法(特開平2−138402号公報、特開平3−146602号公報)、あるいは酒石酸カリソーダ水溶液に粉末を混合する工程、粉末が浮遊性から沈降性に変化するまで金属を析出させる工程及び金属塩水溶液を継続的に挿入して金属の析出反応(無電解メッキ)を完了させる工程からなる方法(特許第2999157号公報)などのように複雑な工程を必要とするものである。
【0006】
【発明が解決しようとする課題】
本発明者等は、先の熔融被覆と無電解メッキを併用した金属被覆粉末の製造方法について、その工程の合理化を検討し、熔融被覆を行わなくても、無電解メッキの際に、熔融被覆に用いられた金属を並存させることにより、熔融被覆工程を経ることなく、被膜が均一で、混合又は溶射時に、の被膜が剥離しないという優れた被膜密着性を有する被覆粉末が得られることを見出してこの発明を完成したのである。
【0007】
すなわち、この発明は、無機質粉末の表面に被膜を、より簡便な方法で施す方法を提供せんとするもので、当然のことであるが、得られる被膜は密着性の良い均一な被膜を与える方法で、それらの方法で得られる優れた特性の被膜を有するメッキ粉末を提供せんとするものである。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、無機質粉末に無電解メッキを施す際に、無電解メッキ用還元剤としての化合物よりイオン化傾向の大きい金属を並存させることを特徴とする無電解メッキ方法である。
【0009】
また、この発明の請求項に記載の発明は、前記無電解メッキ方法により、無機質粉末にがメッキされていることを特徴とするメッキ粉末である。
【0010】
【発明の実施の形態】
以下、この発明について、より具体的に説明する。
無機質粉末
無電解メッキの施される無機質粉末としては、黒鉛粉末、窒化珪素、窒化硼素などの金属窒化物粉末、炭化珪素、炭化チタンなどの金属炭化物粉末、酸化アルミニウム、酸化錫などの金属酸化物粉末、硼化チタンなどの金属硼化物粉末、二硫化モリブデン、二硫化タングステンなどの金属硫化物粉末が挙げられるが、中でもこの発明に好適なものは、黒鉛粉末及び二硫化モリブデン、二硫化タングステンなどの金属硫化物粉末、さらには炭化硼素、窒化硼素などである。
【0011】
イオン化傾向の大きい金属
無機質粉末に無電解メッキを施す際に並存させる金属は、施されるよりイオン化傾向の大きい金属であれば良く、例えば、亜鉛、錫、鉛などであり、またそれらを成分とする合金、例えば、錫/銅、錫/銀、錫/鉛、錫/銅/鉛などの合金である。
【0012】
それらの金属は、無電解メッキを施す際に、粉末として添加すればよく、工程が非常に簡略化される。
添加量としては、無機質粉末に対し5〜50質量%で良く、それにより、銅メッキ被膜の密着性を向上することができる。
【0013】
無電解メッキ用還元剤としての化合物
無機質粉末に無電解メッキを施す際に並存させる無電解メッキ用還元剤としての化合物としては、従来から無電解メッキにおいて用いられている、ホルマリン、次亜リン酸ナトリウム、ヒドラジン、水素化硼化物などが挙げられる。
【0014】
無電解メッキ
無機質粉末に被覆を施す方法には、電気メッキ、置換メッキ、気相メッキなども知られているが、無電解メッキは製法の容易性、品質の安定性に優れている方法で、その詳細も良く知られているものであり、簡単に説明すると以下の通りである。
【0015】
例えば、銅をメッキする場合には、銅とキレート結合を起こさせるようなロッセル塩、クエン酸又はエチレンジアミン四酢酸などの錯化剤のアルカリ溶液中に、粉末を投入し、pHを10〜13に維持しながら、ホルマリン溶液と銅化合物水溶液を攪拌しつつ徐々に滴下することにより、銅をメッキすることができる。
【0016】
メッキ温度としては、ロッセル塩浴のときは温度15〜40℃、クエン酸塩浴のときは温度25〜45℃、エチレンジアミン四酢酸のときは温度25〜60℃程度であって、これらの温度範囲であると、メッキ浴が分解することなく、メッキ反応が順調に進行し、銅粉が異常析出して製品品質を低下させることもない。
【0017】
このようにして調整された被覆粉末は、水洗して乾燥し、この発明の製品とされるが、さらに、強固な密着性を付与するためには、水素又はアンモニア分解ガスなどの還元性雰囲気、あるいは窒素、アルゴン、ヘリウムなどの不活性雰囲気中で、温度250〜700℃の範囲で10分間〜数時間加熱処理を施すのが好ましい。
【0018】
前記のようにして調製された被覆無機質粉末は、被膜が均一で高精度であり、異種粉末との混合又は溶射時に、の被膜が剥離しないという優れた被膜密着性を有するもので、被膜の厚さなどに格別な制限は無く、目的、用途などに応じて定めればよいが、通常、質量で被覆無機質粉末全体の40〜95質量%である。
【0019】
【作用】
この発明は、無機質粉末に無電解メッキを行いメッキ粉末を得るに際し、無電解メッキ用還元剤としての化合物とメッキするよりイオン化傾向の大きい金属を並存させて行うだけであるため、浴の管理が容易なうえ、使用したのほぼ全量が無機質粉末の表面にメッキされ、しかも所望の被膜を高精度に、且つ密着力良く形成することができるものである
【0020】
【実施例】
実施例1
ロッシェル塩(酒石酸カリウムナトリウム)1.1kg、水素化ホウ素ナトリウム(NaBH12%、NaOH40%溶液)100mL、ポリエチレングリコール30mLをイオン交換水約10Lに溶解し、そこに黒鉛粉末0.9kgと錫粉末0.1kgを投入する。これを攪拌しながら塩化第二銅(銅として2kg、10%溶液)とホルマリン35%溶液とを含むメッキ液を滴下して銅メッキ反応を行う。反応中は、浴のpHが12〜12.5となるように20%苛性ソーダを加えて調整し、温度25〜25℃に保つ。反応後、粉末をろ過、乾燥し、水素雰囲気下で加熱処理を行う。以上の操作で銅メッキ黒鉛粉末約3kgを得た。銅被膜は、図1の粉末断面顕微鏡写真に認められるように、密着性が良く、均一に形成されていた。該粉末の銅濃度と見掛け密度を表1に示した。
【0021】
比較例1
ロッシェル塩(酒石酸カリウムナトリウム)1.1kg、水素化ホウ素ナトリウム(NaBH12%、NaOH40%溶液)100ml、ポリエチレングリコール50mlをイオン交換水約10Lに溶解し、そこに黒鉛―半田10wt%熔融メッキ粉1kgを投入する。これを攪拌しながら塩化第二銅(銅として2kg、10%溶液)とホルマリン35%溶液とを含むメッキ液を滴下して銅メッキ反応を行う。反応中は浴のpHが12〜12.5となる様に20%苛性ソーダを加えて調整し、温度20〜25℃に保つ。反応後、粉末をろ過、乾燥し、水素雰囲気下で加熱処理を行う。以上の操作で銅メッキ黒鉛粉末約3kgを得た。銅被膜は、図2の粉末断面顕微鏡写真に認められるように、密着性が良く、均一に形成されていた。該粉末の銅濃度と見掛け密度を表1に示した。
【0022】
比較例2
ロッシェル塩(酒石酸カリウムナトリウム)1.1kg、水素化ホウ素ナトリウム(NaBH12%、NaOH40%溶液)100ml、ポリエチレングリコール50mlをイオン交換水約10Lに溶解し、そこに黒鉛粉1kgを投入する。以後、比較例1と同様の操作で銅メッキ黒鉛粉末約3kgを得た。銅はデンドライド状に成長しており、図3の粉末断面顕微鏡写真に認められるように、密着性の良い均一な銅被膜は形成されなかった。この粉末の銅濃度と見掛け密度を表1に示したが、実施例1及び比較例1の粉末に比べて見掛け密度の低いものであった。
【0023】
実施例2
ロッシェル塩(酒石酸カリウムナトリウム)10kg、水素化ホウ素ナトリウム(NaBH12%、NaOH40%溶液)1L、ポリエチレングリコール0.5Lをイオン交換水約100Lに溶解し、そこに二硫化モリブデン粉末20kgと錫粉末2kgを投入する。これを攪拌しながら塩化第二銅(銅として20kg、10%溶液)とホルマリン35%溶液とを含むメッキ液を滴下して銅メッキ反応を行う。反応中は浴のpHが12〜12.5となるように20%苛性ソーダを加えて調整し、温度20〜25℃に保つ。反応後、粉末をろ過、乾燥し、水素雰囲気下で加熱処理を行う。以上の操作で銅メッキ二硫化モリブデン粉末約40kgを得た。銅被膜は、図4の粉末断面顕微鏡写真に認められるように、密着性がよく、均一に形成されていた。該粉末の銅濃度と見掛け密度を表1に示した。
【0024】
比較例3
ロッシェル塩(酒石酸カリウムナトリウム)10kg、水素化ホウ素ナトリウム(NaBH12%、NaOH40%溶液)1L、ポリエチレングリコール0.5Lをイオン交換水約100Lに溶解し、そこに二硫化モリブデン―半田10wt%熔融メッキ粉22kgを投入する。これを攪拌しながら塩化第二銅(銅として20kg、10%溶液)とホルマリン35%溶液とを含むメッキ液を滴下して銅メッキ反応を行う。反応中は浴のpHが12〜12.5となるように20%苛性ソーダを加えて調整し、温度20〜25℃に保つ。反応後、粉末をろ過、乾燥し、水素雰囲気下で加熱処理を行う。以上の操作で銅メッキ二硫化モリブデン粉末を得た。銅被膜は密着性がよく、図5の粉末断面顕微鏡写真に認められるように、均一に形成されていた。該粉末の銅濃度と見掛け密度を表1に示した。
【0025】
比較例4
ロッシェル塩(酒石酸カリウムナトリウム)10kg、水素化ホウ素ナトリウム(NaBH12%、NaOH40%溶液)1L、ポリエチレングリコール0.5Lをイオン交換水約100Lに溶解し、そこに二硫化モリブデン粉20kgを投入する。以後、比較例3と同様の操作で銅メッキ二硫化モリブデン粉末約40kgを得た。銅はデンドライド状に成長しており、図6の粉末断面顕微鏡写真に認められるように、密着性の良い均一な銅被膜は形成されなかった。銅濃度と見掛け密度を表1に示したが、実施例2及び比較例3の粉末に比べて見掛け密度の低いものであった。
【0026】
【表1】

Figure 0003689861
【0027】
【発明の効果】
この発明の無電解メッキ方法は、従来の方法における工程を簡略化したにもかかわらず、得られるメッキ粉末における被膜は、粉末表面へのつきまわり性がよく、塗膜は高精度で均一であり、密着強度も大きいものである。
【0028】
しかも、前記したように、この発明の無電解メッキ方法は、簡単かつ安価な方法であり、浴管理も容易なものであるから、被覆無機質粉末の工業的製造に多大な貢献を成すものである。
【0029】
この発明のメッキ粉末は、被膜が均一で高精度であり、異種粉末との混合又は溶射時に、銅メッキの被膜が剥離しないという優れた被膜密着性を有する。
【図面の簡単な説明】
【図1】 実施例1で調製された銅メッキ黒鉛粉末の切断面の顕微鏡写真である。
【図2】 比較例1で調製された銅メッキ黒鉛粉末の切断面の顕微鏡写真である。
【図3】 比較例2で調製された銅メッキ黒鉛粉末の切断面の顕微鏡写真である。
【図4】 実施例2で調製された銅メッキ二硫化モリブデン粉末の切断面の顕微鏡写真である。
【図5】 比較例3で調製された銅メッキ二硫化モリブデン粉末の切断面の顕微鏡写真である。
【図6】 比較例4で調製された銅メッキ二硫化モリブデン粉末の切断面の顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plating powder widely used as a raw material for oil-impregnated bearings, carbon brushes, sliding materials, friction materials, wear resistant materials, thermal spray materials, and the like, and an electroless copper plating method for obtaining the plating powder. It belongs to the metal-coated powder manufacturing technology and the technical field using these materials.
[0002]
[Prior art]
Inorganic powder, for example, graphite powder, metal nitride powder, metal carbide powder, metal sulfide powder, metal oxide powder or metal boride powder coated with metal coating, sintered after being mixed with metal powder Are widely used in the above-described oil-impregnated bearings, carbon brushes, sliding materials, friction materials, wear-resistant materials, thermal spray materials, and the like.
[0003]
However, even if these powders are mixed with metal powders, it is difficult to obtain a uniform mixed powder due to differences in apparent density and surface condition. In the case of a hard powder such as a metal nitride powder, there are many problems to be solved that reduce the life of the molding die.
[0004]
As a means for solving these problems, various methods for coating the powder surface with a metal such as copper and nickel have been proposed, and the metal-coated powder obtained by them has a uniform coating, and during mixing or spraying, Some have excellent film adhesion that the metal film does not peel off.
[0005]
In those methods, for example, the surface of the inorganic powder is coated with a melt such as zinc, tin, lead, etc. (fusion coating), and then electroless plating (chemical plating) is performed by copper, nickel, or A method of coating a metal such as cobalt (JP-A-2-138402, JP-A-3-146602), or a step of mixing powder in an aqueous solution of potassium tartrate, metal until the powder changes from floating to sedimentation Requiring a complicated process, such as a method comprising a step of precipitating metal and a step of continuously inserting a metal salt aqueous solution to complete a metal precipitation reaction (electroless plating) (Japanese Patent No. 2999157) It is.
[0006]
[Problems to be solved by the invention]
The inventors of the present invention have studied the rationalization of the process for the production method of the metal-coated powder using both the above-described melt coating and electroless plating, and in the case of electroless copper plating without performing the melt coating, By allowing the metals used for coating to coexist, a copper coating powder having excellent coating adhesion that the coating film is uniform and the copper coating does not peel off during mixing or thermal spraying can be obtained without going through a melt coating process. It was discovered that the present invention was completed.
[0007]
In other words, the present invention is intended to provide a simpler method for applying a copper film to the surface of an inorganic powder, and naturally, the obtained copper film should be a uniform film with good adhesion. in the method of giving, obtained by those methods, it is to St. provide a plating powder having a copper film of excellent properties.
[0008]
[Means for Solving the Problems]
The invention according to claim 1, when subjected to electroless copper plating to inorganic powder, electroless copper plating the metal having a large ionization tendency than compounds and copper as electroless plating reducing agent, characterized in that to coexist Is the method.
[0009]
The invention according to claim 5 of the present invention is a plating powder in which copper is plated on an inorganic powder by the electroless copper plating method.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described more specifically.
Inorganic powders that can be electrolessly plated with copper include graphite powder, metal nitride powders such as silicon nitride and boron nitride, metal carbide powders such as silicon carbide and titanium carbide, metal oxides such as aluminum oxide and tin oxide. Powders, metal boride powders such as titanium boride, and metal sulfide powders such as molybdenum disulfide and tungsten disulfide. Among them, graphite powder, molybdenum disulfide, and tungsten disulfide are preferable for the present invention. And metal sulfide powders such as boron carbide and boron nitride.
[0011]
The metal coexisting when electroless copper plating is applied to a metal inorganic powder having a large ionization tendency may be any metal having a greater ionization tendency than the applied copper , for example , zinc , tin, lead, etc. Alloys as components, for example, alloys of tin / copper, tin / silver, tin / lead, tin / copper / lead, and the like.
[0012]
These metals may be added as powder when electroless copper plating is performed, and the process is greatly simplified.
As addition amount, 5-50 mass% may be sufficient with respect to inorganic powder, and, thereby, the adhesiveness of a copper plating film can be improved.
[0013]
The compound as a reducing agent for electroless plating to coexist when subjected to electroless copper plating to compound the inorganic powder as electroless plating reducing agent are used in electroless plating conventionally, formalin, hypophosphorous Examples thereof include sodium acid, hydrazine, and borohydride.
[0014]
Electroless copper plating Electroplating, displacement plating, vapor phase plating, etc. are known as methods for applying copper coating to inorganic powder, but electroless copper plating is excellent in the ease of manufacturing and quality stability. The details of the method are well known and can be briefly described as follows.
[0015]
For example, when plating copper, the powder is put into an alkaline solution of a complexing agent such as Rossell's salt, citric acid or ethylenediaminetetraacetic acid that causes a chelate bond with copper, and the pH is adjusted to 10-13. The copper can be plated by gradually dropping the formalin solution and the copper compound aqueous solution while stirring while maintaining.
[0016]
The plating temperature is 15 to 40 ° C. for the Rossel salt bath, 25 to 45 ° C. for the citrate bath, and 25 to 60 ° C. for ethylenediaminetetraacetic acid. In this case, the plating reaction proceeds smoothly without decomposing the plating bath, and the copper powder does not precipitate abnormally and does not deteriorate the product quality.
[0017]
The copper- coated powder thus prepared is washed with water and dried to obtain a product of the present invention. In addition, in order to provide strong adhesion, a reducing atmosphere such as hydrogen or ammonia decomposition gas is used. Alternatively, heat treatment is preferably performed at a temperature of 250 to 700 ° C. for 10 minutes to several hours in an inert atmosphere such as nitrogen, argon or helium.
[0018]
Copper-coated inorganic powder, prepared as described above are highly accurate and coating uniformity, during mixing or spraying with a heterologous powder, those having excellent coating adhesion of copper film without being stripped, copper There is no particular limitation on the thickness of the coating and may be determined according to the purpose and application, but it is usually 40 to 95% by mass of the entire copper- coated inorganic powder.
[0019]
[Action]
This invention, since upon obtaining a plating powder subjected to electroless copper plating to inorganic powder, is only carried out by coexisting a metal having a large ionization tendency than copper plating with a compound of the electroless plating reducing agent, the bath In addition to being easy to manage, almost all of the copper used is plated on the surface of the inorganic powder, and a desired film can be formed with high accuracy and good adhesion.
[0020]
【Example】
Example 1
Rochelle salt (potassium sodium tartrate) 1.1 kg, sodium borohydride (NaBH 4 12%, NaOH 40% solution) 100 mL, polyethylene glycol 30 mL were dissolved in about 10 L of ion-exchanged water, and then graphite powder 0.9 kg and tin powder Add 0.1 kg. While stirring this, a plating solution containing cupric chloride (2 kg as a copper, 10% solution) and a formalin 35% solution is dropped to perform a copper plating reaction. During the reaction, 20% sodium hydroxide is added to adjust the pH of the bath to 12 to 12.5, and the temperature is maintained at 25 to 25 ° C. After the reaction, the powder is filtered, dried, and heat-treated in a hydrogen atmosphere. By the above operation, about 3 kg of copper-plated graphite powder was obtained. As can be seen from the powder cross-sectional micrograph of FIG. 1, the copper coating had good adhesion and was formed uniformly. The copper concentration and apparent density of the powder are shown in Table 1.
[0021]
Comparative Example 1
Rochelle salt (potassium sodium tartrate) 1.1 kg, sodium borohydride (NaBH 4 12%, NaOH 40% solution) 100 ml, polyethylene glycol 50 ml were dissolved in about 10 L of ion-exchanged water, and graphite-solder 10 wt% fusion plating powder Add 1kg. While stirring this, a plating solution containing cupric chloride (2 kg as a copper, 10% solution) and a formalin 35% solution is dropped to perform a copper plating reaction. During the reaction, 20% sodium hydroxide is added to adjust the pH of the bath to 12 to 12.5, and the temperature is kept at 20 to 25 ° C. After the reaction, the powder is filtered, dried, and heat-treated in a hydrogen atmosphere. By the above operation, about 3 kg of copper-plated graphite powder was obtained. As can be seen from the powder cross-sectional micrograph of FIG. 2, the copper coating had good adhesion and was formed uniformly. The copper concentration and apparent density of the powder are shown in Table 1.
[0022]
Comparative Example 2
Rochelle salt (potassium sodium tartrate) 1.1 kg, sodium borohydride (NaBH 4 12%, NaOH 40% solution) 100 ml, polyethylene glycol 50 ml are dissolved in about 10 L of ion-exchanged water, and 1 kg of graphite powder is added thereto. Thereafter, about 3 kg of copper-plated graphite powder was obtained by the same operation as in Comparative Example 1. Copper grew in dendritic form, and a uniform copper film with good adhesion was not formed as can be seen in the powder cross-sectional micrograph of FIG. The copper concentration and the apparent density of this powder are shown in Table 1. The apparent density was lower than that of the powders of Example 1 and Comparative Example 1.
[0023]
Example 2
Rochelle salt (potassium sodium tartrate) 10 kg, sodium borohydride (NaBH 4 12%, NaOH 40% solution) 1 L, polyethylene glycol 0.5 L are dissolved in about 100 L of ion-exchanged water, and then molybdenum disulfide powder 20 kg and tin powder Charge 2 kg. While stirring this, a plating solution containing cupric chloride (20 kg as a copper, 10% solution) and a formalin 35% solution is dropped to perform a copper plating reaction. During the reaction, 20% sodium hydroxide is added to adjust the pH of the bath to 12 to 12.5, and the temperature is kept at 20 to 25 ° C. After the reaction, the powder is filtered, dried, and heat-treated in a hydrogen atmosphere. About 40 kg of copper-plated molybdenum disulfide powder was obtained by the above operation. As can be seen from the powder cross-sectional micrograph of FIG. 4, the copper coating had good adhesion and was formed uniformly. The copper concentration and apparent density of the powder are shown in Table 1.
[0024]
Comparative Example 3
Rochelle salt (potassium sodium tartrate) 10 kg, sodium borohydride (NaBH 4 12%, NaOH 40% solution) 1 L, polyethylene glycol 0.5 L are dissolved in about 100 L of ion-exchanged water, and molybdenum disulfide-solder 10 wt% melted there. Add 22kg of plating powder. While stirring this, a plating solution containing cupric chloride (20 kg as a copper, 10% solution) and a formalin 35% solution is dropped to perform a copper plating reaction. During the reaction, 20% sodium hydroxide is added to adjust the pH of the bath to 12 to 12.5, and the temperature is kept at 20 to 25 ° C. After the reaction, the powder is filtered, dried, and heat-treated in a hydrogen atmosphere. A copper-plated molybdenum disulfide powder was obtained by the above operation. The copper coating had good adhesion and was uniformly formed as seen in the powder cross-sectional micrograph of FIG. The copper concentration and apparent density of the powder are shown in Table 1.
[0025]
Comparative Example 4
Rochelle salt (potassium sodium tartrate) 10 kg, sodium borohydride (NaBH 4 12%, NaOH 40% solution) 1 L, polyethylene glycol 0.5 L are dissolved in about 100 L of ion-exchanged water, and 20 kg of molybdenum disulfide powder is added thereto. . Thereafter, about 40 kg of copper-plated molybdenum disulfide powder was obtained by the same operation as in Comparative Example 3. Copper grew in dendritic form, and as can be seen in the powder cross-sectional micrograph of FIG. 6, a uniform copper film with good adhesion was not formed. The copper concentration and the apparent density are shown in Table 1, but the apparent density was lower than that of the powders of Example 2 and Comparative Example 3.
[0026]
[Table 1]
Figure 0003689861
[0027]
【The invention's effect】
Although the electroless copper plating method of the present invention has simplified the process in the conventional method, the copper coating in the obtained plating powder has good throwing power on the powder surface, and the coating is highly accurate and uniform. The adhesion strength is also high.
[0028]
Moreover, as described above, the electroless copper plating method of the present invention is a simple and inexpensive method and easy to manage the bath, and thus makes a great contribution to the industrial production of copper- coated inorganic powder. It is.
[0029]
The plating powder of the present invention has a uniform coating film with high accuracy, and has excellent coating adhesion that the coating film of copper plating does not peel off when mixed or sprayed with different types of powders.
[Brief description of the drawings]
1 is a micrograph of a cut surface of a copper-plated graphite powder prepared in Example 1. FIG.
2 is a micrograph of a cut surface of a copper-plated graphite powder prepared in Comparative Example 1. FIG.
3 is a micrograph of a cut surface of a copper-plated graphite powder prepared in Comparative Example 2. FIG.
4 is a photomicrograph of a cut surface of copper-plated molybdenum disulfide powder prepared in Example 2. FIG.
5 is a photomicrograph of a cut surface of a copper-plated molybdenum disulfide powder prepared in Comparative Example 3. FIG.
6 is a photomicrograph of a cut surface of a copper-plated molybdenum disulfide powder prepared in Comparative Example 4. FIG.

Claims (5)

無機質粉末に無電解メッキを施すに際し、無電解メッキ用還元剤としての化合物よりイオン化傾向の大きい金属を並存させることを特徴とする無電解メッキ方法。A method of electroless copper plating characterized by coexisting a compound as a reducing agent for electroless plating and a metal having a higher ionization tendency than copper when performing electroless copper plating on inorganic powder. 前記イオン化傾向の大きい金属が、金属単体又はそれらを含む合金であることを特徴とする請求項1記載の無電解メッキ方法。The electroless copper plating method according to claim 1, wherein the metal having a large ionization tendency is a single metal or an alloy containing them. 前記イオン化傾向の大きい金属が、亜鉛、錫、鉛又はそれらを含む合金であることを特徴とする請求項1又は2に記載の無電解メッキ方法。The electroless copper plating method according to claim 1 or 2, wherein the metal having a high ionization tendency is zinc, tin, lead, or an alloy containing them. 前記無電解メッキ用還元剤としての化合物がホルマリンであることを特徴とする請求項1乃至3記載の無電解メッキ方法。Electroless copper plating method of claims 1 to 3, wherein the compound as the electroless plating reducing agent is formalin. 請求項1乃至記載の無電解メッキ方法により、無機質粉末にがメッキされていることを特徴とするメッキ粉末。The electroless copper plating method of claims 1 to 4, wherein the plating powder copper inorganic powder is characterized in that it is plated.
JP2000288663A 2000-09-22 2000-09-22 Electroless copper plating method and plating powder Expired - Fee Related JP3689861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000288663A JP3689861B2 (en) 2000-09-22 2000-09-22 Electroless copper plating method and plating powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000288663A JP3689861B2 (en) 2000-09-22 2000-09-22 Electroless copper plating method and plating powder

Publications (2)

Publication Number Publication Date
JP2002097578A JP2002097578A (en) 2002-04-02
JP3689861B2 true JP3689861B2 (en) 2005-08-31

Family

ID=18772207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000288663A Expired - Fee Related JP3689861B2 (en) 2000-09-22 2000-09-22 Electroless copper plating method and plating powder

Country Status (1)

Country Link
JP (1) JP3689861B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3678196B2 (en) * 2001-12-18 2005-08-03 株式会社村田製作所 Chip type electronic component manufacturing method and chip type electronic component
CN102586703B (en) * 2012-03-23 2013-11-20 北京科技大学 Method for preparing graphite whisker reinforced aluminum matrix composite material
CN102586704B (en) * 2012-03-23 2013-08-07 北京科技大学 Preparation method of high thermal conductivity graphite whisker/copper composite
GB201614008D0 (en) * 2016-08-16 2016-09-28 Seram Coatings As Thermal spraying of ceramic materials

Also Published As

Publication number Publication date
JP2002097578A (en) 2002-04-02

Similar Documents

Publication Publication Date Title
US10377947B2 (en) Composition and process for metallizing nonconductive plastic surfaces
JP4376958B2 (en) Plating object in which metal thin film is formed by electroless plating and manufacturing method thereof
JPWO2009016980A1 (en) Plating object in which metal thin film is formed by electroless plating and manufacturing method thereof
Sharma et al. Recent progress in electroless plating of copper
JP6017726B2 (en) Reduced electroless gold plating solution and electroless gold plating method using the plating solution
US5364459A (en) Electroless plating solution
JP4095629B2 (en) Method for producing amorphous metal powder coated with metal (Methodfor Manufacturing Metal-Coated Amorphous Metal Powder)
WO1989000615A1 (en) Electroless nickel plating composition and method for its preparation and use
JP3689861B2 (en) Electroless copper plating method and plating powder
WO2000075396A1 (en) Electroless coatings formed from organic solvents
JPH04325688A (en) Electroless plating bath
Niazi et al. Parameters optimization of electroless deposition of Cu on Cr-coated diamond
JP2001256967A (en) Anode material for nonaqueous electrolyte secondary battery and manufacturing method thereof
US20030134050A1 (en) Electronic part and method for manufacturing the same
JPH03146602A (en) Metal coating powder and manufacture thereof
JPH08225865A (en) Production of metallic porous body having three-dimensional network structure
JPH09316649A (en) Electroless plating solution
JPH06240463A (en) Method for electroless-plating fine metal powder with silver
JP2004100014A (en) Ceramic electronic component and process for manufacturing the same
JP2007169706A (en) Electroplating solution and electroplating method for forming amorphous gold-nickel based alloy plated film
JPH02138402A (en) Metal-coated metallic sulfide powder and manufacture thereof
JP2999157B2 (en) Copper coated carbon powder
JP2023157562A (en) Electroless copper plating solution and electroless copper plating method using the same
JP3769621B2 (en) Alloy plating method and molding method of alloy molded product
JP2018059152A (en) Silver copper coated powder, and production method of silver copper coated powder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees