JP2002097578A - Electroless plating method and plated powder - Google Patents

Electroless plating method and plated powder

Info

Publication number
JP2002097578A
JP2002097578A JP2000288663A JP2000288663A JP2002097578A JP 2002097578 A JP2002097578 A JP 2002097578A JP 2000288663 A JP2000288663 A JP 2000288663A JP 2000288663 A JP2000288663 A JP 2000288663A JP 2002097578 A JP2002097578 A JP 2002097578A
Authority
JP
Japan
Prior art keywords
powder
metal
copper
electroless plating
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000288663A
Other languages
Japanese (ja)
Other versions
JP3689861B2 (en
Inventor
Hideaki Kurihara
英晃 栗原
Akira Umeda
彰 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP2000288663A priority Critical patent/JP3689861B2/en
Publication of JP2002097578A publication Critical patent/JP2002097578A/en
Application granted granted Critical
Publication of JP3689861B2 publication Critical patent/JP3689861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a simple electroless plating method for forming a uniform metal coating with an adequate adhesiveness on a surface of inorganic powders, and plated powders having a uniform metal coating with an adequate adhesiveness. SOLUTION: This method for electroless plating the inorganic powders includes making a metal having a larger ionization tendency than a plating metal coexist.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、含油軸受、カー
ボンブラシ、摺動材、摩擦材料、耐磨耗材、溶射材料な
どの原料として広く用いられるメッキ粉末と、該メッキ
粉末を得るための無電解メッキ方法に関するもので、金
属被覆粉末製造技術及びそれら材料を使用する技術分野
に属するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plating powder widely used as a raw material for oil-impregnated bearings, carbon brushes, sliding materials, friction materials, abrasion-resistant materials, thermal spraying materials and the like, and an electroless method for obtaining the plating powder. The present invention relates to a plating method, and belongs to a technical field of producing a metal-coated powder and a material using these materials.

【0002】[0002]

【従来の技術】無機質粉末、例えば、黒鉛粉末、金属窒
化物粉末、金属炭化物粉末、金属硫化物粉末、金属酸化
物粉末又は金属硼化物粉末に金属被膜を施したものは、
金属粉末と混合された後、焼結を行うことにより、前記
した含油軸受、カーボンブラシ、摺動材、摩擦材料、耐
磨耗材、溶射材料などで広く用いられている。
2. Description of the Related Art Inorganic powders such as graphite powders, metal nitride powders, metal carbide powders, metal sulfide powders, metal oxide powders or metal boride powders provided with a metal coating,
After being mixed with a metal powder and then sintered, it is widely used in the above-mentioned oil-impregnated bearings, carbon brushes, sliding materials, friction materials, wear-resistant materials, thermal spray materials and the like.

【0003】しかしながら、これらの粉末単体では、金
属粉末と混合しても見掛け密度や表面状態の差異などに
より、均一な混合粉末を得ることが困難であるととも
に、粉末が黒鉛粉末などの場合は、焼結中や溶射中に消
耗するという問題があり、金属窒化物粉末などの硬い粉
末の場合は、成形金型の寿命を低下させるという解決す
べき多くの課題を有している。
[0003] However, it is difficult to obtain a uniform powder mixture of these powders alone due to differences in apparent density and surface condition even when they are mixed with a metal powder. There is a problem that the powder is consumed during sintering or thermal spraying, and in the case of a hard powder such as a metal nitride powder, there are many problems to be solved that shorten the life of a molding die.

【0004】これらの問題を解決する手段として、従
来、粉末表面を銅、ニッケルなどの金属で被覆する種々
の方法が提案され、それらにより得られる金属被覆粉末
には、被膜が均一で、混合又は溶射時に、金属の被膜が
剥離しないという優れた被膜密着性を有するものがあ
る。
As means for solving these problems, various methods of coating the powder surface with a metal such as copper or nickel have been proposed, and the resulting metal-coated powder has a uniform coating, mixed or mixed. Some have excellent coating adhesion, in which the metal coating does not peel off during thermal spraying.

【0005】それらの方法は、例えば、無機質粉末の表
面を、亜鉛、錫、鉛などの熔融物を用い、それらの被覆
を施した(熔融被覆)後に、無電解メッキ(化学メッ
キ)により、銅、ニッケル又はコバルトなどの金属の被
覆を施す方法(特開平2−138402号公報、特開平
3−146602号公報)、あるいは酒石酸カリソーダ
水溶液に粉末を混合する工程、粉末が浮遊性から沈降性
に変化するまで金属を析出させる工程及び金属塩水溶液
を継続的に挿入して金属の析出反応(無電解メッキ)を
完了させる工程からなる方法(特許第2999157号
公報)などのように複雑な工程を必要とするものであ
る。
[0005] In these methods, for example, the surface of an inorganic powder is coated with a melt of zinc, tin, lead or the like (melt coating), and then electroless plating (chemical plating) is performed. A method of coating a metal such as nickel, cobalt or the like (JP-A-2-138402, JP-A-3-146602), or a step of mixing a powder with an aqueous solution of potassium sodium tartrate, wherein the powder changes from floating to sedimentable A complicated process such as a method of depositing a metal until completion and a process of continuously inserting a metal salt aqueous solution to complete a metal deposition reaction (electroless plating) (Japanese Patent No. 2999157) is required. It is assumed that.

【0006】[0006]

【発明が解決しようとする課題】本発明者等は、先の熔
融被覆と無電解メッキを併用した金属被覆粉末の製造方
法について、その工程の合理化を検討し、熔融被覆を行
わなくても、無電解メッキの際に、熔融被覆に用いられ
た金属を並存させることにより、熔融被覆工程を経るこ
となく、被膜が均一で、混合又は溶射時に、金属の被膜
が剥離しないという優れた被膜密着性を有する金属被覆
粉末が得られることを見出し、この発明を完成したので
ある。
SUMMARY OF THE INVENTION The present inventors have studied the rationalization of the process for producing a metal-coated powder using a combination of the above-mentioned fusion coating and electroless plating. Excellent cohesiveness of the coating used in the electroless plating, by allowing the metal used for the melt coating to coexist, without the need for the melt coating step, and the coating being uniform and not mixing or spraying. The present inventors have found that a metal-coated powder having the following formula can be obtained, and have completed the present invention.

【0007】すなわち、この発明は、無機質粉末の表面
に金属被膜を、より簡便な方法で施す無電解メッキ方法
を提供せんとするもので、当然のことであるが、得られ
る金属被膜は密着性のよい均一な被膜を与える方法で、
それらの方法で得られる優れた特性の金属被膜を有する
メッキ粉末を提供せんとするものである。
That is, the present invention provides an electroless plating method in which a metal coating is applied to the surface of an inorganic powder by a simpler method. With a good and uniform coating.
It is an object of the present invention to provide a plating powder having a metal coating having excellent properties obtained by these methods.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の発明
は、無機質粉末に無電解メッキを施すに際し、メッキ金
属よりイオン化傾向の大きい金属を並存させることを特
徴とする無電解メッキ方法である。
According to the first aspect of the present invention, there is provided an electroless plating method characterized by coexisting a metal having a higher ionization tendency than a plating metal when electroless plating an inorganic powder. .

【0009】また、この発明の請求項6に記載の発明
は、前記無電解メッキ方法により、無機質粉末に金属が
メッキされていることを特徴とするメッキ粉末である。
The invention according to claim 6 of the present invention is a plating powder, wherein a metal is plated on an inorganic powder by the electroless plating method.

【0010】[0010]

【発明の実施の形態】以下、この発明について、より具
体的に説明する。無機質粉末 無電解メッキの施される無機質粉末としては、黒鉛粉
末、窒化珪素、窒化硼素などの金属窒化物粉末、炭化珪
素、炭化チタンなどの金属炭化物粉末、酸化アルミニウ
ム、酸化錫などの金属酸化物粉末、硼化チタンなどの金
属硼化物粉末、二硫化モリブデン、二硫化タングステン
などの金属硫化物粉末が挙げられるが、中でもこの発明
に好適なものは、黒鉛粉末及び二硫化モリブデン、二硫
化タングステンなどの金属硫化物粉末、さらには炭化硼
素、窒化硼素などである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described more specifically. Inorganic powder Examples of the inorganic powder to be subjected to electroless plating include graphite powder, metal nitride powder such as silicon nitride and boron nitride, metal carbide powder such as silicon carbide and titanium carbide, and metal oxide such as aluminum oxide and tin oxide. Powders, metal boride powders such as titanium boride, metal sulfide powders such as molybdenum disulfide and tungsten disulfide. Among them, graphite powder, molybdenum disulfide, tungsten disulfide and the like are preferable. Metal sulfide powder, furthermore, boron carbide, boron nitride and the like.

【0011】イオン化傾向の大きい金属 無機質粉末に無電解メッキを施す際に並存させる金属
は、施されるメッキ金属よりイオン化傾向の大きい金属
であればよく、例えば、銅メッキの場合は、亜鉛、錫、
鉛などであり、またそれらを成分とする合金、例えば、
錫/銅、錫/銀、錫/鉛、錫/銅/鉛などの合金であ
る。
The metal coexisting when applying electroless plating to a metal inorganic powder having a high ionization tendency may be a metal having a higher ionization tendency than the plating metal to be applied. For example, in the case of copper plating, zinc and tin are used. ,
Lead and alloys containing them, for example,
Alloys such as tin / copper, tin / silver, tin / lead, and tin / copper / lead.

【0012】それらの金属は、無電解メッキを施す際
に、粉末として添加すればよく、工程が非常に簡略化さ
れる。
These metals may be added as a powder when electroless plating is performed, and the process is greatly simplified.

【0013】添加量としては、無機質粉末に対し5〜5
0質量%でよく、それにより、メッキ金属被膜の密着性
を向上することができる。
The amount of addition is 5 to 5 with respect to the inorganic powder.
The content may be 0% by mass, whereby the adhesion of the plated metal film can be improved.

【0014】無電解メッキ 無機質粉末に金属被覆を施す方法には、電気メッキ、置
換メッキ、気相メッキなども知られているが、無電解メ
ッキは、製法の容易性、品質の安定性に優れている方法
で、その詳細もよく知られているが、簡単に説明すると
以下の通りである。
Electroless plating Electroplating, displacement plating, vapor phase plating and the like are also known as methods for applying a metal coating to inorganic powder, but electroless plating is excellent in ease of production and stability in quality. The details of the method are well known, but are briefly described as follows.

【0015】例えば、銅をメッキする場合には、銅とキ
レート結合を起こさせるようなロッセル塩、クエン酸又
はエチレンジアミン四酢酸などの錯化剤のアルカリ溶液
中に、粉末を投入し、pHを10〜13に維持しなが
ら、ホルマリン溶液と銅化合物水溶液を攪拌しつつ徐々
に滴下することにより、銅をメッキすることができる。
For example, when plating copper, the powder is introduced into an alkaline solution of a complexing agent such as Rossel's salt, citric acid or ethylenediaminetetraacetic acid which causes a chelate bond with copper, and the pH is adjusted to 10%. The copper can be plated by gradually dropping the formalin solution and the aqueous solution of the copper compound while stirring while maintaining the value at ~ 13.

【0016】メッキ温度としては、ロッセル塩浴のとき
は温度15〜40℃、クエン酸塩浴のときは温度25〜
45℃、エチレンジアミン四酢酸のときは温度25〜6
0℃程度であって、これらの温度範囲であると、メッキ
浴が分解することなく、メッキ反応が順調に進行し、銅
粉が異常析出して製品品質を低下させることもない。
The plating temperature is 15 to 40 ° C. for a Rossel salt bath, and 25 to 40 ° C. for a citrate bath.
45 ° C, temperature 25 ~ 6 for ethylenediaminetetraacetic acid
When the temperature is about 0 ° C. and the temperature is within these ranges, the plating bath does not decompose, the plating reaction proceeds smoothly, and the copper powder does not abnormally precipitate to lower the product quality.

【0017】ニッケルをメッキする場合には、銅の場合
と同様に、ロッセル塩又はクエン酸塩などの錯化剤を用
い、pHを8〜13に維持しながら、次亜リン酸ナトリ
ウム、ヒドラジン又は水素化硼化物から選ばれる還元剤
を用いることにより、銅の場合と同様に、ニッケルメッ
キを施すことができるもので、その際の温度は、温度6
0〜95℃が適している。
When nickel is plated, as in the case of copper, sodium hypophosphite, hydrazine or hydrazine is used while maintaining the pH at 8 to 13 using a complexing agent such as Rossell salt or citrate. By using a reducing agent selected from borohydrides, nickel plating can be performed as in the case of copper.
0-95 ° C is suitable.

【0018】また、コバルトをメッキする場合は、pH
を11〜13に維持すること以外はニッケルメッキと同
様に行うことができる。
When plating cobalt, pH
Can be carried out in the same manner as the nickel plating except that is maintained at 11 to 13.

【0019】このようにして調整された金属被覆粉末
は、水洗して乾燥し、この発明の製品とされるが、さら
に、強固な密着性を付与するためには、水素又はアンモ
ニア分解ガスなどの還元性雰囲気、あるいは窒素、アル
ゴン、ヘリウムなどの不活性雰囲気中で、温度250〜
700℃の範囲で10分間〜数時間加熱処理を施すのが
好ましい。
The metal-coated powder prepared in this manner is washed with water and dried to obtain a product of the present invention. In order to further provide strong adhesion, hydrogen- or ammonia-decomposed gas or the like is used. In a reducing atmosphere or an inert atmosphere such as nitrogen, argon or helium, a temperature of 250 to
It is preferable to perform a heat treatment in a range of 700 ° C. for 10 minutes to several hours.

【0020】前記のようにして調製された金属被覆無機
質粉末は、被膜が均一で高精度であり、異種粉末との混
合又は溶射時に、金属の被膜が剥離しないという優れた
被膜密着性を有するもので、金属被膜の厚さなどに格別
な制限は無く、目的、用途などに応じて定めればよい
が、通常、質量で金属被覆無機質粉末全体の40〜95
質量%である。
The metal-coated inorganic powder prepared as described above has a uniform and high-precision coating, and has excellent coating adhesion such that the metal coating does not peel off when mixed or sprayed with a different kind of powder. The thickness of the metal coating is not particularly limited and may be determined according to the purpose, application, etc., but is usually 40 to 95% by mass of the entire metal coating inorganic powder.
% By mass.

【0021】[0021]

【作用】この発明は、無機質粉末に無電解メッキを行い
メッキ粉末を得るに際し、メッキする金属よりイオン化
傾向の大きい金属を並存させて行うため、浴の管理が容
易なうえ、使用した金属のほぼ全量が無機質粉末の表面
にメッキされ、しかも所望の被膜を高精度に、且つ密着
力良く形成することができる。
According to the present invention, when the inorganic powder is subjected to electroless plating to obtain a plating powder, a metal having a higher ionization tendency than the metal to be plated is present in parallel, so that the bath can be easily controlled and almost all of the used metal can be used. The whole amount is plated on the surface of the inorganic powder, and a desired film can be formed with high precision and good adhesion.

【0022】[0022]

【実施例】実施例1 ロッシェル塩(酒石酸カリウムナトリウム)1.1k
g、水素化ホウ素ナトリウム(NaBH412%、Na
OH40%溶液)100mL、ポリエチレングリコール
30mLをイオン交換水約10Lに溶解し、そこに黒鉛
粉末0.9kgと錫粉末0.1kgを投入する。これを
攪拌しながら、塩化第二銅(銅として2kg、10%溶
液)とホルマリン35%溶液とを含むメッキ液を滴下し
て銅メッキ反応を行う。反応中は、浴のpHが12〜1
2.5となるように20%苛性ソーダを加えて調整し、
温度20〜25℃に保つ。反応後、粉末をろ過、乾燥
し、水素雰囲気下で加熱処理を行う。以上の操作で銅メ
ッキ黒鉛粉末約3kgを得た。銅被膜は、図1の粉末断
面顕微鏡写真に認められるように、密着性がよく、均一
に形成されていた。この粉末の銅濃度と見掛け密度を表
1に示した。
EXAMPLE 1 Rochelle salt (potassium sodium tartrate) 1.1 k
g, sodium borohydride (NaBH 4 12%, Na
100 mL of OH (40% solution) and 30 mL of polyethylene glycol are dissolved in about 10 L of ion-exchanged water, and 0.9 kg of graphite powder and 0.1 kg of tin powder are added thereto. While stirring this, a plating solution containing cupric chloride (2 kg of copper, 10% solution) and a 35% solution of formalin is dropped, and a copper plating reaction is performed. During the reaction, the pH of the bath is 12-1.
Adjust by adding 20% caustic soda to 2.5
Keep the temperature at 20-25 ° C. After the reaction, the powder is filtered, dried, and heat-treated under a hydrogen atmosphere. Through the above operation, about 3 kg of copper-plated graphite powder was obtained. The copper coating had good adhesion and was formed uniformly, as can be seen in the powder cross-sectional micrograph of FIG. Table 1 shows the copper concentration and apparent density of this powder.

【0023】比較例1 ロッシェル塩(酒石酸カリウムナトリウム)1.1k
g、水素化ホウ素ナトリウム(NaBH412%、Na
OH40%溶液)100ml、ポリエチレングリコール
50mlをイオン交換水約10Lに溶解し、そこに黒鉛
―半田10wt%熔融メッキ粉1kgを投入する。これ
を攪拌しながら、塩化第二銅(銅として2kg、10%
溶液)とホルマリン35%溶液とを含むメッキ液を滴下
して銅メッキ反応を行う。反応中は、浴のpHが12〜
12.5となる様に20%苛性ソーダを加えて調整し、
温度20〜25℃に保つ。反応後、粉末をろ過、乾燥
し、水素雰囲気下で加熱処理を行う。以上の操作で銅メ
ッキ黒鉛粉末約3kgを得た。銅被膜は、図2の粉末断
面顕微鏡写真に認められるように、密着性がよく、均一
に形成されていた。この粉末の銅濃度と見掛け密度を表
1に示した。
Comparative Example 1 Rochelle salt (potassium sodium tartrate) 1.1 k
g, sodium borohydride (NaBH 4 12%, Na
100 ml of OH (40% solution) and 50 ml of polyethylene glycol are dissolved in about 10 L of ion-exchanged water, and 1 kg of graphite-solder 10 wt% hot-dip plating powder is added thereto. While stirring this, cupric chloride (2 kg as copper, 10%
Solution) and a plating solution containing a 35% solution of formalin. During the reaction, the pH of the bath is 12-
Adjust by adding 20% caustic soda to 12.5,
Keep the temperature at 20-25 ° C. After the reaction, the powder is filtered, dried, and heat-treated under a hydrogen atmosphere. Through the above operation, about 3 kg of copper-plated graphite powder was obtained. The copper coating had good adhesion and was formed uniformly, as can be seen in the powder cross-sectional micrograph of FIG. Table 1 shows the copper concentration and apparent density of this powder.

【0024】比較例2 ロッシェル塩(酒石酸カリウムナトリウム)1.1k
g、水素化ホウ素ナトリウム(NaBH412%、Na
OH40%溶液)100ml、ポリエチレングリコール
50mlをイオン交換水約10Lに溶解し、そこに黒鉛
粉1kgを投入する。以後、比較例1と同様の操作で銅
メッキ黒鉛粉末約3kgを得た。銅はデンドライド状に
成長しており、図3の粉末断面顕微鏡写真に認められる
ように、密着性のよい均一な銅被膜は形成されなかっ
た。この粉末の銅濃度と見掛け密度を表1に示したが、
実施例1及び比較例1の粉末に比べて見掛け密度の低い
ものであった。
Comparative Example 2 Rochelle salt (potassium sodium tartrate) 1.1 k
g, sodium borohydride (NaBH 4 12%, Na
100 ml of OH (40% solution) and 50 ml of polyethylene glycol are dissolved in about 10 L of ion-exchanged water, and 1 kg of graphite powder is added thereto. Thereafter, approximately 3 kg of copper-plated graphite powder was obtained in the same manner as in Comparative Example 1. Copper was grown in dendritic form, and a uniform copper film with good adhesion was not formed as seen in the powder cross-sectional micrograph of FIG. Table 1 shows the copper concentration and apparent density of this powder.
The powder had a lower apparent density than the powders of Example 1 and Comparative Example 1.

【0025】実施例2 ロッシェル塩(酒石酸カリウムナトリウム)10kg、
水素化ホウ素ナトリウム(NaBH412%、NaOH
40%溶液)1L、ポリエチレングリコール0.5Lを
イオン交換水約100Lに溶解し、そこに二硫化モリブ
デン粉末20kgと錫粉末2kgを投入し、これを攪拌
しながら、塩化第二銅(銅として20kg、10%溶
液)とホルマリン35%溶液とを含むメッキ液を滴下し
て銅メッキ反応を行う。反応中は、浴のpHが12〜1
2.5となるように20%苛性ソーダを加えて調整し、
温度20〜25℃に保つ。反応後、粉末をろ過、乾燥
し、水素雰囲気下で加熱処理を行う。以上の操作で銅メ
ッキ二硫化モリブデン粉末約40kgを得た。銅被膜
は、図4の粉末断面顕微鏡写真に認められるように、密
着性がよく、均一に形成されていた。この粉末の銅濃度
と見掛け密度を表1に示した。
Example 2 10 kg of Rochelle salt (potassium sodium tartrate)
Sodium borohydride (NaBH 4 12%, NaOH
(40% solution) Dissolve 1 L of polyethylene glycol and 0.5 L of polyethylene glycol in about 100 L of ion-exchanged water, add 20 kg of molybdenum disulfide powder and 2 kg of tin powder thereto, and stir the mixture while adding cupric chloride (20 kg as copper). (10% solution) and a 35% formalin solution are dropped to carry out a copper plating reaction. During the reaction, the pH of the bath is 12-1.
Adjust by adding 20% caustic soda to 2.5
Keep the temperature at 20-25 ° C. After the reaction, the powder is filtered, dried, and heat-treated in a hydrogen atmosphere. By the above operation, about 40 kg of copper-plated molybdenum disulfide powder was obtained. The copper coating had good adhesion and was formed uniformly, as can be seen in the powder cross-sectional micrograph of FIG. Table 1 shows the copper concentration and apparent density of this powder.

【0026】比較例3 ロッシェル塩(酒石酸カリウムナトリウム)10kg、
水素化ホウ素ナトリウム(NaBH412%、NaOH
40%溶液)1L、ポリエチレングリコール0.5Lを
イオン交換水約100Lに溶解し、そこに二硫化モリブ
デン―半田10wt%熔融メッキ粉22kgを投入し、
これを攪拌しながら、塩化第二銅(銅として20kg、
10%溶液)とホルマリン35%溶液とを含むメッキ液
を滴下して銅メッキ反応を行う。反応中は浴のpHが1
2〜12.5となるように20%苛性ソーダを加えて調
整し、温度20〜25℃に保つ。反応後、粉末をろ過、
乾燥し、水素雰囲気下で加熱処理を行う。以上の操作で
銅メッキ二硫化モリブデン粉末を得た。銅被膜は密着性
がよく、図5の粉末断面顕微鏡写真に認められるよう
に、均一に形成されていた。この粉末の銅濃度と見掛け
密度を表1に示した。
Comparative Example 3 10 kg of Rochelle salt (potassium sodium tartrate)
Sodium borohydride (NaBH 4 12%, NaOH
(40% solution) 1 L and polyethylene glycol 0.5 L are dissolved in about 100 L of ion-exchanged water, and 22 kg of a molybdenum disulfide-solder 10 wt% molten plating powder is put therein.
While stirring this, cupric chloride (20 kg as copper,
A plating solution containing a 10% solution) and a 35% formalin solution is dropped to perform a copper plating reaction. During the reaction, the pH of the bath is 1
The temperature is adjusted by adding 20% caustic soda to adjust to 2 to 12.5, and the temperature is maintained at 20 to 25 ° C. After the reaction, the powder was filtered,
After drying, heat treatment is performed in a hydrogen atmosphere. Through the above operation, a copper-plated molybdenum disulfide powder was obtained. The copper film had good adhesion and was formed uniformly as seen in the powder cross-sectional micrograph of FIG. Table 1 shows the copper concentration and apparent density of this powder.

【0027】比較例4 ロッシェル塩(酒石酸カリウムナトリウム)10kg、
水素化ホウ素ナトリウム(NaBH412%、NaOH
40%溶液)1L、ポリエチレングリコール0.5Lを
イオン交換水約100Lに溶解し、そこに二硫化モリブ
デン粉20kgを投入する。以後、比較例3と同様の操
作で、銅メッキ二硫化モリブデン粉末約40kgを得
た。銅はデンドライド状に成長しており、図6の粉末断
面顕微鏡写真に認められるように、密着性のよい均一な
銅被膜は形成されなかった。銅濃度と見掛け密度を表1
に示したが、実施例2及び比較例3の粉末に比べて見掛
け密度の低いものであった。
Comparative Example 4 10 kg of Rochelle salt (potassium sodium tartrate)
Sodium borohydride (NaBH 4 12%, NaOH
1 L of a 40% solution) and 0.5 L of polyethylene glycol are dissolved in about 100 L of ion-exchanged water, and 20 kg of molybdenum disulfide powder is added thereto. Thereafter, in the same manner as in Comparative Example 3, about 40 kg of copper-plated molybdenum disulfide powder was obtained. Copper was grown in dendritic form, and a uniform copper film with good adhesion was not formed as seen in the powder cross-sectional micrograph of FIG. Table 1 shows copper concentration and apparent density
However, the apparent density was lower than those of the powders of Example 2 and Comparative Example 3.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】この発明の無電解メッキ方法は、従来の
方法における工程を簡略化したにもかかわらず、得られ
るメッキ粉末における金属被膜は、粉末表面へのつきま
わり性がよく、塗膜は高精度で均一であり、密着強度も
大きいものである。
According to the electroless plating method of the present invention, despite the simplification of the steps in the conventional method, the metal coating in the obtained plating powder has good throwing power to the powder surface, and the coating is It is uniform with high precision and has high adhesion strength.

【0030】しかも、前記したように、この発明の無電
解メッキ方法は、簡単かつ安価な方法であり、浴管理も
容易なものであるから、金属被覆無機質粉末の工業的製
造に多大な貢献を成すものである。
Moreover, as described above, the electroless plating method of the present invention is a simple and inexpensive method, and the bath management is easy, so that it greatly contributes to the industrial production of metal-coated inorganic powder. What it does.

【0031】この発明のメッキ粉末は、被膜が均一で高
精度であり、異種粉末との混合又は溶射時に、金属の被
膜が剥離しないという優れた被膜密着性を有する。
The plating powder of the present invention has a uniform and high-precision coating, and has excellent coating adhesion such that the metal coating does not peel off when mixed or sprayed with a different kind of powder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で調製された銅メッキ黒鉛粉末の切断
面の顕微鏡写真である。
FIG. 1 is a photomicrograph of a cut surface of the copper-plated graphite powder prepared in Example 1.

【図2】比較例1で調製された銅メッキ黒鉛粉末の切断
面の顕微鏡写真である。
FIG. 2 is a micrograph of a cut surface of the copper-plated graphite powder prepared in Comparative Example 1.

【図3】比較例2で調製された銅メッキ黒鉛粉末の切断
面の顕微鏡写真である。
FIG. 3 is a micrograph of a cut surface of the copper-plated graphite powder prepared in Comparative Example 2.

【図4】実施例2で調製された銅メッキ二硫化モリブデ
ン粉末の切断面の顕微鏡写真である。
FIG. 4 is a micrograph of a cut surface of the copper-plated molybdenum disulfide powder prepared in Example 2.

【図5】比較例3で調製された銅メッキ二硫化モリブデ
ン粉末の切断面の顕微鏡写真である。
FIG. 5 is a micrograph of a cut surface of the copper-plated molybdenum disulfide powder prepared in Comparative Example 3.

【図6】比較例4で調製された銅メッキ二硫化モリブデ
ン粉末の切断面の顕微鏡写真である。
FIG. 6 is a micrograph of a cut surface of the copper-plated molybdenum disulfide powder prepared in Comparative Example 4.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K018 BA11 BA20 BC24 BD09 KA02 KA03 KA05 KA22 4K022 AA01 AA04 AA35 BA06 BA08 BA14 DA01 DB30  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K018 BA11 BA20 BC24 BD09 KA02 KA03 KA05 KA22 4K022 AA01 AA04 AA35 BA06 BA08 BA14 DA01 DB30

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 無機質粉末に無電解メッキを施すに際
し、 メッキ金属よりイオン化傾向の大きい金属を並存させる
ことを特徴とする無電解メッキ方法。
1. An electroless plating method characterized in that a metal having a higher ionization tendency than a plating metal is present when electroless plating is performed on an inorganic powder.
【請求項2】 前記イオン化傾向の大きい金属が、 金属単体又はそれらを含む合金であることを特徴とする
請求項1に記載の無電解メッキ方法。
2. The electroless plating method according to claim 1, wherein the metal having a high ionization tendency is a simple metal or an alloy containing them.
【請求項3】 前記イオン化傾向の大きい金属が、粉末
状であることを特徴とする請求項1に記載の無電解メッ
キ方法。
3. The electroless plating method according to claim 1, wherein the metal having a high ionization tendency is in a powder form.
【請求項4】 前記無電解メッキが、無電解銅メッキで
あることを特徴とする請求項1乃至3に記載の無電解メ
ッキ方法。
4. The electroless plating method according to claim 1, wherein the electroless plating is electroless copper plating.
【請求項5】 前記イオン化傾向の大きい金属が、 亜鉛、錫、鉛又はそれらを含む合金であることを特徴と
する請求項4に記載の無電解メッキ方法。
5. The electroless plating method according to claim 4, wherein the metal having a high ionization tendency is zinc, tin, lead or an alloy containing them.
【請求項6】 請求項1乃至5記載の無電解メッキ方法
により、 無機質粉末に金属がメッキされていることを特徴とする
メッキ粉末。
6. A plating powder, wherein a metal is plated on an inorganic powder by the electroless plating method according to claim 1.
JP2000288663A 2000-09-22 2000-09-22 Electroless copper plating method and plating powder Expired - Fee Related JP3689861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000288663A JP3689861B2 (en) 2000-09-22 2000-09-22 Electroless copper plating method and plating powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000288663A JP3689861B2 (en) 2000-09-22 2000-09-22 Electroless copper plating method and plating powder

Publications (2)

Publication Number Publication Date
JP2002097578A true JP2002097578A (en) 2002-04-02
JP3689861B2 JP3689861B2 (en) 2005-08-31

Family

ID=18772207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000288663A Expired - Fee Related JP3689861B2 (en) 2000-09-22 2000-09-22 Electroless copper plating method and plating powder

Country Status (1)

Country Link
JP (1) JP3689861B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183844A (en) * 2001-12-18 2003-07-03 Murata Mfg Co Ltd Electronic component and manufacturing process therefor
CN102586704A (en) * 2012-03-23 2012-07-18 北京科技大学 High thermal conductivity graphite whisker/copper composite and preparation method thereof
CN102586703A (en) * 2012-03-23 2012-07-18 北京科技大学 Method for preparing graphite whisker reinforced aluminum matrix composite material
WO2018033577A1 (en) * 2016-08-16 2018-02-22 Seram Coatings As Thermal spraying of ceramic materials

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183844A (en) * 2001-12-18 2003-07-03 Murata Mfg Co Ltd Electronic component and manufacturing process therefor
CN102586704A (en) * 2012-03-23 2012-07-18 北京科技大学 High thermal conductivity graphite whisker/copper composite and preparation method thereof
CN102586703A (en) * 2012-03-23 2012-07-18 北京科技大学 Method for preparing graphite whisker reinforced aluminum matrix composite material
WO2018033577A1 (en) * 2016-08-16 2018-02-22 Seram Coatings As Thermal spraying of ceramic materials
KR20190051980A (en) * 2016-08-16 2019-05-15 세람 코팅스 에이에스 Thermal spraying of ceramic materials
CN109844177A (en) * 2016-08-16 2019-06-04 塞拉姆涂料股份有限公司 The thermal spraying of ceramic material
JP2019531405A (en) * 2016-08-16 2019-10-31 セラム コーティングス エーエス Thermal spraying of ceramic materials
AU2017314133B2 (en) * 2016-08-16 2020-01-30 Seram Coatings As Thermal spraying of ceramic materials
JP7057776B2 (en) 2016-08-16 2022-04-20 セラム コーティングス エーエス Thermal spraying of ceramic materials
CN109844177B (en) * 2016-08-16 2022-05-17 塞拉姆涂料股份有限公司 Thermal spraying of ceramic materials
US11697880B2 (en) 2016-08-16 2023-07-11 Seram Coatings As Thermal spraying of ceramic materials comprising metal or metal alloy coating
KR102564289B1 (en) * 2016-08-16 2023-08-07 세람 코팅스 에이에스 thermal spraying of ceramic materials

Also Published As

Publication number Publication date
JP3689861B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
Barker Electroless deposition of metals
EP3660189B1 (en) Process for metallizing nonconductive plastic surfaces
CA2415724A1 (en) Electroless silver plating
JPS5818430B2 (en) Electroless plating bath and plating method
US4780342A (en) Electroless nickel plating composition and method for its preparation and use
JP4790191B2 (en) Electrolytic bath for electrochemical deposition of palladium or its alloys
US4695489A (en) Electroless nickel plating composition and method
JP2004536219A5 (en)
TW200416299A (en) Electroless gold plating solution
JP3689861B2 (en) Electroless copper plating method and plating powder
RU2398049C2 (en) Improved stabilisation and working characteristics of auto-catalyst procedures of coating application by method of chemical reduction
Brenner et al. Nickel plating on steel by chemical reduction
JP4740508B2 (en) Palladium complex salts and their use to adjust the palladium concentration of electrolytic baths for depositing palladium or one of its alloys
GB2121444A (en) Electroless gold plating
US3667972A (en) Chemical nickel plating baths
JPH03146602A (en) Metal coating powder and manufacture thereof
CA2415781A1 (en) Electroless rhodium plating
JPH09316649A (en) Electroless plating solution
JPH05271981A (en) Platinum alloy plating bath and production of platinum alloy-plated article using the bath
JPH02185901A (en) Copper-silver-coated metal sulfide powder and manufacture thereof
JP2999157B2 (en) Copper coated carbon powder
JPH02138402A (en) Metal-coated metallic sulfide powder and manufacture thereof
JPS63153259A (en) Surface treatment of iron or iron alloy material
JPH0124231B2 (en)
JPH07166392A (en) Gold plating solution and gold plating method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050602

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees