JPH01149902A - Fine granular complex powder - Google Patents

Fine granular complex powder

Info

Publication number
JPH01149902A
JPH01149902A JP62308314A JP30831487A JPH01149902A JP H01149902 A JPH01149902 A JP H01149902A JP 62308314 A JP62308314 A JP 62308314A JP 30831487 A JP30831487 A JP 30831487A JP H01149902 A JPH01149902 A JP H01149902A
Authority
JP
Japan
Prior art keywords
powder
fine
plating
iron powder
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62308314A
Other languages
Japanese (ja)
Inventor
Eiki Takeshima
鋭機 竹島
Yoichi Kojima
洋一 兒島
Akira Sakakura
坂倉 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP62308314A priority Critical patent/JPH01149902A/en
Publication of JPH01149902A publication Critical patent/JPH01149902A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture fine granular complex powder suitable for injection molding by executing electric plating of Zn, Ni, Sn, Pb, Cu, etc., on the surface of fine granular iron powder having the specific particle size. CONSTITUTION:The electric plating of one or more kinds selected among Zn, Ni, Sn, Pb and Cu is executed on the surface of the granular fine iron powder or carbonyl iron powder having 0.1-10mu the range of the particle size, obtd. by reducing fine oxide powder with hydrogen gas. By this method, the fine granular complex powder having suitable use as the powder raw material for injection molding is obtd. and powder metallurgy product having good quality is formed at low cost and further excellent effect is shown as electrical conductive filler.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、射出成型用に適した金属粉末、さらには電磁
シールド材やICのプリント回路材の導電性フィラーと
して好適な微細粒状複合粉末に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a metal powder suitable for injection molding, and further to a fine granular composite powder suitable as a conductive filler for electromagnetic shielding materials and printed circuit materials for ICs. .

〔従来の技術〕[Conventional technology]

従来より、粉末冶金の一つの分野として射出成形法が知
られている。これは、微細な金属粉をバインダーと良く
混練後造粒して射出成型機で成形を行い、その後、脱バ
インダー、焼結工程を経て形状の複雑な成型品を得よう
とするものである。
Injection molding has been known as one field of powder metallurgy. This involves thoroughly kneading fine metal powder with a binder, granulating it, molding it with an injection molding machine, and then performing a binder removal and sintering process to obtain a molded product with a complex shape.

したがって9通常の粉末冶金のような圧粉工程を経ない
で、成品の緻密化は主として焼結によって行われる。し
かし、射出成型されたままのグリーンコンパクトの状態
においてもなるべく充填密度が大きく且つ均一に充填さ
れているほうが緻密化に存利である。なお、脱バインダ
ー処理時および焼結時に生じる収縮率が3次元方向で不
均一となると焼結後の寸法精度が悪くなる。これらのこ
とから、射出成型用の金属粉末としては1球状ある 、
いは等軸形で粒径が数μ慣の微粉が適すると言われてい
る。従来より、アトマイズ粉の粒径の小さな部分、カル
ボニル鉄粉およびニッケル粉、酸化物粉を水素還元して
得られる高融点金属粉等が射出成型用に使用されている
Therefore, the densification of the finished product is mainly performed by sintering, without going through the powder compaction process as in normal powder metallurgy. However, even in the green compact state that has been injection molded, it is advantageous for densification to be as high and uniformly filled as possible. Note that if the shrinkage rate that occurs during binder removal treatment and sintering becomes non-uniform in three dimensions, the dimensional accuracy after sintering will deteriorate. From these facts, metal powder for injection molding has a spherical shape.
It is said that a fine powder with an equiaxed shape and a particle size of several micrometers is suitable. Conventionally, small particle diameter portions of atomized powder, carbonyl iron powder and nickel powder, high melting point metal powder obtained by hydrogen reduction of oxide powder, and the like have been used for injection molding.

他方、近年電波障害防止のための電磁波シールドの必要
性が叫ばれており、電解銅粉やカルボニルニッケル粉を
使用した導電性塗料などが実用化されている。また、電
子部品の小型化、精密化1号よび高集積化に伴って、I
Cプリント回路材の導電性フィラーとして3μm以下の
できるだけ微細で1球形の上1価格の安い金属粉が求め
られている。
On the other hand, in recent years, the need for electromagnetic shielding to prevent radio wave interference has been emphasized, and conductive paints using electrolytic copper powder or carbonyl nickel powder have been put into practical use. In addition, with the miniaturization, precision, and high integration of electronic components, I
As a conductive filler for C-printed circuit materials, there is a demand for metal powder that is as fine as possible, 3 μm or less in size, spherical, and inexpensive.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の金属粉を使用した射出成型粉末冶金ではバインダ
ーが必要である。このために焼結成品の緻密化に問題が
あると共に寸法精度にも問題が生ずることがある。さら
に金属粉とバインダーとの均一分散処理工程や脱バイン
ダー処理工程が付加されるので工数が多くなると共にバ
インダー費用が必要となる。
Traditional injection molding powder metallurgy using metal powder requires a binder. This may cause problems in densification of the sintered product and also in dimensional accuracy. Furthermore, a process for uniformly dispersing the metal powder and the binder and a process for removing the binder are added, which increases the number of man-hours and increases the cost of the binder.

一方、電磁シールド材やICプリント回路材のだめの従
来の導電性金属粉は価格が一般に高価であり、3μ−以
下の微粉で且つ充填性および分散性の優れた高導電性金
属からなる球状の微細粉を安価に得ることは出来なかっ
た。
On the other hand, conventional conductive metal powder used in electromagnetic shielding materials and IC printed circuit materials is generally expensive, and is a fine spherical powder made of highly conductive metal with a particle size of 3μ or less and excellent filling and dispersibility. Powder could not be obtained cheaply.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は1粒径が0.1u+mから10μmの範囲の粒
状鉄粉の表面に、亜鉛、ニッケル、錫、鉛または銅の一
種または二種以上の電気メッキを施してなる微細粒状複
合粉末を提供するものである。
The present invention provides a fine granular composite powder obtained by electroplating one or more of zinc, nickel, tin, lead, or copper on the surface of granular iron powder with a grain size ranging from 0.1 u+m to 10 μm. It is something to do.

換言すれば本発明は1粒径が0.1μmから10μmの
範囲の粒状鉄粉の表面に、亜鉛、ニッケル、錫。
In other words, in the present invention, zinc, nickel, and tin are applied to the surface of granular iron powder having a grain size ranging from 0.1 μm to 10 μm.

鉛または銅の一種または二種以上の電気メッキを施して
なる射出成型用微細粒状複合粉末。
A fine granular composite powder for injection molding that is electroplated with one or more types of lead or copper.

さらには2粒径が0.1μ剛から10μmの範囲の粒状
鉄粉の表面に、ニッケルまたは銅の電気メンキを施して
なる電磁シールド材またはICプリント回路材の導電性
フィラーを提供するものである。
Furthermore, the present invention provides a conductive filler for electromagnetic shielding materials or IC printed circuit materials, which is made by applying nickel or copper electroplating to the surface of granular iron powder having a grain size ranging from 0.1 μm to 10 μm. .

微細酸化鉄粉を水素ガス還元した粒径が0.1μmから
10μmの粒状微細鉄粉あるいは粒径が0.1μmから
10μmのカルボニル鉄粉の表面に、亜鉛、ニッケル、
錫、鉛および銅の一種または二種以上を電気メッキした
ものは、射出成型用粉末冶金原料として最適の粉末であ
ることを本発明者らは見出した。すなわち9従来におい
て異種金属粉末を混合して射出成型する場合1例えば鉄
粉とニッケル粉などを機械的に混合して射出成型する場
合等には、ミクロな観点では必ずしも均一に混合されて
いるとは言い難く、このため焼結体の寸法安定性や機械
的強度、更には耐食性などに問題があったのであるが1
本発明のように、使用する微細な鉄粉の一粒づつに1例
えばニッケルなどがメッキされていれば、ニッケル成分
の均一性は粉末混合法に比べると極めて良好なうえ、焼
結は、被覆材であるニッケルとニッケル同士で起こるこ
とになって焼結材の機械的特性も均一でバラツキが少な
くなり、且つ焼結体の耐食性も良好となることがわかっ
た。さらに高価なニッケル微粉末を使用しないでもよい
点でのコスト面での利点も大きい。
Zinc, nickel,
The present inventors have discovered that a powder electroplated with one or more of tin, lead, and copper is the most suitable powder as a powder metallurgy raw material for injection molding. In other words, 9 When dissimilar metal powders are mixed and injection molded in the past 1 For example, when iron powder and nickel powder are mechanically mixed and injection molded, it is not always the case that they are mixed uniformly from a microscopic point of view. Therefore, there were problems with the dimensional stability, mechanical strength, and even corrosion resistance of the sintered body.
As in the present invention, if each grain of fine iron powder used is plated with nickel, for example, the uniformity of the nickel component is extremely good compared to the powder mixing method, and sintering It was found that the mechanical properties of the sintered material are uniform and have less variation, and the corrosion resistance of the sintered body is also good because this occurs between nickel and nickel. Furthermore, there is a great cost advantage in that it does not require the use of expensive nickel fine powder.

酸化鉄粉を水素ガス還元して微細な還元鉄粉を得る方法
としては5できるだけ微細な酸化鉄粉を用いて低速回転
のロータリーキルン中で均一な粉末流動層を形成させ、
560°C以下の低温で水素ガス還元することで可能で
ある。この方法で0.1μmから3.OtImの範囲の
ほぼ球形で微細な鉄粉を純度97wt、1以上の高純度
で得ることができる。このような鉄粉を電気メッキ基材
として用いれば。
A method for obtaining fine reduced iron powder by reducing iron oxide powder with hydrogen gas is to form a uniform powder fluidized bed in a rotary kiln rotating at low speed using iron oxide powder as fine as possible.
This is possible by reducing hydrogen gas at a low temperature of 560°C or lower. With this method, from 0.1 μm to 3. Approximately spherical fine iron powder in the OtIm range can be obtained with a purity of 97wt or higher than 1. If such iron powder is used as an electroplating base material.

粒径が3μ麟から10μ■の範囲のカルボニル鉄粉を用
いるよりもはるかに微細な粒状複合鉄粉を作ることがで
きる。
A much finer granular composite iron powder can be produced than using carbonyl iron powder with a particle size in the range of 3 μm to 10 μm.

なお、水素ガス還元鉄粉あるいはカルボニル鉄粉に代え
て、塩化鉄粉を水素ガス還元することによって得られる
針状還元鉄粉(これはメタルテープ用などに多く供され
ている)のようなものを電気メッキ基材として使用する
こともでき、この場合にも前記同様の特性を付与するこ
とも可能であり1例えば該針状還元鉄粉に電気ニッケル
メッキを施せばその耐食性を大きく改善することができ
る。
In addition, instead of hydrogen gas reduced iron powder or carbonyl iron powder, acicular reduced iron powder obtained by reducing iron chloride powder with hydrogen gas (this is often used for metal tapes, etc.) can be used. can also be used as an electroplating base material, and in this case, it is also possible to impart the same characteristics as described above.1 For example, if the acicular reduced iron powder is electroplated with nickel, its corrosion resistance can be greatly improved. Can be done.

本発明に従う微細粒状複合粉末を得る場合の電気メッキ
液としては、従来より使用されている亜鉛、ニッケル、
錫、鉛および銅の各メッキ液組成のものが使用可能であ
る。その他、N1−P、N1−B、N1−Nまたは銅の
無電解メッキを行うこともできる。また、鉄粉に電気ニ
ッケルメッキを施した後、さらに電気銅メンキを施すな
どの2層メッキも可能である。この場合には1例えば鉄
粉にニッケルと銅を2層メッキすることによって2焼結
時の収縮率をできるだけ少なくして焼結体の寸法精度の
向上や気孔率の残少を計ることができる。
The electroplating solution used to obtain the fine granular composite powder according to the present invention includes conventionally used zinc, nickel,
Plating solution compositions of tin, lead, and copper can be used. In addition, electroless plating of N1-P, N1-B, N1-N or copper can also be performed. It is also possible to perform two-layer plating, such as electrolytic nickel plating on iron powder and then electrolytic copper coating. In this case, 1. For example, by plating the iron powder with two layers of nickel and copper, 2. the shrinkage rate during sintering can be minimized to improve the dimensional accuracy of the sintered body and reduce the residual porosity. .

微細な鉄粉に前述の各種金属を電気メッキする具体的な
技術としては1例えば特願昭61−161950号に提
案された方法が本発明に適用できる。
As a specific technique for electroplating fine iron powder with the various metals mentioned above, for example, the method proposed in Japanese Patent Application No. 161950/1988 can be applied to the present invention.

本発明の微細粒状複合粉末は、FA末自身更には焼結成
品の高強化9強靭化または潤滑性付与のために、黒鉛+
  Si+’ Cr+  V、Nb+  Teなどの元
素を@量配合してお(こともできる。この場合には例え
ば特願昭61−93223号に提案した方法によって本
発明の微細粒状複合粉末の表面に前述の微量添加元素を
スパッタリング法によってコーティングするのがよい。
The fine granular composite powder of the present invention can be used for graphite +
Elements such as Si+' Cr+ V, Nb+ Te, etc. may be blended in an amount. It is preferable to coat with a trace amount of added elements by sputtering.

本発明に従う粒径が0.1μmから10μ慣の範囲の粒
状鉄粉の表面に、ニッケルまたは銅の電気メッキを施し
た微細粒状複合粉末は、電磁シールド材またはICプリ
ント回路材として従来より使用されているニッケル粉や
銅粉に比べて、安価で且つ微細なことから導電性フィラ
ーとして非常に好適なものである。
The fine granular composite powder according to the present invention, which is made by electroplating nickel or copper on the surface of granular iron powder with a particle size in the range of 0.1 μm to 10 μm, has been conventionally used as an electromagnetic shielding material or an IC printed circuit material. It is very suitable as a conductive filler because it is cheaper and finer than nickel powder or copper powder.

本発明の微細粒状複合粉末は、以下にその代表例を示す
ような製法によって製造することができる。
The fine-grained composite powder of the present invention can be manufactured by the following manufacturing method, typical examples of which are shown below.

〔製法の実施例1] 日新製鋼株式会社の堺製造所における塩酸回収装置で副
生じた高純度酸化鉄粉(平均粒径; (1,65//f
fi、不純物冒Cj! =0.0911t、χ、  S
 i O2=0.02wt、χ。
[Example 1 of manufacturing method] High purity iron oxide powder (average particle size; (1,65//f
fi, impurity blasphemy Cj! =0.0911t, χ, S
iO2=0.02wt, χ.

Crt Os = 0.05wt、χ、FezO3とし
て99.5wL、%以上)を日清エンジニアリング(株
)製のターボクラシファイヤーTC−15N型で1.0
μm以上と以下の粒径に分級し、1.0μm以下の酸化
鉄粉を得た。
CrtOs = 0.05wt, χ, 99.5wL as FezO3, % or more) was 1.0 using Turbo Classifier TC-15N type manufactured by Nisshin Engineering Co., Ltd.
The particles were classified into particle sizes of 1.0 μm or less and iron oxide powders of 1.0 μm or less were obtained.

この酸化鉄粉160gを、直径100mm、  長さ8
00mmの5US304製の電熱式ロータリーキルンに
投入し、2rpmの回転数で回転しつつ水素ガスを42
7m1nの流量で流し、450°Cで10時間水素ガス
還元を行った。還元後、冷却して還元鉄粉を110g得
た。これを試験したところ、還元率97%の高純度の鉄
からなり、平均粒径0.8μm、アスペクト比2.0で
事実上はとんど焼結していない粒状の鉄微粉末であった
160g of this iron oxide powder is 100mm in diameter and 8 in length.
00mm 5US304 electric heating rotary kiln, and while rotating at 2 rpm, hydrogen gas was heated at 42 rpm.
Hydrogen gas reduction was carried out at 450°C for 10 hours by flowing at a flow rate of 7mln. After reduction, it was cooled to obtain 110 g of reduced iron powder. When this was tested, it was found that it was made of high-purity iron with a reduction rate of 97%, had an average particle size of 0.8 μm, and an aspect ratio of 2.0, and was virtually unsintered. .

この還元鉄粉を30gづつ30ット分取し、各々下記に
示す条件で、電気ニッケルメッキ、電気銅メッキ、およ
び電気銅メン牛後電気ニッケルメッキの2層メッキ、0
3通りのメッキを行った。なお、メッキにあたっては特
願昭61−161950号に記載したのと同一の装置を
用いた。
30 tons of 30 g each of this reduced iron powder were taken out and subjected to two-layer plating of electrolytic nickel plating, electrolytic copper plating, electrolytic nickel plating after electrolytic copper coating, and 0
Three types of plating were performed. For plating, the same equipment as described in Japanese Patent Application No. 161950/1983 was used.

(1)、電気ニッケルメッキ条件 〔浴組成] 硫酸ニッケル 150g/ 42 塩化アンモン 15g/ 1 ホウ酸    15g/ e 〔メッキ条件〕 pH5,8〜6.2 a、温     常温 陽極     ニッケル板 陰極     チタン板 電流およびメンキ時間 2.8Aおよび1時間(2)5
 電気銅メッキ条件 〔浴組成〕 ピロリン酸1i1  345g/l 水酸化カリウム 18g/ 1 アンモニア水  10m l / It(メッキ条件〕
    。
(1), Electronickel plating conditions [bath composition] Nickel sulfate 150g/42 Ammonium chloride 15g/1 Boric acid 15g/e [Plating conditions] pH 5.8 to 6.2 a, temperature Room temperature anode Nickel plate cathode Titanium plate current and Maintenance time 2.8A and 1 hour (2) 5
Electrolytic copper plating conditions [bath composition] Pyrophosphoric acid 1i1 345g/l Potassium hydroxide 18g/1 Ammonia water 10ml/It (plating conditions)
.

pH8,2〜8.8 液温      40〜60’C 陽極      銅板 陰極      5US304板 電流およびメッキ時間 2.5Aおよび1時間これらの
メッキ処理の結果、電気ニッケルメッキおよび電気銅メ
ッキとも、鉄粉表面へのメッキ析出量は各々8 wt、
χであった。
pH 8,2~8.8 Liquid temperature 40~60'C Anode Copper plate cathode 5US304 plate Current and plating time 2.5A and 1 hour As a result of these plating treatments, both electrolytic nickel plating and electrolytic copper plating have no effect on the iron powder surface. The amount of plating deposited was 8 wt each.
It was χ.

電気銅メッキ後電気ニッケルメッキの2層メンキについ
ては、各々メッキ時間を0.5時間に半減した以外は、
前記と同一の条件で行い4 wt、%のニッケルと4−
t、χの銅で2層メッキされた微細粒状複合粉末を得た
Regarding the two-layer coating of electrolytic copper plating followed by electrolytic nickel plating, each plating time was halved to 0.5 hours.
Performed under the same conditions as above, 4 wt.% nickel and 4-
A fine granular composite powder plated with two layers of copper of t and χ was obtained.

〔製法の実施例2〕 米国−ITEC社製のカルボニル鉄粉(平均粒径;5.
0μ繭、純度;99%以上)100gに対して、下記に
示す条件で電気亜鉛メッキ、電気錫メッキおよび電気鉛
メッキの3通りのメッキを行った。なお。
[Example 2 of manufacturing method] Carbonyl iron powder manufactured by ITEC (USA) (average particle size: 5.
100 g of 0 μ cocoons (purity: 99% or higher) was subjected to three types of plating: electrolytic zinc plating, electrolytic tin plating, and electrolytic lead plating under the conditions shown below. In addition.

メッキにあたっては、実施例1と同様、特願昭61−1
61950号に示したのと同一の装置を用いた。
For plating, as in Example 1,
The same equipment as shown in No. 61950 was used.

(3)、電気亜鉛メッキ条件 〔浴組成〕 塩化亜鉛     150g/ 1 塩化アンモニウム 200g/ i! 〔メッキ条件〕 pH3,5〜4.0 液温     3o〜40”C 陽極     亜鉛板 陰極     5115304板 電流およびメッキ時間 5Aおよび4時間(4)、電気
錫メッキ条件 〔浴組成〕 錫酸カリウム  80g/ 1 水酸化カリウム 30g/ j! 〔メッキ条件〕 pH12〜13 液温     80〜90″C 陽極     錫板 陰極     5US304板 電流およびメッキ時間 5Aおよび2時間(5)、電気
鉛メッキ条件 〔浴組成〕 ホウフッ化鉛  205g/ 12 ホウフツ酸   20g/ 1 ホウ酸     20g/ 1 ゼラチン    0.15g/j2 〔メッキ条件〕 p H1,0〜2.0 液温     30〜40’C 陽極     鉛板 陰極     5US304板 電流およびメッキ時間 3Aおよび2時間その結果、電
気亜鉛メッキ、電気錫メッキおよび電気鉛メッキともい
ずれも20wt、χ量のメッキを施した本発明品の複合
鉄粉を得た。
(3) Electrogalvanizing conditions [bath composition] Zinc chloride 150g/1 Ammonium chloride 200g/i! [Plating conditions] pH 3,5-4.0 Liquid temperature 3o-40"C Anode Zinc plate cathode 5115304 plate current and plating time 5A and 4 hours (4), electrolytic tin plating conditions [Bath composition] Potassium stannate 80g/1 Potassium hydroxide 30g/j! [Plating conditions] pH 12-13 Liquid temperature 80-90''C Anode Tin plate cathode 5US304 plate current and plating time 5A and 2 hours (5), electrolytic lead plating conditions [Bath composition] Lead borofluoride 205g/12 Boric acid 20g/1 Boric acid 20g/1 Gelatin 0.15g/j2 [Plating conditions] pH 1,0~2.0 Liquid temperature 30~40'C Anode Lead plate cathode 5US304 plate current and plating time 3A and As a result, a composite iron powder of the present invention was obtained which was subjected to electrolytic zinc plating, electrolytic tin plating, and electrolytic lead plating in an amount of 20 wt and χ amount.

(発明の効果〕 以上のようにして得られた本発明の微細粒状複合粉末は
、射出成型用粉末冶金原料として非常に好適なものであ
り、安価にして良品質の粉末冶金成品を得ることができ
る。また1本発明の微細粒状複合粉末は導電性フィラー
としても優れた効果を発揮する。なお、防錆顔料または
磁性材料などの多くの用途にも適用可能である。
(Effects of the Invention) The fine granular composite powder of the present invention obtained as described above is very suitable as a powder metallurgy raw material for injection molding, and it is possible to obtain high-quality powder metallurgy products at low cost. In addition, the fine granular composite powder of the present invention exhibits excellent effects as a conductive filler.It can also be applied to many uses such as rust-preventing pigments and magnetic materials.

Claims (3)

【特許請求の範囲】[Claims] (1)粒径が0.1μmから10μmの範囲の粒状鉄粉
の表面に,亜鉛,ニッケル,錫,鉛または銅の一種また
は二種以上の電気メッキを施してなる微細粒状複合粉末
(1) Fine granular composite powder obtained by electroplating one or more of zinc, nickel, tin, lead, or copper on the surface of granular iron powder with a particle size in the range of 0.1 μm to 10 μm.
(2)粒状鉄粉が微細酸化鉄粉を水素ガス還元した還元
鉄粉である特許請求の範囲第1項記載の微細粒状複合粉
末。
(2) The fine granular composite powder according to claim 1, wherein the granular iron powder is reduced iron powder obtained by reducing fine iron oxide powder with hydrogen gas.
(3)粒状鉄粉がカルボニル鉄粉である特許請求の範囲
第1項記載の微細粒状複合粉末。
(3) The fine granular composite powder according to claim 1, wherein the granular iron powder is carbonyl iron powder.
JP62308314A 1987-12-05 1987-12-05 Fine granular complex powder Pending JPH01149902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62308314A JPH01149902A (en) 1987-12-05 1987-12-05 Fine granular complex powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62308314A JPH01149902A (en) 1987-12-05 1987-12-05 Fine granular complex powder

Publications (1)

Publication Number Publication Date
JPH01149902A true JPH01149902A (en) 1989-06-13

Family

ID=17979559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62308314A Pending JPH01149902A (en) 1987-12-05 1987-12-05 Fine granular complex powder

Country Status (1)

Country Link
JP (1) JPH01149902A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015863A (en) * 1989-05-31 1991-05-14 Sumitomo Heavy Industries, Ltd. Radiation shield and shielding material with excellent heat-transferring property
JPH0541113A (en) * 1990-11-13 1993-02-19 Nissei Plastics Ind Co Conductive compounding material and manufacture thereof
US5547488A (en) * 1992-02-14 1996-08-20 Dowa Iron Powder Co., Ltd. Method of making ejection powder for mechanical plating
JP2002218801A (en) * 2001-01-25 2002-08-06 Sugano Farm Mach Mfg Co Ltd Digging/tilling claw for digging/tilling implement and the digging/tilling implement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015863A (en) * 1989-05-31 1991-05-14 Sumitomo Heavy Industries, Ltd. Radiation shield and shielding material with excellent heat-transferring property
JPH0541113A (en) * 1990-11-13 1993-02-19 Nissei Plastics Ind Co Conductive compounding material and manufacture thereof
US5547488A (en) * 1992-02-14 1996-08-20 Dowa Iron Powder Co., Ltd. Method of making ejection powder for mechanical plating
JP2002218801A (en) * 2001-01-25 2002-08-06 Sugano Farm Mach Mfg Co Ltd Digging/tilling claw for digging/tilling implement and the digging/tilling implement

Similar Documents

Publication Publication Date Title
US4309457A (en) Process of producing multilayer-coated composite powder
JP5848711B2 (en) Method for producing silver particles
JP5858201B1 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
WO2007040195A1 (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
KR20170031215A (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
JP4094480B2 (en) Chain metal powder, method for producing the same, and conductivity imparting material using the same
JP2021113358A (en) Silver-covered metal powder and method for producing the same
US20050284260A1 (en) Method for manufacturing the metal coated amorphous powder
DE202016007550U1 (en) Electroplated copper alloys with high strength and conductivity
DE1812011B2 (en) BASE MATERIAL FOR MANUFACTURING A PERMANENT MAGNET FROM POWDER OF A COMPOUND OF TYPE CO DEEP 5 R AND PROCESS FOR MANUFACTURING THE POWDER
JPH01149902A (en) Fine granular complex powder
KR20010040267A (en) HIGH CORROSION-RESISTANT R-Fe-B BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
JP4583164B2 (en) Silver-copper composite powder and method for producing silver-copper composite powder
KR20060018496A (en) Composite metal powder manufaturing method of silver and copper
JP4331538B2 (en) Copper-coated graphite powder and method for producing the same
CN111925213B (en) Tungsten carbide powder with surface coated with metal oxide layer and forming method thereof
WO1984004712A1 (en) Tin-containing iron powder and process for its production
JPH0284540A (en) Carbon fiber coated with amorphous alloy
KR101697941B1 (en) Manufacturing method of grid for lead-acid battery
CN106077670B (en) The method that composite codeposition-co-sintering prepares superfine alloy powder
JP4178485B2 (en) Gallium oxide powder for sputtering target and method for producing the same
JP2004323962A (en) Electroless-plated electroconductive powder and manufacturing method therefor
JP2016008333A (en) Copper powder and copper paste using the same
CN113278853B (en) High-hardness AlSi10Mg @ Gr composite material and product forming method thereof
JP4154491B2 (en) Cu / In-based metal powder and production method thereof