JPH10297186A - Method for transferring curved face and device for transferring curved face - Google Patents

Method for transferring curved face and device for transferring curved face

Info

Publication number
JPH10297186A
JPH10297186A JP12013797A JP12013797A JPH10297186A JP H10297186 A JPH10297186 A JP H10297186A JP 12013797 A JP12013797 A JP 12013797A JP 12013797 A JP12013797 A JP 12013797A JP H10297186 A JPH10297186 A JP H10297186A
Authority
JP
Japan
Prior art keywords
transfer
substrate
solid particles
transfer sheet
transferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12013797A
Other languages
Japanese (ja)
Inventor
Masaru Okamoto
優 岡本
Haruo Ono
晴男 大野
Mitsutoyo Miyakoshi
光豊 宮越
Hirohisa Yoshikawa
浩久 吉川
Haruo Miyashita
治雄 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP12013797A priority Critical patent/JPH10297186A/en
Publication of JPH10297186A publication Critical patent/JPH10297186A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Decoration By Transfer Pictures (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently manufacture a decorative material with a three- dimensional uneven face by transferring it up to the inside face of a recessed part. SOLUTION: The transfer layer side of a transfer sheet S made up of a support and a transfer layer is positioned opposite to the uneven face side of a base B to which a pattern is transferred, and a solid particle P jetted from an injector 1 is caused to run into the support side of the transfer sheet S. Further, the transfer sheet S is caused to come into contact with the base B under pressure by the impact pressure and a decorative material is obtained by peeling the support. In this case, the solid particle including that such as running obliquely into an enveloping surface E formed by the uneven surface of the base B is caused to collide with the transfer sheet S. Thus it is possible to tilt the base B with the horizontal plate or tilt the direction of the injector 1 obliquely with the vertical direction with the help of a base conveying device 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、住宅の外装及び内
装材、家具、家電製品等の化粧板について、特に装飾さ
れた凹凸表面を有する化粧板の製造方法及び製造装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to decorative panels for exterior and interior materials of houses, furniture, home appliances and the like, and more particularly to a method and an apparatus for manufacturing decorative panels having a decorative uneven surface.

【0002】[0002]

【従来の技術】従来、化粧板の基材面に直刷り法、ラミ
ネート法、転写法等により絵柄等の装飾を施した化粧板
が種々の用途で使用されている。この場合、基材の表面
が平面ならば、絵柄装飾は容易にできるが、凹凸表面に
対しては格別の工夫により絵柄装飾を施している。例え
ば、窓枠、面縁材等の柱状で基材装飾面が二次元的凹凸
〔円柱の様に一方向(母線、或いは高さ方向に直行する
方向)にのみ曲率を有する形状〕の場合に適用できる曲
面装飾技術の一つが、特公昭61−5895号公報に提
案されている。すなわち、同号公報の技術はラミネート
法による表面装飾法であり、片面に接着剤を塗布した表
装シートを供給し、一方基材を表装シートの供給速度と
同調した速度で水平に搬送し、併設した多数の押え治具
にて表装シートの端部が貼着されない状態を維持しつつ
表装シートの接着剤塗布面側を基材に対して小面積毎に
段階的に押圧し、表装シートを基材面に加熱貼着するも
のである。なお、この方法はラッピング加工法と言われ
ている。また、表面凹凸がエンボス形状等の三次元的凹
凸(すなわち、半球面の様に2方向に曲率を有する形
状)の場合に適用できる曲面装飾技術としては、例えば
特開平5−139097号公報に提案されている。すな
わち、同号公報の技術は転写法による表面装飾法であ
り、転写シートの支持体として熱可塑性樹脂フィルムを
用い、該支持体上に剥離層、絵柄層、及び接着層を順次
設けた構成の転写シートを、凹凸表面を有する基材上に
設置し、支持体の裏面からゴム硬度60°以下のゴム製
の熱ローラで押圧して、絵柄を転写することによって化
粧板を得るものである。また、支持体と剥離層間に転写
時の熱で発泡する発泡層を設け、この発泡も利用して基
材の凹凸表面に追従させようとするものである。
2. Description of the Related Art Conventionally, decorative boards having decorations such as pictures on a substrate surface of the decorative board by a direct printing method, a laminating method, a transfer method or the like have been used for various purposes. In this case, if the surface of the base material is flat, the decoration of the picture can be easily made, but the decoration of the pattern is applied to the uneven surface by a special device. For example, in the case of a columnar shape such as a window frame or a surface border material, the base material decorative surface is a two-dimensional unevenness (a shape having a curvature only in one direction (a direction perpendicular to the generating line or the height direction) like a cylinder). One applicable curved surface decoration technique is proposed in Japanese Patent Publication No. 61-5895. That is, the technology of the publication is a surface decoration method by a laminating method, in which a surface-coated sheet coated with an adhesive on one side is supplied, while the base material is horizontally conveyed at a speed synchronized with a supply speed of the surface-mounted sheet, and is installed side by side. While maintaining the state in which the end of the facing sheet is not adhered by the large number of holding jigs, the adhesive-applied surface side of the facing sheet is gradually pressed against the base material for each small area, and the It is to be adhered by heating to the material surface. This method is called a lapping method. Japanese Patent Application Laid-Open No. 5-139097 proposes a curved surface decoration technique applicable to the case where the surface unevenness is a three-dimensional unevenness such as an embossed shape (that is, a shape having a curvature in two directions like a hemisphere). Have been. That is, the technology of the same publication is a surface decoration method by a transfer method, a thermoplastic resin film is used as a support of a transfer sheet, and a release layer, a pattern layer, and an adhesive layer are sequentially provided on the support. The transfer sheet is placed on a substrate having an uneven surface, and is pressed from the back surface of the support with a heat roller made of rubber having a rubber hardness of 60 ° or less to transfer a picture, thereby obtaining a decorative plate. Further, a foamed layer which foams by heat during transfer is provided between the support and the release layer, and the foaming is also utilized to follow the uneven surface of the substrate.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
様な従来の方法では、特公昭61−5895号公報に開
示の技術では、二次元的曲面までしか対応できず、ま
た、特開平5−139097号公報が提案する技術で
は、三次元的曲面も対応できるが、基本的に回転する熱
ローラのゴムによる弾性変形を利用して表面凹凸に追従
させる為に、浅いエンボス形状は良いとしても大きな表
面凹凸には適用できない。その上、被転写基材の凹凸の
隅角部によって軟質のゴムローラが損耗し易い。また、
転写シートに発泡層を設ける構成では、転写シートが複
雑高価になり過ぎる。また、全体として平板状の基材に
限定されるといった問題があった。
However, in the above-described conventional method, the technique disclosed in Japanese Patent Publication No. 61-5895 can only handle a two-dimensional curved surface. Although the technology proposed in Japanese Patent Application Publication No. H08-27139 can handle three-dimensional curved surfaces, it basically uses elastic deformation of the rotating heat roller by rubber to follow the surface irregularities. Not applicable to irregularities. In addition, the soft rubber roller is liable to be worn by the corners of the unevenness of the transfer-receiving substrate. Also,
In a configuration in which the foam layer is provided on the transfer sheet, the transfer sheet becomes too complicated and expensive. In addition, there is a problem that the substrate is limited to a flat substrate as a whole.

【0004】そこで、本発明は、大きな三次元的凹凸表
面にも転写でき表面装飾性に優れた化粧材が得られ、且
つ転写圧の押圧に特殊形状の治具を必要とせず、ゴムロ
ーラ等部品の損耗による交換の必要の無い、曲面転写方
法及び装置を提供することである。
Therefore, the present invention provides a decorative material which can be transferred to a large three-dimensional uneven surface and which has excellent surface decorativeness, and does not require a specially shaped jig for pressing the transfer pressure, and can be used for a component such as a rubber roller. It is an object of the present invention to provide a method and an apparatus for transferring a curved surface, which do not require replacement due to wear of the surface.

【0005】[0005]

【課題を解決するための手段】そこで、上記課題を解決
すべく、本発明の曲面転写方法では、支持体と転写層と
からなる転写シートを被転写基材へ押圧して圧接する手
段として、転写シートの支持体側に固体粒子を衝突さ
せ、その衝突圧を利用した。すなわち、凹凸表面を有す
る被転写基材の凹凸表面側に、支持体と転写層とからな
る転写シートの転写層側を対向させ、該転写シートの支
持体側に固体粒子を衝突させ、その衝突圧を利用して、
被転写基材の凹凸表面への転写シートの圧接を行い、転
写層が被転写基材に接着後、転写シートの支持体を剥離
除去することで、転写層を被転写基材に転写する様にし
た。しかも、固体粒子を転写シートに衝突させる際は、
転写シートに衝突させる固体粒子のうち少なくともその
一部に、被転写基材の凹凸表面が成す包絡面に対して斜
めに衝突する様な固体粒子を含めて、転写シートに固体
粒子を衝突させる様にした。その結果、被転写基材の凹
凸表面のうち凹部の側面に衝突する固体粒子の数、及び
その衝突圧が充分得られる様にして、凹部側面にまで、
確実に転写できる様にした。また、本発明の曲面転写装
置は、上記曲面転写方法を実施する為に使用する装置で
あり、少なくとも、固体粒子を噴出する固体粒子噴出手
段と、被転写基材を固体粒子噴出手段に対向する位置ま
で搬送する基材搬送手段と、転写シートを固体粒子噴出
手段と被転写基材との間に位置させる転写シート供給手
段と、を備え、前記固体粒子噴出手段と基材搬送手段と
の関係を、転写シートに衝突させる固体粒子のうち少な
くともその一部に、被転写基材の凹凸表面が成す包絡面
に対して斜めに衝突する様な固体粒子を含めて、転写シ
ートに固体粒子が衝突する様な、固体粒子噴出方向と被
転写基材の凹凸表面との相対的関係が成立する構成とし
た。
In order to solve the above-mentioned problems, the curved surface transfer method according to the present invention employs, as a means for pressing a transfer sheet including a support and a transfer layer against a transfer-receiving substrate by pressing the transfer sheet. Solid particles collided with the support side of the transfer sheet, and the collision pressure was used. That is, the transfer layer side of the transfer sheet including the support and the transfer layer is opposed to the uneven surface side of the transfer-receiving base material having the uneven surface, and solid particles collide with the support side of the transfer sheet, and the collision pressure Using
The transfer sheet is pressed onto the uneven surface of the transfer substrate, and after the transfer layer adheres to the transfer substrate, the support of the transfer sheet is peeled off to transfer the transfer layer to the transfer substrate. I made it. Moreover, when the solid particles collide with the transfer sheet,
At least a part of the solid particles that collide with the transfer sheet includes solid particles that obliquely collide with the envelope surface formed by the uneven surface of the substrate to be transferred. I made it. As a result, the number of solid particles colliding with the side surface of the concave portion of the concave-convex surface of the base material to be transferred, and the collision pressure thereof are obtained sufficiently, to the side surface of the concave portion.
Transfer was ensured. Further, the curved surface transfer apparatus of the present invention is an apparatus used for carrying out the above-mentioned curved surface transfer method, and at least a solid particle ejection means for ejecting solid particles, and a transfer target substrate facing the solid particle ejection means. A substrate conveying means for conveying the transfer sheet to a position, and a transfer sheet supply means for positioning the transfer sheet between the solid particle ejecting means and the substrate to be transferred, and a relationship between the solid particle ejecting means and the substrate conveying means. The solid particles collide with the transfer sheet, including solid particles that obliquely collide with the envelope surface formed by the uneven surface of the substrate to be transferred, at least in part of the solid particles that collide with the transfer sheet. Thus, the relative relationship between the solid particle ejection direction and the uneven surface of the transfer-receiving substrate is established.

【0006】[0006]

【発明の実施の形態】以下、本発明の曲面転写方法及び
装置の実施の形態を説明する。先ず、図1は本発明にお
いて、被転写基材Bの凹凸表面が成す包絡面Eに対す
る、固体粒子Pの衝突方向を説明する概念図である。同
図では、固体粒子Pは、固体粒子噴出手段1である噴出
器から多少の広がりは有るが略鉛直方向下方に向かって
噴出され、転写シートSに向けて噴出される。被転写基
材Bは、駆動ローラ列等からなる基材搬送手段である基
材搬送装置2により、水平面(図面左右方向)に対して
その搬送方向に直交する幅方向に傾斜する様に支持され
て搬送される。なお、基材搬送装置2は被転写基材の下
側となる側面側も支持して、被転写基材の横滑りを防い
でいる。そして、同図は、被転写基材の凹凸表面側(図
面上方)に、転写層側を対向させる様に位置させた転写
シートの支持体側(図面上方)に固体粒子を衝突させて
いる様子を示す。ここで矢印は固体粒子Pの飛跡を表
す。この際、本発明では、被転写基材の被転写面となる
凹凸表面が成す包絡面Eに対して、固体粒子が斜めに衝
突する様に、固体粒子を転写シートに衝突させる。同図
の場合、被転写基材Bは平板状でその被転写面となる凹
凸表面が成す包絡面Eは平面であり、包絡面Eは被転写
基材Bの凹凸表面から延長された点線で示してある。こ
の様にする事で、被転写基材の凹凸表面のうちの、凹部
の特に固体粒子の飛来方向に面した側面にまで衝突す
る、固体粒子の数及びその衝突圧を充分なものとする事
ができる。そして、凹部側面にまで、確実に転写できる
様になる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the method and apparatus for transferring a curved surface according to the present invention will be described below. First, FIG. 1 is a conceptual diagram illustrating a direction in which solid particles P collide with an envelope surface E formed by the uneven surface of a substrate B to be transferred in the present invention. In the figure, the solid particles P are ejected from the ejector, which is the solid particle ejecting means 1, to some extent, but substantially downward in the vertical direction, and ejected toward the transfer sheet S. The base material B to be transferred is supported by a base material transfer device 2 which is a base material transfer means including a row of drive rollers or the like so as to be inclined in a width direction orthogonal to the transfer direction with respect to a horizontal plane (horizontal direction in the drawing). Transported. In addition, the substrate transfer device 2 also supports the side surface, which is the lower side of the transfer substrate, to prevent the transfer substrate from skidding. The figure shows a state where solid particles are made to collide with the support side (upper side of the drawing) of the transfer sheet that is positioned so that the transfer layer side faces the uneven surface side (upper side of the drawing) of the substrate to be transferred. Show. Here, the arrows indicate the tracks of the solid particles P. At this time, in the present invention, the solid particles are caused to collide with the transfer sheet such that the solid particles collide obliquely with the envelope surface E formed by the uneven surface which is the transfer surface of the transfer substrate. In the case of the figure, the transfer substrate B is a flat plate, and the envelope surface E formed by the uneven surface serving as the transfer surface is a flat surface, and the envelope surface E is a dotted line extended from the uneven surface of the transfer substrate B. Is shown. By doing so, the number of solid particles colliding with the side surface of the concave portion, particularly the side facing the direction in which the solid particles fly, of the concave and convex surface of the substrate to be transferred, and the collision pressure thereof are made sufficient. Can be. Then, it is possible to surely transfer the image to the side surface of the concave portion.

【0007】なお、図1では、被転写基材は平板状であ
っから包絡面は平面であったが、もしも、被転写基材の
凹凸表面が成す包絡面が平面ではなく、例えば湾曲面の
様な場合には、その各領域に於いて固体粒子が斜めに衝
突する様にする(図11参照)。また、転写シートに衝
突させる固体粒子の全てが、上記包絡面に対して斜めに
なる様にする事は必ずしも必要では無い。目的が、凹凸
表面の凹部の側面に確実に転写させる為であるから、凹
部の深さや凹部側面の傾斜等によって、斜めに衝突させ
る固体粒子の割合は適宜調整すれば良い。もちろん、転
写シートに衝突させる固体粒子の全てを、上記包絡面に
対して斜めに衝突する様にしても良い。また、固体粒子
を斜めに衝突させる領域は、被転写基材の凹凸表面領域
の中で、凹部の深さや凹部側面の傾斜等から、充分に固
体粒子を衝突させる必要がある領域部分のみでも良い。
そうで無い部分では、むしろ垂直に衝突させた方が、固
体粒子の運動量をロス無く効率的に衝突圧に変換して押
圧できるからである。
In FIG. 1, the envelope surface is flat because the substrate to be transferred is flat, but if the envelope surface formed by the uneven surface of the substrate to be transferred is not flat, for example, a curved surface In such a case, the solid particles collide obliquely in each area (see FIG. 11). Further, it is not always necessary to make all of the solid particles colliding with the transfer sheet oblique to the envelope surface. The purpose is to transfer the solid particles reliably to the side surfaces of the concave portions on the concave and convex surface. Therefore, the ratio of the solid particles to be obliquely collided may be appropriately adjusted depending on the depth of the concave portions, the inclination of the concave side surfaces, and the like. Of course, all of the solid particles that collide with the transfer sheet may collide obliquely with the envelope surface. Further, the region where the solid particles collide obliquely may be only the region where the solid particles need to collide sufficiently due to the depth of the concave portion or the inclination of the side surface of the concave portion in the uneven surface region of the transfer-receiving substrate. .
This is because, in a portion other than the above, it is more preferable that the collision be performed vertically so that the momentum of the solid particles can be efficiently converted into the collision pressure without any loss and pressed.

【0008】なお、凹部側面以外の面である凹部底面や
凸部上面等の面には、全ての固体粒子の進行方向が同一
ならば、凹部側面に衝突する方向と同一方向の固体粒子
が衝突する。しかし、凸部上面等はそれが平面状であれ
ば、そこには垂直に固体粒子を衝突させた方が、固体粒
子の運動量を効率的に有効に衝突圧に変換できる。この
為、この様な凹凸表面の領域には、別の固体粒子噴出手
段で垂直に固体粒子を衝突させても良い。また、衝突さ
せる固体粒子の運動量を大きくしたり、衝突数を増やす
ことでも効果がある。運動量を大きくするには、速度を
速くしたり、質量を大きくしたりする。また、後述する
様に特に羽根車を用いた固体粒子噴出手段の場合は、元
々噴出する固体粒子の方向に広がりが有り、その広がり
を有効活用しても良い。
If the traveling direction of all the solid particles is the same on the surfaces other than the concave side surface, such as the concave bottom surface and the convex upper surface, solid particles having the same direction as the collision direction with the concave side surface will collide. I do. However, if the upper surface of the convex portion or the like is flat, it is possible to efficiently and effectively convert the momentum of the solid particle into the collision pressure by colliding the solid particle vertically therewith. For this reason, solid particles may be caused to collide with the region of such an uneven surface vertically by another solid particle ejection means. It is also effective to increase the momentum of the solid particles to be collided or to increase the number of collisions. To increase momentum, increase speed or increase mass. As will be described later, in particular, in the case of a solid particle ejecting means using an impeller, the direction of the ejected solid particles originally spreads, and the spread may be effectively utilized.

【0009】また、本発明では、図2に例示する様に、
被転写基材の凹凸表面が成す包絡面を水平面に平行にし
て、固体粒子の噴出方向を被転写基材の搬送方向に直交
する平面内に於いて鉛直方向から傾けることで、前記包
絡面に対して斜めに固体粒子が衝突する様に、転写シー
トに固体粒子を衝突させても良い。要は、固体粒子噴出
手段1と基材搬送手段20との関係を、転写シートSに
衝突させる固体粒子Pのうち少なくともその一部に、被
転写基材Bの凹凸表面が成す包絡面Eに対して斜めに衝
突する様な固体粒子を含めて、転写シートに固体粒子が
衝突する様な、固体粒子噴出方向と被転写基材の凹凸表
面との相対的関係が成立する関係であれば良い。従っ
て、図1の様に被転写基材を水平面に対して傾斜させる
場合でも、その搬送方向に対して平行な方向、或いは平
行及び直交方向以外の方向に傾斜させても良い。また、
図2の様に被転写基材は水平で、固体粒子の噴出方向を
傾ける場合でも、その噴出方向を傾ける方向は、被転写
基材の搬送方向に対して平行な方向、或いは平行及び直
交方向以外の方向に傾斜させても良い。また、図2の様
に、被転写基材の同一の領域に対して、異なる方向から
斜めに固体粒子を衝突させても良い。図2は搬送方向に
直交する幅方向の左右2方向から斜めに衝突させる例で
ある。この様にすると、凹部側面のうち対向する側面な
どの異なる方向を向く複数の側面に対して、くまなく確
実に衝突圧を加えられる。或いは、搬送方向に平行な方
向の上流側及び下流側からの前後2方向から斜めに衝突
させても良い。或いは更に、左右2方向及び前後2方向
の4方向から斜めに衝突させても良い。或いは更にこれ
らの場合において、垂直に衝突させる事を付加しても良
い。また、図6に図示する様に、被転写基材Bは水平面
内に位置させ、固体粒子噴出手段の設置位置・方向も固
定とし、固体粒子の噴出方向のみを可変とすることによ
って、固体粒子の少なくとも一部の衝突方向と被転写基
材の包絡面とを傾斜することも出来る。以上のいずれの
場合に於いても、転写シートは通常は、被転写基材の包
絡面Eに対して平行乃至略平行に供給される場合が多
い。従って、この場合には、転写シート面に対しても少
なくとも一部の固体粒子は斜めに衝突することになる。
なお、図1の様に被転写基材の凹凸表面が成す包絡面を
水平面に対して傾斜させると、転写シートに衝突後の固
体粒子を回収する際に、転写シート上の固体粒子が転写
シートの片方(下側)の端部の方へ落下する現象を利用
できる利点もある。
In the present invention, as illustrated in FIG.
By making the envelope surface formed by the uneven surface of the transferred substrate parallel to the horizontal plane, and by inclining the ejection direction of the solid particles from the vertical direction in a plane perpendicular to the transfer direction of the transferred substrate, the envelope surface The solid particles may collide with the transfer sheet such that the solid particles collide with the transfer sheet obliquely. In short, the relationship between the solid particle jetting means 1 and the base material transporting means 20 is set to at least a part of the solid particles P colliding with the transfer sheet S, and to the envelope surface E formed by the uneven surface of the base material B to be transferred. Including the solid particles that obliquely collide with the transfer sheet, the solid particles collide with the transfer sheet, as long as the relative relationship between the solid particle ejection direction and the uneven surface of the transferred substrate is established. . Therefore, even when the transfer substrate is inclined with respect to the horizontal plane as shown in FIG. 1, the substrate may be inclined in a direction parallel to the transport direction or in a direction other than the parallel and orthogonal directions. Also,
As shown in FIG. 2, even when the transfer substrate is horizontal and the ejection direction of the solid particles is inclined, the ejection direction is inclined in the direction parallel to the transfer direction of the transfer substrate, or in the parallel and orthogonal directions. It may be inclined in a direction other than the above. Further, as shown in FIG. 2, solid particles may be made to collide with the same region of the substrate to be transferred obliquely from different directions. FIG. 2 shows an example in which a collision is made obliquely from two left and right directions in the width direction orthogonal to the transport direction. In this manner, the collision pressure can be reliably applied to a plurality of side surfaces facing in different directions such as the opposing side surfaces among the concave side surfaces. Alternatively, the collision may be made obliquely from front and rear two directions from the upstream side and the downstream side in a direction parallel to the transport direction. Alternatively, the collision may be made obliquely from four directions, that is, two left and right directions and two front and rear directions. Alternatively, in these cases, the collision may be added vertically. Further, as shown in FIG. 6, the substrate B to be transferred is positioned in a horizontal plane, the installation position and direction of the solid particle ejection means are fixed, and only the ejection direction of the solid particles is made variable. May be inclined with respect to at least a part of the collision direction and the envelope surface of the substrate to be transferred. In any of the above cases, the transfer sheet is usually supplied in parallel or substantially parallel to the envelope surface E of the transfer-receiving substrate. Therefore, in this case, at least a part of the solid particles collides with the transfer sheet surface obliquely.
If the envelope surface formed by the uneven surface of the substrate to be transferred is inclined with respect to the horizontal plane as shown in FIG. 1, the solid particles on the transfer sheet are collected when the solid particles are collided with the transfer sheet. There is also an advantage that the phenomenon of dropping toward one (lower) end of the can be used.

【0010】以下、さらに本発明を詳述する。Hereinafter, the present invention will be described in more detail.

【0011】〔被転写基材〕先ず、本発明の被転写基材
Bとしては、被転写面が平坦な平面でももちろん適用で
きるが、本発明が真価を発揮するのは被転写面が凹凸表
面であり、特にその凹凸が三次元的である被転写基材で
ある。従来の回転接触する押さえ治具(前述の特公昭6
1−5895号公報)や、ゴム製の転写ローラ(前述の
特開平5−139097号公報参照)では、その回転軸
による方向性を本質的に有しているために、適用できる
表面凹凸形状が制約される。即ち前者では、1軸方向に
のみ曲率を有する二次元的凹凸に限定され、また、後者
では2軸方向に曲率を有する三次元的凹凸への転写が可
能でもその三次元形状は任意の方向に均質に適用できな
い。例えば、木目導管柄の長手方向は、転写シートの送
り方向に平行にしないと、導管凹部には旨く転写できな
い。しかも、後者は基材形状は平板状に事実上限定さ
れ、それ以外は基材形状毎にその都度合わせた特殊形状
の転写ローラとでもしない限り不可能である。ところ
が、本発明では、後述の様に、流体的に振る舞うことが
できる固体粒子群の衝突圧を利用するため、表面凹凸の
三次元的形状に対して圧力印加領域の面的な方向性を本
質的に持たない。(この方向性とは、圧力が印加される
被転写基材上のポイントの時間的位置変化の方向のこと
である。)従って、転写シートや被転写基材の送り方向
に凹凸がある形状を持つ被転写基材でも構わない。すな
わち、送り方向のみ又は幅方向のみ等と一方向にのみ凹
凸がある二次元的凹凸、送り方向及び幅方向の両方等と
2方向に凹凸がある三次元的凹凸にも適用できることを
意味する。なお、固体粒子群の衝突圧が方向性を持たな
い点は、枚葉の転写シートを被転写基材上に載置し一つ
ずつ圧接密着する様に、固体粒子を噴出する噴出器を移
動、又は噴出器固定で転写シートと被転写基材とを移動
させて、衝突圧が印加される領域が移動していく様子を
考えれば、容易に理解できる。
[Substrate to be Transferred] First, as the substrate to be transferred B of the present invention, the surface to be transferred can of course be applied, but the present invention shows its true value only when the surface to be transferred has an uneven surface. In particular, the substrate to be transferred has three-dimensional irregularities. Conventional rotary contact holding jig
No. 1-5895) or a transfer roller made of rubber (see the above-mentioned Japanese Patent Application Laid-Open No. Hei 5-13997) essentially has directionality due to the rotation axis thereof, and therefore, the applicable surface irregularity shape is limited. Be constrained. That is, the former is limited to two-dimensional irregularities having a curvature only in one axial direction, and the latter is capable of transferring to three-dimensional irregularities having a curvature in two axial directions, but the three-dimensional shape is in any direction. Cannot be applied homogeneously. For example, unless the longitudinal direction of the wood grain conduit pattern is parallel to the feed direction of the transfer sheet, it cannot be successfully transferred to the concave portion of the conduit. Moreover, in the latter case, the shape of the base material is practically limited to a flat plate shape, and otherwise, it is impossible unless a transfer roller having a special shape tailored to each base material shape is used. However, in the present invention, as described later, since the collision pressure of a group of solid particles that can behave fluidly is utilized, the planar direction of the pressure application region is essentially required for the three-dimensional shape of the surface irregularities. Do not have. (This directionality is the direction of the temporal position change of a point on the transfer-receiving substrate to which pressure is applied.) Therefore, a shape having irregularities in the transfer direction of the transfer sheet or the transfer-receiving substrate is considered. The substrate to be transferred may be used. In other words, it means that the present invention can be applied to two-dimensional unevenness having unevenness only in one direction such as only the feed direction or width direction, and three-dimensional unevenness having unevenness in two directions such as both the feed direction and the width direction. The point that the collision pressure of the solid particles does not have any direction is that the ejector that ejects the solid particles is moved so that the sheet-by-sheet transfer sheet is placed on the substrate to be transferred and pressed into contact one by one. Alternatively, it can be easily understood by considering the manner in which the transfer sheet and the transfer-receiving substrate are moved with the ejector fixed to move the region to which the collision pressure is applied.

【0012】また、被転写基材は全体として(包絡面形
状が)平板状の板材だけでなく、断面が円弧状に凸又は
凹に送り方向又は幅方向に湾曲した二次元的凹凸を有す
る基材でも良く、またその湾曲面にさらに細かい三次元
的な表面凹凸があってもよい。なお、本発明では、被転
写基材の円弧状等の二次元的な凹凸に対して、それを例
えば幅方向として、或いは送り方向として転写するかは
作業性等を考慮して任意にできる。また、大柄な凹凸に
重畳して微細な凹凸を有する凹凸表面の被転写基材、或
いは凹凸表面の凹部底部や凹部内側面に転写すべき面を
有する被転写基材も可能である。前記大柄な凹凸と微細
な凹凸とは、例えば図13(B)の如く被転写基材の凹
凸が大柄な凹凸401、402とその凸部402上にあ
る微細な凹凸403とからなるもので、大柄の凹凸形状
は段差が1〜10mm、凹部の幅が1〜10mm、凸部
の幅が5mm以上のもので構成されるものであり、微細
な凹凸形状は、段差及び幅ともに大柄な凹凸形状よりも
小さく、具体的には段差が0.1〜5mm程度、凹部の
幅及び凸部の幅が0.1mm以上で、大柄な凹凸形状の
凸部の幅の1/2未満程度である。大柄な凹凸と微細な
凹凸との組み合わせの凹凸から成り、且つ三次元的な表
面凹凸を持つ化粧材の凹凸模様の具体例としては、例え
ば、大柄な凹凸として目地、溝等を有するタイル、煉
瓦、石等の二次元配列模様を有し、その上に微細な凹凸
としてスタッコ調、リシン調等の吹き付け塗装面の凹凸
模様、花崗岩の劈開面やトラバーチン大理石板等の石材
表面の凹凸等の石目調凹凸模様、或いは大柄な凹凸模様
として目地、溝、簓、サネ等を有する羽目板模様、浮造
木目板模様を有し、その上に微細凹凸として導管溝、ヘ
アライン等を有する木目調の凹凸模様が挙げられる。な
お、凹凸面を構成する各面は、平面のみから、曲面のみ
らか、或いは平面と曲面の組み合わせと任意である。従
って、本発明の被転写基材上の曲面とは、断面が下駄の
歯形の様に複数の平面のみから構成される曲面を持たな
い凹凸面も意味する。また、本発明でいう曲率とは、立
方体の辺或いは頂点の周辺の様に角張っている曲率無限
大(曲率半径=0)の場合も包含する。なお、被転写基
材表面を所望の凹凸とするには、プレス加工、エンボス
加工、押し出し加工、切削加工、成形加工等によれば良
い。
The substrate to be transferred is not limited to a flat plate material (having an envelope shape) as a whole, but has a two-dimensional unevenness whose cross section is convex or concave in an arc shape and curved in the feeding direction or width direction. The curved surface may have finer three-dimensional surface irregularities. In the present invention, it is possible to arbitrarily determine whether to transfer the two-dimensional irregularities such as the arc shape of the base material to be transferred, for example, in the width direction or in the feed direction, in consideration of workability and the like. Further, a transferred substrate having an uneven surface superimposed on large pattern unevenness and having fine unevenness, or a transferred substrate having a surface to be transferred to the bottom of the concave portion or the inner surface of the concave portion of the uneven surface is also possible. The large irregularities and the fine irregularities are, for example, as shown in FIG. 13B, the irregularities of the substrate to be transferred are composed of large irregularities 401 and 402 and minute irregularities 403 on the convex portions 402. The large irregularities have a step of 1 to 10 mm, the width of the concave is 1 to 10 mm, and the width of the convex is 5 mm or more. The fine irregularities are large irregularities in both the step and the width. Specifically, the step is about 0.1 to 5 mm, the width of the concave portion and the width of the convex portion are 0.1 mm or more, and is less than about 1 / of the width of the convex portion having a large irregular shape. Specific examples of the uneven pattern of the decorative material having a combination of large irregularities and fine irregularities and having three-dimensional surface irregularities include, for example, tiles and bricks having joints and grooves as large irregularities. , Stones and other two-dimensional array patterns, and fine irregularities on the spray-painted surface such as stucco and lysine, as well as stones such as cleaved surfaces of granite and stone surfaces such as travertine marble boards Wood-grained uneven pattern with a contoured pattern, or a large-sized uneven pattern, such as a paneling pattern having grooves, grooves, saury, sane, etc., a floating wood grain pattern, and a conduit groove, a hairline, etc. as fine irregularities thereon Is mentioned. In addition, each surface which forms the uneven surface is not limited to a flat surface, may be a curved surface alone, or may be a combination of a flat surface and a curved surface. Therefore, the curved surface on the substrate to be transferred according to the present invention also means a concavo-convex surface having no curved surface composed of only a plurality of flat surfaces, such as a tooth profile of a clog. Further, the curvature in the present invention includes a case where the curvature is infinite (the radius of curvature = 0) which is angular like the periphery of a side or a vertex of a cube. In order to make the surface of the substrate to be transferred into a desired unevenness, a pressing process, an embossing process, an extrusion process, a cutting process, a forming process, or the like may be used.

【0013】被転写基材の材質は任意であり、例えば、
板材であれば、ケイ酸カルシウム板、押し出しセメント
板、ALC(軽量発泡コンクリート)板、GRC(硝子
繊維強化コンクリート)板等の非陶磁器窯業系板、木材
単板や木材合板、パーティクルボード、或いは木質中密
度繊維板(MDF)等の木質板、また、鉄、アルミニウ
ム、銅等の金属板、陶磁器やガラス等のセラミックス、
ポリプロピレン、ABS樹脂、フェノール樹脂等の樹脂
成形品等でも良い。なお、後述の様に固体粒子加速流体
として液体を用い、該液体と共に固体粒子を噴出させる
場合は、該液体に対して不溶性且つ非吸収性の物が好ま
しい。例えば金属板、樹脂成形品、陶磁器やガラス等の
セラミックス等である。また、これらの被転写基材表面
には、予め、接着剤との接着を補助する為の易接着プラ
イマー、或いは表面の微凹凸や多孔質を目止めし封じる
シーラー剤を塗工しておいても良い。易接着プライマ
ー、或いはシーラー剤としては、イソシアネート、2液
硬化ウレタン樹脂、エポキシ樹脂、アクリル樹脂、酢酸
ビニル樹脂等の樹脂を塗工し形成する。
The material of the substrate to be transferred is arbitrary.
Non-porcelain ceramic plates such as calcium silicate plate, extruded cement plate, ALC (lightweight foamed concrete) plate, GRC (glass fiber reinforced concrete) plate, veneer veneer, wood plywood, particle board, or wood Wood plates such as medium density fiberboard (MDF), metal plates such as iron, aluminum and copper, ceramics such as ceramics and glass,
A resin molded product such as polypropylene, ABS resin, and phenol resin may be used. When a liquid is used as a solid particle accelerating fluid and solid particles are ejected together with the liquid as described later, a substance that is insoluble and non-absorbable in the liquid is preferable. For example, a metal plate, a resin molded product, ceramics such as ceramics and glass, and the like are used. In addition, these transfer receiving substrate surfaces are coated in advance with an easy-adhesion primer for assisting the adhesion with the adhesive, or a sealer agent for sealing and sealing fine irregularities and porosity on the surface. Is also good. A resin such as an isocyanate, a two-part curable urethane resin, an epoxy resin, an acrylic resin, or a vinyl acetate resin is applied as an easy-adhesion primer or a sealer.

【0014】〔転写シート〕転写シートSは支持体と転
写移行する転写層とからなる。転写層は少なくとも装飾
層からなる。また、接着剤を、転写層の一部となる接着
剤層として、転写シートに形成しておいても良い。なお
液体を固体粒子加速流体に用い、液体と共に固体粒子を
噴出する場合は、支持体や転写層には、該液体に対して
不溶性の物を用いる。例えば、液体が水であれば、水溶
性樹脂等を除けば、一般の転写シートとして使用してい
る材料から下記に従い適宜選択使用すれば良い。
[Transfer Sheet] The transfer sheet S is composed of a support and a transfer layer which transfers and transfers. The transfer layer comprises at least a decorative layer. Further, the adhesive may be formed on the transfer sheet as an adhesive layer that becomes a part of the transfer layer. When a liquid is used as the solid particle acceleration fluid and solid particles are ejected together with the liquid, an insoluble substance for the liquid is used for the support and the transfer layer. For example, if the liquid is water, except for the water-soluble resin and the like, it may be appropriately selected and used from materials used as general transfer sheets according to the following.

【0015】(支持体)上記支持体には、被転写基材が
二次元的凹凸表面であれば、延伸性が無い紙(但し、固
体粒子加速流体が液体の場合は、該液体に対して不溶性
のものを選ぶ)等も可能だが、本発明が真価を発揮する
三次元的凹凸表面に適用する為には、少なくとも転写時
には延伸性の有る支持体を用いる。延伸性により固体粒
子の衝突圧印加時に、被転写基材表面の凹部内部まで転
写シートを追従させて密着し転写することができる。転
写シート全体の延伸性は、主に支持体の延伸性に支配さ
れる。従って、支持体には、従来公知の熱可塑性樹脂フ
ィルムの他に、常温でも延伸するゴム膜も使用できる。
熱可塑性樹脂フィルムの場合、装飾層等の転写層形成時
には延伸性が殆どなく、転写時には、加熱により充分な
延伸性を発現し、且つ冷却後は変形した形状を保持し続
け、弾性による形状の復元を生じない転写シートとし
て、従来公知の通常の転写シート同様に容易に、本発明
で用い得る転写シートは用意出来る。支持体の具体例と
しては、延伸性の点で、従来多用されている2軸延伸ポ
リエチレンテレフタレートフィルムでも、表面凹凸形状
次第で、加熱条件、衝突圧条件等の設定によって、必要
充分な延伸性を発現させることができるので曲面転写は
可能だが、低温、低圧でより延伸性が発現し易いもの例
えば、ポリブチレンテレフタレート、又はテレフタレー
トイソフタレート共重合体等の共重合体ポリエステル系
フィルム、ポリプロピレンフィルム、ポリエチレンフィ
ルム、ポリメチルペンテンフィルム等のポリオレフィン
系フィルム、ポリ塩化ビニル樹脂フィルム、ナイロンフ
ィルム等の低延伸又は無延伸のフィルム、天然ゴム、合
成ゴム、ウレタンエラストマー、オレフィン系エラスト
マー等のゴム(エラストマー)フィルムも好ましい支持
体である。支持体の厚さは通常20〜200μmであ
る。
(Support) On the support, if the substrate to be transferred has a two-dimensional uneven surface, paper having no stretchability (however, when the solid particle accelerating fluid is a liquid, It is possible to use an insoluble material), but in order to apply the present invention to a three-dimensional uneven surface exhibiting its true value, a stretchable support is used at least at the time of transfer. Due to the stretchability, when the collision pressure of the solid particles is applied, the transfer sheet can be closely adhered and transferred to the inside of the concave portion on the surface of the transfer-receiving substrate. The stretchability of the entire transfer sheet is mainly governed by the stretchability of the support. Therefore, in addition to a conventionally known thermoplastic resin film, a rubber film that can be stretched even at normal temperature can be used as the support.
In the case of a thermoplastic resin film, when forming a transfer layer such as a decorative layer, there is almost no stretchability, and during transfer, a sufficient stretchability is exhibited by heating, and after cooling, the deformed shape is maintained, and the shape due to elasticity is maintained. As a transfer sheet that does not cause restoration, a transfer sheet that can be used in the present invention can be prepared as easily as a conventionally known ordinary transfer sheet. As a specific example of the support, in terms of stretchability, a biaxially stretched polyethylene terephthalate film, which has been widely used in the past, can provide sufficient and sufficient stretchability by setting heating conditions, collision pressure conditions and the like depending on the surface unevenness. Because it can be expressed, curved surface transfer is possible, but low temperature, low pressure, easy to develop stretchability, for example, polybutylene terephthalate, or copolymer polyester film such as terephthalate isophthalate copolymer, polypropylene film, polyethylene Films, polyolefin-based films such as polymethylpentene films, low-stretch or non-stretch films such as polyvinyl chloride resin films and nylon films, and rubber (elastomer) films such as natural rubber, synthetic rubber, urethane elastomers, and olefin-based elastomers Favorable support It is. The thickness of the support is usually from 20 to 200 μm.

【0016】なお、固体粒子加速流体に液体を用いる場
合には、転写時に接する液体に対して、膨潤はするが不
溶である樹脂フィルムを使用する事も可能である。この
様な膨潤性且つ不溶性樹脂フィルムの例としては、液体
として水又は水溶液を用いる場合には、特開昭54−1
50208号公報、特公昭61−3276号公報等に開
示される様な、ポリビニルアルコール系フィルムであっ
て、平均重合度300〜3000、鹸化度65〜97m
ol%、厚さ20〜200μmのフィルムが代表的なも
のである。また、支持体には必要に応じ、その転写層側
に転写層との剥離性を向上させる為、離型層を設けても
良い。この離型層は支持体を剥離時に支持体と共に転写
層から剥離除去される。離型層としては、例えば、シリ
コーン樹脂、メラミン樹脂、ポリアミド樹脂、ウレタン
樹脂、ポリオレフィン樹脂、ワックス等の単体又はこれ
らを含む混合物が用いられる。
When a liquid is used as the solid particle accelerating fluid, it is possible to use a resin film which swells but is insoluble with respect to the liquid which comes into contact during the transfer. As an example of such a swellable and insoluble resin film, when water or an aqueous solution is used as a liquid, see JP-A-54-1.
No. 50208, JP-B-61-3276, etc. are polyvinyl alcohol-based films having an average degree of polymerization of 300 to 3000 and a degree of saponification of 65 to 97 m.
ol%, and a film having a thickness of 20 to 200 μm is typical. The support may be provided with a release layer on the transfer layer side, if necessary, in order to improve the releasability from the transfer layer. The release layer is removed together with the support from the transfer layer when the support is released. As the release layer, for example, a simple substance such as a silicone resin, a melamine resin, a polyamide resin, a urethane resin, a polyolefin resin, a wax, or a mixture containing these is used.

【0017】また、転写層に接する側の支持体面に凹凸
模様を設ければ、転写後の転写層表面に凹凸模様を賦形
することもできる。凹凸模様は、例えば、砂目、梨地、
ヘアライン、万線状溝、花崗岩の劈開面の凹凸模様、木
目導管溝、木目年輪模様、布目の表面テクスチュア、皮
絞、文字、幾何学模様等である。なお、凹凸模様の形成
は、支持体の樹脂シートに対して、熱プレスによるエン
ボス加工、サンドブラスト加工、ヘアライン加工をした
り、或いは支持体に、離型性の有る樹脂をバインダーと
するインキ(2液硬化ウレタン、シリコーン樹脂、メラ
ミン樹脂、紫外線又は電子線で架橋する多官能アクリレ
ート又はメタクリレートのモノマー又はプレポリマー等
からなる)を用いて所望の凹凸模様に、シルクスクリー
ン印刷等で盛り上げ印刷して賦形層を設け、賦形層を有
する支持体とする方法等がある。なお、賦形層は上記離
型層の機能を有する。
Further, if an uneven pattern is provided on the surface of the support that is in contact with the transfer layer, the uneven pattern can be formed on the surface of the transfer layer after transfer. The uneven pattern is, for example,
There are hairline, line-shaped groove, uneven pattern of cleavage face of granite, wood grain conduit groove, wood grain ring pattern, cloth texture surface texture, skin squeezing, characters, geometric pattern and so on. The formation of the concavo-convex pattern is performed by embossing, sandblasting, or hairline processing the resin sheet of the support by hot pressing, or forming the ink (2) using a resin having a releasing property as a binder on the support. Liquid curable urethane, silicone resin, melamine resin, polyfunctional acrylate or methacrylate monomer or prepolymer cross-linkable by ultraviolet light or electron beam) to form a desired concavo-convex pattern by silk-screen printing or the like. There is a method of providing a shape layer and using it as a support having a shape layer. The shaping layer has the function of the release layer.

【0018】(転写層)転写層は少なくとも装飾層から
構成し、更に適宜、剥離層、接着剤層等も転写層の構成
要素とすることもある。接着剤層を有する構成では、転
写の際に転写シート又は被転写基材の片方又は両方に接
着剤を施すことを省略できる。装飾層はグラビア印刷、
シルクスクリーン印刷、オフセット印刷等の従来公知の
方法、材料で絵柄等を印刷した絵柄層、アルミニウム、
クロム、金、銀等の金属を公知の蒸着法等を用いて部分
的或いは全面に形成した金属薄膜層等であり、用途に合
わせたものを用いる。絵柄としては、被転写基材の表面
凹凸に合わせて、木目模様、石目模様、布目模様、タイ
ル調模様、煉瓦調模様、皮絞模様、文字、幾何学模様、
全面ベタ等を用いる。なお、絵柄層用インキは、バイン
ダー等からなるビヒクル、顔料や染料等の着色剤、これ
に適宜加える各種添加剤からなる。バンイダーには、ア
クリル樹脂、塩化ビニル−酢酸ビニル共重合体、ポリエ
ステル樹脂、セルロース系樹脂、ポリウレタン樹脂、フ
ッ素樹脂等の単体又はこれらを含む混合物を用いる。着
色剤の顔料としては、チタン白、カーボンブラック、弁
柄、黄鉛、群青等の無機顔料、アニリンブラック、キナ
クリドン、イソインドリノン、フタロシアニンブルー等
の有機顔料を用いる。また、剥離層を、支持体乃至は離
型層と装飾層との間の剥離性を調整する為、また、転写
後の装飾層の表面保護の為等に、これら層間に設けるの
は、従来公知の転写シートと同様である。なお、この剥
離層は転写時に装飾層と共に被転写基材側に転写され、
装飾層の表面を被覆する。また、転写時に転写シートと
被転写基材との間に残留する空気を排除し易くする手段
として、必要に応じて転写シート全層を貫通する小孔を
多数転写シートに穿設しても良い。
(Transfer Layer) The transfer layer is composed of at least a decorative layer, and a release layer, an adhesive layer and the like may be a component of the transfer layer as appropriate. In the configuration having the adhesive layer, it is possible to omit applying the adhesive to one or both of the transfer sheet and the substrate to be transferred at the time of transfer. The decoration layer is gravure printing,
Conventionally known methods such as silk screen printing and offset printing, a pattern layer printed with a pattern or the like with a material, aluminum,
A metal thin film layer or the like in which a metal such as chromium, gold, silver or the like is partially or entirely formed by using a known vapor deposition method or the like. As the pattern, according to the surface irregularities of the transferred substrate, wood pattern, stone pattern, cloth pattern, tile pattern, brick pattern, leather pattern, letters, geometric pattern,
Use solid on the whole surface. The picture layer ink is composed of a vehicle such as a binder, a coloring agent such as a pigment or a dye, and various additives appropriately added thereto. A single material such as an acrylic resin, a vinyl chloride-vinyl acetate copolymer, a polyester resin, a cellulosic resin, a polyurethane resin, a fluororesin, or the like, or a mixture containing these is used for the binder. As the pigment of the colorant, inorganic pigments such as titanium white, carbon black, red iron oxide, graphite, and ultramarine blue, and organic pigments such as aniline black, quinacridone, isoindolinone, and phthalocyanine blue are used. Conventionally, a release layer is provided between the support or the release layer and the decorative layer to adjust the releasability between the decorative layer and to protect the surface of the decorative layer after transfer. This is the same as a known transfer sheet. In addition, this release layer is transferred to the transfer-receiving substrate side together with the decoration layer at the time of transfer,
Cover the surface of the decorative layer. Further, as a means for easily removing air remaining between the transfer sheet and the transfer-receiving substrate at the time of transfer, a large number of small holes penetrating all layers of the transfer sheet may be formed in the transfer sheet as necessary. .

【0019】〔接着剤〕接着剤は、転写シートの転写層
を構成する接着剤層としてや、被転写基材上の接着剤層
として、事前又は転写の直前に、オンライン塗工やオフ
ライン塗工で施す。被転写基材に施す場合には、転写シ
ート転写層の接着剤層を省略できる。用いる接着剤は、
用途、要求物性等により適宜選択すれば良いが、固体粒
子加速流体に液体を用いる場合には、該液体に対して不
溶性の物を選択する。用いる接着剤としては、例えば、
感熱型接着剤、湿気硬化型感熱溶融型接着剤、ホットメ
ルト接着剤、湿気硬化型ホットメルト接着剤、2液硬化
型接着剤、電離放射線硬化型接着剤、水性接着剤、或い
は粘着剤による感圧型接着剤等の各種接着剤を使用でき
る。なお、水を固体粒子加速流体に用いる場合は、湿気
硬化型の接着剤や水性接着剤は避ける。上記感熱型接着
剤としては、熱可塑性樹脂を用いた熱融着型と、熱硬化
性樹脂を用いた熱硬化型とのいずれの接着剤も使用でき
る。但し、短時間で接着が完了するという点からは、熱
融着型(感熱溶融型接着剤)が好ましい。また、接着剤
は溶剤希釈又は無溶剤、或いは常温で液体又は固体のい
ずれでも良く、適宜使い分ける。また、粘着性を呈する
感圧型の粘着剤以外の接着剤では、接着剤層の単層のみ
で転写層とすることができる。接着剤層中に顔料等の着
色剤を添加すれば、全面ベタのインク層からなる装飾層
ともいえる。
[Adhesive] The adhesive may be used as an adhesive layer constituting a transfer layer of a transfer sheet or as an adhesive layer on a substrate to be transferred, either before or immediately before transfer, by online coating or offline coating. Apply in. When applied to a substrate to be transferred, the adhesive layer of the transfer sheet transfer layer can be omitted. The adhesive used is
The liquid may be appropriately selected depending on the use, required physical properties, and the like. As the adhesive used, for example,
Sensitivity with heat-sensitive adhesive, moisture-curable heat-sensitive adhesive, hot-melt adhesive, moisture-curable hot-melt adhesive, two-part curable adhesive, ionizing radiation-curable adhesive, water-based adhesive, or adhesive Various adhesives such as a pressure-sensitive adhesive can be used. When water is used for the solid particle accelerating fluid, a moisture-curable adhesive or an aqueous adhesive should be avoided. As the heat-sensitive adhesive, any of a heat-sealing adhesive using a thermoplastic resin and a thermosetting adhesive using a thermosetting resin can be used. However, from the viewpoint that the bonding is completed in a short time, a heat fusion type (heat-sensitive adhesive) is preferable. The adhesive may be diluted with a solvent or without a solvent, or may be a liquid or a solid at room temperature. In the case of an adhesive other than a pressure-sensitive adhesive exhibiting tackiness, a transfer layer can be formed with only a single adhesive layer. If a coloring agent such as a pigment is added to the adhesive layer, it can be said that the entire layer is a decorative layer composed of a solid ink layer.

【0020】感熱溶融型接着剤としては、ポリ酢酸ビニ
ル樹脂、塩化ビニル−酢酸ビニル共重合体、アクリル樹
脂、熱可塑性ポリエステル樹脂、熱可塑性ウレタン樹
脂、ダイマー酸とエチレンジアミンとの縮重合により得
られるポリアミド樹脂等の従来公知の接着剤を用いるこ
とができる。熱硬化型接着剤としては、フェノール樹
脂、尿素樹脂、ジアリルフタレート樹脂、熱硬化型ウレ
タン樹脂、エポキシ樹脂等を用いることがてきる。
Examples of the heat-sensitive adhesive include polyvinyl acetate resin, vinyl chloride-vinyl acetate copolymer, acrylic resin, thermoplastic polyester resin, thermoplastic urethane resin, and polyamide obtained by polycondensation of dimer acid and ethylenediamine. A conventionally known adhesive such as a resin can be used. As the thermosetting adhesive, a phenol resin, a urea resin, a diallyl phthalate resin, a thermosetting urethane resin, an epoxy resin, or the like can be used.

【0021】また、湿気硬化型感熱溶融型接着剤も感熱
溶融型接着剤の一種である。湿気硬化型感熱溶融型接着
剤は、自然放置により空気中の水分で硬化反応が進行す
るので、作業安定性の点で転写直前に施す。また、湿気
硬化型感熱溶融型接着剤は、転写直後は、通常の感熱溶
融型接着剤同様の接着力だが、自然放置により空気中の
水分で架橋・硬化反応が徐徐に進行する為に、最終的に
クリープ変形及び熱溶融がなく耐熱性等に優れ、大きな
接着力が得られる。但し、転写終了後に湿気で接着剤の
架橋・硬化を進行させる為、湿気を含む空気中に転写後
の化粧板を放置して養生する。養生の再の好ましい雰囲
気条件は、大体、相対湿度50%RH以上、気温10℃
以上である。温度・相対湿度とも高い方が、より短時間
で硬化が完了する。標準的な硬化完了時間は、通常の場
合、20℃、60%RHの雰囲気中で10時間程度であ
る。
A moisture-curable heat-sensitive adhesive is also a kind of heat-sensitive adhesive. The moisture-curable heat-sensitive adhesive is applied immediately before transfer from the viewpoint of work stability, because the curing reaction proceeds with moisture in the air when left to stand naturally. Immediately after transfer, the moisture-curable heat-melt adhesive has the same adhesive strength as a normal heat-melt adhesive, but the cross-linking / curing reaction gradually proceeds with moisture in the air when left naturally, It is excellent in heat resistance without creep deformation and heat melting, and a large adhesive strength can be obtained. However, in order to promote the crosslinking and curing of the adhesive by moisture after the transfer is completed, the decorative board after the transfer is left to cure in air containing moisture. Preferable atmospheric conditions for curing are generally about 50% RH or more in relative humidity and 10 ° C in temperature.
That is all. When the temperature and the relative humidity are both higher, the curing is completed in a shorter time. The standard curing completion time is usually about 10 hours in an atmosphere of 20 ° C. and 60% RH.

【0022】湿気硬化型感熱溶融型接着剤は、分子末端
にイソシアネート基を有するプレポリマーを必須成分と
する組成物である。前記プレポリマーは、通常は分子両
末端に各々イソシアネート基を1個以上有するポリイソ
シアネートプレポリマーであり、室温で固体の熱可塑性
樹脂の状態にあるものである。イソシアネート基同士が
空気中の水分により反応して鎖延長反応を起こして、そ
の結果、分子鎖中に尿素結合を有する反応物を生じて、
この尿素結合に更に分子末端のイソシアネート基が反応
して、ビウレット結合を起こして分岐し、架橋反応を起
こす。分子末端にイソシアネート基を有するプレポリマ
ーの分子鎖の骨格構造は任意であるが、具体的には、ウ
レタン結合を有するポリウレタン骨格、エステル結合を
有するポリエステル骨格、ポリブタジン骨格等である。
適宜これら1種又は2種以上の骨格構造を採用すること
で、接着剤物性を調整できる。なお、分子鎖中にウレタ
ン結合ある場合は、このウレタン結合とも末端イソシア
ネート基が反応して、アロファネート結合を生じて、こ
のアロファネート結合によっても架橋反応を起こす。
The moisture-curable heat-melting adhesive is a composition containing a prepolymer having an isocyanate group at a molecular terminal as an essential component. The prepolymer is usually a polyisocyanate prepolymer having one or more isocyanate groups at both molecular terminals, and is a solid thermoplastic resin at room temperature. Isocyanate groups react with each other due to moisture in the air to cause a chain extension reaction, and as a result, a reactant having a urea bond in a molecular chain is generated,
The urea bond further reacts with the isocyanate group at the molecular terminal, causing a biuret bond and branching to cause a crosslinking reaction. Although the skeleton structure of the molecular chain of the prepolymer having an isocyanate group at the molecular terminal is arbitrary, specific examples include a polyurethane skeleton having a urethane bond, a polyester skeleton having an ester bond, and a polybutazine skeleton.
Adhesive properties can be adjusted by appropriately employing one or more of these skeletal structures. If a urethane bond is present in the molecular chain, the terminal isocyanate group also reacts with the urethane bond to form an allophanate bond, which also causes a cross-linking reaction.

【0023】ポリイソシアネートプレポリマーの具体例
としては、例えば、ポリオールに過剰のポリイソシアネ
ートを反応させた分子末端にイソシアネート基を有し、
且つ分子鎖中にウレタン結合を有するポリウレタン骨格
の、ウレタンプレポリマーがある。また、特開昭64−
14287号公報に開示されている様な、ポリイソシア
ネートに、ポリエステルポリオールと、ポリブタジエン
骨格を有するポリオールとを任意の順序で加え付加反応
させて得られた、ポリエステル骨格とポリブタジエン骨
格とがウレタン結合により結合された構造を有し且つ分
子末端にイソシアネート基を有する結晶性ウレタンプレ
ポリマー、或いは、特開平2−305882号公報に開
示されている様な、ポリカーボネート系ポリオールとポ
リイソシアネートを反応させて得られる分子中に2個以
上のイシソアネート基を有するポリカーボネート系ウレ
タンプレポリマー、ポリエステル系ポリオールとポリイ
ソシアネートを反応させて得られる分子中に2個以上の
イシソアネート基を有するポリエステル系ウレタンプレ
ポリマー等が挙げられる。
Specific examples of the polyisocyanate prepolymer include, for example, an isocyanate group at a molecular terminal obtained by reacting an excess polyisocyanate with a polyol;
There is a urethane prepolymer having a polyurethane skeleton having a urethane bond in a molecular chain. Also, Japanese Unexamined Patent Publication No.
No. 14287, a polyester skeleton and a polybutadiene skeleton obtained by adding a polyester polyol and a polyol having a polybutadiene skeleton in an arbitrary order to a polyisocyanate and subjecting them to an addition reaction are bonded by a urethane bond. Crystalline urethane prepolymer having an isolated structure and having an isocyanate group at the molecular terminal, or a molecule obtained by reacting a polycarbonate polyol with a polyisocyanate as disclosed in JP-A-2-305882. A polycarbonate-based urethane prepolymer having two or more isocyanate groups therein, a polyester-based urethane prepolymer having two or more isocyanate groups in a molecule obtained by reacting a polyester polyol and a polyisocyanate, and the like. It is.

【0024】また、湿気硬化型感熱溶融型接着剤として
は、上記各種ポリイソシアネートプレポリマーの他に、
各種物性を調整する為に、上記必須反応成分に更に、必
要に応じて熱可塑性樹脂、粘着付与剤、可塑剤、充填剤
等の各種副材料添加する事もできる。これらの副材料と
しては、例えば、エチレン−酢酸ビニル共重合体、低分
子量ポリエチレン、変性ポリオレフィン、アタクチック
ポリプロピレン、線状ポリエステル、エチレン−エチル
アクリレート(EAA)等の熱可塑性樹脂、テルペン−
フェノール樹脂、アビエチン酸ロジンエステル等の粘着
付与剤、炭酸カルシウム、硫酸バリウム、シリカ、アル
ミナ等の微粉末からなる充填剤(体質顔料)、着色顔
料、硬化触媒、水分除去剤、貯蔵安定剤、老化防止剤等
である。
As the moisture-curable heat-sensitive adhesive, other than the above-mentioned various polyisocyanate prepolymers,
In order to adjust various physical properties, various auxiliary materials such as a thermoplastic resin, a tackifier, a plasticizer, and a filler can be added to the above-mentioned essential reaction components, if necessary. These secondary materials include, for example, ethylene-vinyl acetate copolymer, low molecular weight polyethylene, modified polyolefin, atactic polypropylene, linear polyester, thermoplastic resin such as ethylene-ethyl acrylate (EAA), terpene
Tackifiers such as phenolic resins and rosin abietic acid, fillers (filler pigments) composed of fine powders such as calcium carbonate, barium sulfate, silica, and alumina, coloring pigments, curing catalysts, moisture removers, storage stabilizers, aging And the like.

【0025】電離放射線硬化型接着剤として用いる得る
電離放射線硬化性樹脂は、電離放射線により硬化可能な
組成物であり、具体的には、分子中にラジカル重合性不
飽和結合、又はカチオン重合性官能基を有する、プレポ
リマー(所謂オリゴマーも包含する)及び/又はモノマ
ーを適宜混合した電離放射線により硬化可能な組成物が
好ましくは用いられる。これらプレポリマー又はモノマ
ーは単体又は複数種を混合して用いる。
The ionizing radiation-curable resin which can be used as the ionizing radiation-curable adhesive is a composition curable by ionizing radiation. A prepolymer (including a so-called oligomer) having a group and / or a composition which is appropriately mixed with a monomer and which can be cured by ionizing radiation is preferably used. These prepolymers or monomers are used alone or as a mixture of two or more.

【0026】上記プレポリマー又はモノマーは、具体的
には、分子中に(メタ)アクリロイル基、(メタ)アク
リロイルオキシ基等のラジカル重合性不飽和基、エポキ
シ基等のカチオン重合性官能基等を有する化合物からな
る。また、ポリエンとポリチオールとの組み合わせによ
るポリエン/チオール系のプレポリマーも好ましくは用
いられる。なお、例えば(メタ)アクリロイル基とは、
アクリロイル基又はメタクリロイル基の意味である。ラ
ジカル重合性不飽和基を有するプレポリマーの例として
は、ポリエステル(メタ)アクリレート、ウレタン(メ
タ)アクリレート、エポキシ(メタ)アクリレート、メ
ラミン(メタ)アクリレート、トリアジン(メタ)アク
リレート等が使用できる。分子量としては、通常250
〜100,000程度のものが用いられる。ラジカル重
合性不飽和基を有するモノマーの例としては、単官能モ
ノマーとして、メチル(メタ)アクリレート、2−エチ
ルヘキシル(メタ)アクリレート、フェノキシエチル
(メタ)アクリレート等がある。また、多官能モノマー
として、ジエチレングリコールジ(メタ)アクリレー
ト、プロピレングリコールジ(メタ)アクリレート、ト
リメチールプロパントリ(メタ)アクリレート、トリメ
チロールプロパンエチレンオキサイドトリ(メタ)アク
リレート、ジペンタエリスリトールペンタ(メタ)アク
リレート、ジペンタエリスリトールヘキサ(メタ)アク
リレート等もある。カチオン重合性官能基を有するプレ
ポリマーの例としては、ビスフェノール型エポキシ樹
脂、ノボラック型エポキシ化合物等のエポキシ系樹脂、
脂肪酸系ビニルエーテル、芳香族系ビニルエーテル等の
ビニルエーテル系樹脂のプレポリマーがある。チオール
としては、トリメチロールプロパントリチオグリコレー
ト、ペンタエリスリトールテトラチオグリコレート等の
ポリチオールがある。また、ポリエンとしては、ジオー
ルとジイソシアネートによるポリウレタンの両端にアリ
ルアルコールを付加したもの等がある。
The above-mentioned prepolymer or monomer specifically has a radical polymerizable unsaturated group such as a (meth) acryloyl group and a (meth) acryloyloxy group, a cationic polymerizable functional group such as an epoxy group in the molecule. Consisting of a compound having Further, a polyene / thiol prepolymer based on a combination of polyene and polythiol is also preferably used. In addition, for example, a (meth) acryloyl group is
It means an acryloyl group or a methacryloyl group. Examples of the prepolymer having a radical polymerizable unsaturated group include polyester (meth) acrylate, urethane (meth) acrylate, epoxy (meth) acrylate, melamine (meth) acrylate, and triazine (meth) acrylate. The molecular weight is usually 250
Approximately 100,000 are used. Examples of the monomer having a radical polymerizable unsaturated group include monofunctional monomers such as methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and phenoxyethyl (meth) acrylate. As polyfunctional monomers, diethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, trimethylpropane tri (meth) acrylate, trimethylolpropane ethylene oxide tri (meth) acrylate, dipentaerythritol penta (meth) acrylate And dipentaerythritol hexa (meth) acrylate. Examples of the prepolymer having a cationically polymerizable functional group include bisphenol type epoxy resins, epoxy resins such as novolak type epoxy compounds,
There are prepolymers of vinyl ether resins such as fatty acid vinyl ethers and aromatic vinyl ethers. Examples of the thiol include polythiols such as trimethylolpropane trithioglycolate and pentaerythritol tetrathioglycolate. Examples of the polyene include those obtained by adding allyl alcohol to both ends of a polyurethane made of a diol and a diisocyanate.

【0027】なお、紫外線又は可視光線にて硬化させる
場合には、上記電離放射線硬化性樹脂に、さらに光重合
開始剤を添加する。ラジカル重合性不飽和基を有する樹
脂系の場合は、光重合開始剤として、アセトフェノン
類、ベンゾフェノン類、チオキサントン類、ベンゾイ
ン、ベンゾインメチルエーテル類を単独又は混合して用
いることができる。また、カチオン重合性官能基を有す
る樹脂系の場合は、光重合開始剤として、芳香族ジアゾ
ニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム
塩、メタロセン化合物、ベンゾインスルホン酸エステル
等を単独又は混合物として用いることができる。なお、
これらの光重合開始剤の添加量としては、電離放射線硬
化性樹脂100重量部に対して、0.1〜10重量部程
度である。なお、電離放射線としては、接着剤中の分子
を架橋させ得るエネルギーを有する電磁波又は荷電粒子
が用いられる。通常用いられるものは、紫外線又は電子
線であるが、この他、可視光線、X線、イオン線等を用
いる事も可能である。紫外線源としては、超高圧水銀
灯、高圧水銀灯、低圧水銀灯、カーボンアーク灯、ブラ
ックライト、メタルハライドランプ等の光源が使用され
る。紫外線の波長としては通常190〜380nmの波
長域が主として用いられる。電子線源としては、コック
クロフトワルトン型、バンデグラフト型、共振変圧器
型、絶縁コア変圧器型、或いは、直線型、ダイナミトロ
ン型、高周波型等の各種電子線加速器を用い、100〜
1000keV、好ましくは、100〜300keVの
エネルギーをもつ電子を照射するものが使用される。
When curing with ultraviolet light or visible light, a photopolymerization initiator is further added to the ionizing radiation-curable resin. In the case of a resin system having a radical polymerizable unsaturated group, acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ethers can be used alone or in combination as a photopolymerization initiator. In the case of a resin system having a cationically polymerizable functional group, an aromatic diazonium salt, an aromatic sulfonium salt, an aromatic iodonium salt, a metallocene compound, a benzoinsulfonic acid ester, or the like is used alone or as a mixture as a photopolymerization initiator. be able to. In addition,
The addition amount of these photopolymerization initiators is about 0.1 to 10 parts by weight based on 100 parts by weight of the ionizing radiation-curable resin. In addition, as the ionizing radiation, an electromagnetic wave or a charged particle having energy capable of crosslinking the molecules in the adhesive is used. Usually, ultraviolet rays or electron beams are used, but it is also possible to use visible rays, X-rays, ion beams or the like. As the ultraviolet light source, a light source such as an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc lamp, a black light, and a metal halide lamp is used. As a wavelength of the ultraviolet light, a wavelength range of 190 to 380 nm is usually mainly used. As an electron beam source, various electron beam accelerators such as a Cockcroft-Walton type, a Van degraft type, a resonance transformer type, an insulating core transformer type, or a linear type, a dynamitron type, and a high frequency type are used.
One that irradiates electrons with energy of 1000 keV, preferably 100 to 300 keV is used.

【0028】上記電離放射線硬化性樹脂に、更に必要に
応じて、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビ
ニル、アクリル系樹脂、セルロース系樹脂等の熱可塑性
樹脂を添加することもできる。なお、希釈溶剤は添加せ
ずに用いれば、ホットメルト接着剤となる。
If necessary, a thermoplastic resin such as a vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, an acrylic resin, or a cellulose resin may be added to the ionizing radiation-curable resin. If used without adding a diluting solvent, it becomes a hot melt adhesive.

【0029】なお、電離放射線硬化型接着剤を用いた場
合には、曲面転写装置に紫外線や電子線を照射する電離
放射線照射装置を組み込むことができる。照射は、衝突
圧印加中、印加後、或いは印加中及び印加後に行う。
When an ionizing radiation-curable adhesive is used, an ionizing radiation irradiating device for irradiating an ultraviolet ray or an electron beam to a curved surface transfer device can be incorporated. The irradiation is performed during, after, or after and after the application of the collision pressure.

【0030】また、接着剤に用いる上記各種樹脂に更
に、必要に応じて各種添加剤を添加する事もできる。こ
れらの添加剤としては、例えば、炭酸カルシウム、硫酸
バリウム、シリカ、アルミナ等の微粉末からなる体質顔
料(充填剤)、有機ベントナイト等のチキソトロピック
付与剤(特に凹凸段差の大きい被転写基材の場合、接着
剤が凸部から凹部へ流入する事を防止する為に添加する
と良い。)等である。
Further, various additives may be added to the various resins used for the adhesive, if necessary. These additives include, for example, extenders (fillers) composed of fine powders such as calcium carbonate, barium sulfate, silica, and alumina, and thixotropic agents such as organic bentonite (especially for transfer-receiving substrates having a large uneven step). In this case, the adhesive may be added to prevent the adhesive from flowing into the concave portion from the convex portion.).

【0031】接着剤を、転写シート等のシートや被転写
基材に施すには、水、有機溶剤等の溶媒(又は分散媒)
に溶解(又は分散)した溶液(又は分散液)の形態で、
或いは熱溶融した熱可塑性組成物又は室温液状の未硬化
樹脂を無溶剤の樹脂液の形態で施す。塗工法としては、
従来公知の塗工法であるグラビアロールコート等による
溶液塗工や、アプリケータ等による熔融塗工(溶融塗
工)法により施せば良い。希釈溶剤を添加せずに用いれ
ば、溶剤乾燥は不要である。例えば、感熱溶融型接着剤
は、それぞれ無溶剤のホットメルト接着剤として使用で
きる。また、電離放射線硬化型接着剤なども無溶剤で施
すことができる。ホットメルト型接着剤として使用する
場合は無溶剤なので、転写直前の塗工でも溶剤乾燥が不
要で、高速生産できる。なお、接着剤の塗布量は、接着
剤の組成、被転写基材の種類及び表面状態で異なるが、
通常10〜200g/m2 (固形分)程度である。
To apply the adhesive to a sheet such as a transfer sheet or a substrate to be transferred, a solvent (or dispersion medium) such as water or an organic solvent is used.
In the form of a solution (or dispersion) dissolved (or dispersed) in
Alternatively, a hot-melt thermoplastic composition or a room-temperature liquid uncured resin is applied in the form of a solvent-free resin liquid. As a coating method,
What is necessary is just to apply by the solution coating by a gravure roll coat etc. which are a conventionally well-known coating method, or the fusion coating (melt coating) method by an applicator etc. When used without adding a diluting solvent, solvent drying is unnecessary. For example, heat-sensitive adhesives can be used as solventless hot-melt adhesives, respectively. In addition, an ionizing radiation-curable adhesive or the like can be applied without a solvent. When used as a hot-melt adhesive, there is no solvent, so solvent drying is unnecessary even immediately before transfer, and high-speed production is possible. The amount of the adhesive applied varies depending on the composition of the adhesive, the type of the substrate to be transferred, and the surface condition.
Usually, it is about 10 to 200 g / m 2 (solid content).

【0032】また、接着剤をホットメルト接着剤として
用いる場合で、更に被転写基材の凹凸形状に転写シート
を追従変性させて転写する場合には、必然的に転写シー
トの支持体として、ポリプロピレン系樹脂等の熱可塑性
樹脂シートの様に室温乃至加熱状態で熱可塑性或いはゴ
ム弾性を呈する物を選ぶ必要があるが、これは別の観点
から観ると支持体に耐熱性が低い物を選ばざるを得ない
という事を意味する。故に、該接着剤を熔融塗工して転
写シートとする場合、接着剤層を厚く塗工すると、熔融
塗工時の熱で支持体が軟化し、また、接着剤塗工装置に
おいて加熱状態のアプリケータローラにシートが粘着
し、引きずられてシートが伸びたり、歪んだり、或いは
巻き込まれたりすることがある。そこで、この様な場合
には、シートに接着剤を直接に熔融塗工せず、離型シー
ト(セパレータ)経由で接着剤を施して転写シートとす
ると良い。すなわち、耐熱性及び離型性のある離型シー
トに、接着剤を加熱熔融塗工後、塗工された接着剤によ
り離型シートと、転写シートになるシートとをニップロ
ーラ等により一旦熱ラミネートし、次いで、剥離ローラ
等により離型シートのみをシートから剥離することで、
シートへの熱ダメージを少なくして、接着剤層が形成さ
れた転写シートとすることができる。なお離型シートに
は延伸性等は不要で2軸延伸ポリエチレンテレフタレー
トシート、ポリエチレンナフタレート、ポリアリレー
ト、ポリイミド等の耐熱性樹脂シートや紙等を基材とし
て、この表面をシリコーン樹脂、ポリメチルペンテン等
の塗工で、離型処理した従来公知の離型シートが使用で
きる。離型シートの厚みは通常50〜200μm程度で
ある。
In the case where the adhesive is used as a hot-melt adhesive, and when the transfer sheet is further modified to follow the uneven shape of the substrate to be transferred and transferred, the support of the transfer sheet is necessarily made of polypropylene. It is necessary to select a material exhibiting thermoplasticity or rubber elasticity at room temperature or in a heated state, such as a thermoplastic resin sheet such as a system resin. However, from another viewpoint, a material having low heat resistance should be selected for the support. Means that you don't get it. Therefore, when the adhesive is melt-coated to form a transfer sheet, when the adhesive layer is thickly applied, the support is softened by heat during the melt coating, and the adhesive is heated in an adhesive coating apparatus. The sheet may stick to the applicator roller and may be stretched, distorted, or entangled by dragging. Therefore, in such a case, the transfer sheet may be formed by applying an adhesive via a release sheet (separator) instead of directly applying the adhesive to the sheet by melt coating. That is, the adhesive is heated and melt-coated on a release sheet having heat resistance and release properties, and then the release sheet and the sheet to be the transfer sheet are temporarily laminated by a nip roller or the like with the applied adhesive. Then, by peeling only the release sheet from the sheet by a peeling roller or the like,
The transfer sheet having the adhesive layer formed thereon can be obtained by reducing heat damage to the sheet. The release sheet does not need to be stretchable. A heat-resistant resin sheet such as biaxially stretched polyethylene terephthalate sheet, polyethylene naphthalate, polyarylate, or polyimide, or paper is used as a base material. For example, a conventionally known release sheet subjected to a release treatment by such coating can be used. The thickness of the release sheet is usually about 50 to 200 μm.

【0033】なお、接着剤に感熱溶融型接着剤を用い、
接着剤を活性化して熱融着させる為に加熱するタイミン
グは、衝突圧印加前、衝突圧印加中、或いは衝突圧印加
前及び印加中などのいずれでも良い。接着剤の加熱は転
写シートや被転写基材を加熱して行う。接着剤が施され
た材料(転写シートや被転写基材)を加熱しても良く、
接着剤が施されていない側の材料を加熱しても良く、或
いはこれら両方の材料を加熱しても良い。また、衝突圧
印加中の加熱には、加熱固体粒子や、固体粒子加速用の
流体を加熱流体として用いても良い。一方、転写シート
が被転写基材の表面形状に追従し、成形され、接着剤が
十分活性化すれば、冷風等の冷却手段で接着剤の冷却を
促進しても良い。冷風は、転写シート側や被転写基材側
から吹き付ける。また、冷却手段として、冷却固体粒
子、冷却流体も用いることもできる。冷却促進は、被転
写基材の凹凸表面の凹部内部にまで追従成形された転写
シートが衝突圧開放後に復元力がある場合に戻るのも防
止する。(以下、次の文書ファイルに続く)
A heat-sensitive adhesive is used as the adhesive.
The timing of heating to activate and thermally fuse the adhesive may be before applying the collision pressure, during the application of the collision pressure, or before and during the application of the collision pressure. The heating of the adhesive is performed by heating the transfer sheet or the substrate to be transferred. The material (transfer sheet or transfer substrate) to which the adhesive has been applied may be heated,
The material to which the adhesive is not applied may be heated, or both materials may be heated. Further, for the heating during the application of the collision pressure, heated solid particles or a fluid for accelerating the solid particles may be used as the heating fluid. On the other hand, if the transfer sheet follows the surface shape of the substrate to be transferred and is formed, and the adhesive is sufficiently activated, cooling of the adhesive may be promoted by cooling means such as cold air. Cold air is blown from the transfer sheet side or the transfer-receiving substrate side. In addition, cooling solid particles and cooling fluid can also be used as cooling means. The promotion of cooling also prevents the transfer sheet formed following the inside of the concave portion of the concave-convex surface of the transfer-receiving substrate from returning to the case where there is a restoring force after releasing the collision pressure. (Hereafter, following the next document file)

【0034】〔固体粒子〕固体粒子Pとしては、ガラス
ビーズ、セラミックビーズ、炭酸カルシウムビーズ、ア
ルミナビーズ、ジルコニアビーズ、アランダムビーズ、
コランダムビーズ等の無機粉体である非金属無機粒子、
鉄、炭素鋼、ステンレス鋼等の鉄合金、アルミニウム、
又はジュラルミン等のアルミニウム合金、チタン、亜鉛
等の金属ビーズ等の金属粒子、或いは、フッ素樹脂ビー
ズ、ナイロンビーズ、シリコーン樹脂ビーズ、ウレタン
樹脂ビーズ、尿素樹脂ビーズ、フェノール樹脂ビーズ、
架橋ゴムビーズ等の樹脂ビーズ等の有機粒子等を使用す
ることができる。なお、液体の水を固体粒子加速流体に
使う場合は、固体粒子には、水で錆や腐食しないステン
レスビーズや、ガラスビーズ、セラミックビーズ、樹脂
ビーズ等の非金属が好ましい。形状は球形状が好ましい
が、回転楕円体形状、多面体形状、鱗片状、無定形、そ
の他の形状のものでも用い得る。固体粒子の粒径として
は、通常10〜1000μm程度である。
[Solid Particles] As the solid particles P, glass beads, ceramic beads, calcium carbonate beads, alumina beads, zirconia beads, alundum beads,
Non-metallic inorganic particles that are inorganic powders such as corundum beads,
Iron, carbon steel, iron alloys such as stainless steel, aluminum,
Or metal particles such as metal alloys such as aluminum alloys such as duralumin, titanium and zinc, or fluorine resin beads, nylon beads, silicone resin beads, urethane resin beads, urea resin beads, phenol resin beads,
Organic particles such as resin beads such as crosslinked rubber beads can be used. When liquid water is used as the solid particle accelerating fluid, the solid particles are preferably non-metals such as stainless beads, glass beads, ceramic beads, and resin beads that do not rust or corrode with water. The shape is preferably spherical, but spheroidal, polyhedral, scaly, amorphous, and other shapes can also be used. The particle size of the solid particles is usually about 10 to 1000 μm.

【0035】なお、固体粒子は加熱手段や冷却手段を兼
用することもできる。加熱された加熱固体粒子を用いれ
ば、接着剤の加熱活性化やその架橋硬化の促進、或いは
転写シートの加熱による延伸性の向上を、転写シートの
押圧と共に行うこともできる。この場合、衝突圧印加前
に他の加熱方法で、ある程度まで転写シート、被転写基
材を加熱しておいても良い。また、固体粒子は、接着後
の冷却促進目的で、接着時の接着剤の温度よりも低温の
固体粒子を、冷却固体粒子として用いる事もできる。ま
た、固体粒子はその一部又は全部を加熱固体粒子、冷却
固体粒子として用いたり、加熱固体粒子を衝突させた
後、冷却固体粒子を衝突させる等と、併用しても良い。
また、他の加熱方法で転写シートや被転写基材、接着剤
等の加熱を要するものを充分に加熱しておき、これに冷
却固体粒子を用いて、転写シートの成形と接着及び冷却
を殆ど同時に行うこともできる。固体粒子を冷却又は冷
却するには、固体粒子の貯蔵をホッパ等の形態のタンク
に貯蔵する場合は、タンク内やタンク外壁の設けた、電
熱ヒータ、加熱蒸気、冷媒等により加熱手段、冷却手段
で行えば良い。また、固体粒子輸送管の外壁にこれら手
段を設けて、輸送管にて加熱又は冷却しても良い。或い
は、固体粒子の加速に流体を用いる場合では、冷却又は
加熱した流体を用いて、該流体からの熱伝導で固体粒子
を冷却又は加熱することもできる。その場合、流体も転
写シートに衝突させることで、流体も固体と共に加熱又
は冷却手段とすることができる。或いは、前記流体が液
体で該液体と共に固体粒子を貯蔵するタンクを用いる場
合では、貯蔵中に固体粒子及び液体を冷却、加熱しても
良い。
The solid particles can also serve as a heating means and a cooling means. When heated solid particles are used, the activation of the adhesive by heating and the promotion of crosslinking and curing thereof, or the improvement of the stretchability by heating the transfer sheet can be performed together with the pressing of the transfer sheet. In this case, the transfer sheet and the substrate to be transferred may be heated to some extent by another heating method before the application of the collision pressure. For the purpose of promoting cooling after bonding, solid particles having a temperature lower than the temperature of the adhesive at the time of bonding can be used as the cooling solid particles. The solid particles may be used in combination with a part or all of the solid particles as heated solid particles or cooled solid particles, or after the heated solid particles collide with the cooled solid particles.
In addition, the transfer sheet, the base material to be transferred, the adhesive, etc., which need to be heated by another heating method, are sufficiently heated, and the cooling solid particles are used for the formation, adhesion and cooling of the transfer sheet. It can be done at the same time. In order to cool or cool the solid particles, when the storage of the solid particles is stored in a tank such as a hopper or the like, a heating means, a cooling means, or the like provided by an electric heater, heated steam, or a refrigerant provided in the tank or on the outer wall of the tank. You can do it in Further, these means may be provided on the outer wall of the solid particle transport pipe, and heating or cooling may be performed in the transport pipe. Alternatively, when a fluid is used for accelerating the solid particles, a cooled or heated fluid may be used to cool or heat the solid particles by heat conduction from the fluid. In this case, by causing the fluid to collide with the transfer sheet, the fluid can be used as a heating or cooling unit together with the solid. Alternatively, when the fluid is a liquid and a tank for storing solid particles together with the liquid is used, the solid particles and the liquid may be cooled and heated during storage.

【0036】〔固体粒子による衝突圧印加〕固体粒子を
転写シートに衝突させて衝突圧を印加し、転写シートを
被転写基材に押圧するには、固体粒子を噴出する固体粒
子噴出手段から固体粒子を転写シートに向かって噴出さ
せて、転写シートに衝突圧を印加する。固体粒子噴出手
段としては、粒子加速器として例えば、回転する羽根車
を用いた噴出器や、吹出ノズルを用いた噴出器を用い
る。羽根車による噴出器は、羽根車の回転により固体粒
子を加速し噴出するものである。吹出ノズルによる噴出
器は、固体粒子加速流体を用いて、固体粒子を高速の該
流体の流体流で加速、搬送させて該流体と共に噴出する
ものである。羽根車や吹出ノズルには、サンドブラスト
或いはショットブラスト、ショットピーニング等とブラ
スト分野にて使用されているものを流用できる。例えば
羽根車には遠心式ブラスト装置、吹出ノズルには加圧式
や吸引式ブラスト装置、ウェットブラスト装置等であ
る。遠心式ブラスト装置は羽根車の回転力で固体粒子を
加速し噴出する。加圧式ブラスト装置は、圧縮空気に混
合しておいて固体粒子を、空気と共に噴出する。吸引式
ブラスト装置は、圧縮空気の高速流で生ずる負圧部に固
体粒子を吸い込み、空気と共に噴出する。ウェットブラ
スト装置は、固体粒子を液体と混合して噴出する。ま
た、固体粒子噴出手段としては、吹出ノズルや羽根車以
外にも、重力による自由落下を利用して固体粒子を加速
する方法、磁性体粒子を磁場によって加速する方法等を
採用することも可能である。なお、羽根車、重力、磁場
を用いた固体粒子噴出手段の場合は、真空中で固体粒子
を転写シートに向かって噴出させる事も可能である。
[Application of Impact Pressure by Solid Particles] In order to strike the solid particles against the transfer sheet and apply the impact pressure to press the transfer sheet against the substrate to be transferred, the solid particles are ejected from the solid particle ejecting means for ejecting the solid particles. The particles are ejected toward the transfer sheet, and an impact pressure is applied to the transfer sheet. As the solid particle ejecting means, for example, an ejector using a rotating impeller or an ejector using an ejection nozzle is used as a particle accelerator. The ejector using the impeller accelerates and ejects solid particles by rotation of the impeller. The ejector using the ejection nozzle accelerates and transports solid particles with a high-speed fluid flow using a solid particle acceleration fluid, and ejects the solid particles together with the fluid. Sandblasting, shot blasting, shot peening and the like used in the blasting field can be used for the impeller and the blowing nozzle. For example, a centrifugal blast device is used for the impeller, and a pressurized or suction blast device, a wet blast device, or the like is used for the blowing nozzle. The centrifugal blast device accelerates and ejects solid particles by the rotational force of the impeller. A pressurized blasting device ejects solid particles together with air while being mixed with compressed air. The suction-type blast device sucks solid particles into a negative pressure portion generated by a high-speed flow of compressed air, and ejects the solid particles together with the air. The wet blast device mixes and ejects solid particles with a liquid. In addition to the blowing nozzle and the impeller, a method of accelerating solid particles using free fall due to gravity, a method of accelerating magnetic particles by a magnetic field, and the like can be adopted as the solid particle ejecting means. is there. In the case of an impeller, a gravitational force, and a magnetic field ejecting means using a magnetic field, the solid particles can be ejected toward the transfer sheet in a vacuum.

【0037】〔羽根車〕図3〜図6に、噴出器の粒子加
速器として用い得る羽根車の一例の概念図を示す。これ
らは、ブラスチング分野にて使用されている遠心式ブラ
スト装置に該当する。図面では、羽根車812は、複数
の羽根813がその両側を2枚の側面板814で固定さ
れ、且つ回転中心部は羽根813が無い中空部815と
なっている。更に、この中空部815内に方向制御器8
16を内在する。方向制御器816は、外周の一部が円
周方向に開口した開口部817を有し中空筒状で羽根車
812の回転軸芯と同一回転軸芯で、羽根車とは独立し
て回動自在となっている。実際に羽根車を使用する際に
は、開口部を適宜の方向に固定しておく。更に、この方
向制御器の内部に、内部中空で羽根車812の回転軸芯
と同一回転軸芯のもう一つの羽根車が散布器818とし
て内在する(図5参照)。散布器818は外側の羽根車
812と共に回転する。そして、前記側面板814の回
転中心には回転軸819が固定され、回転軸819は、
軸受820で回転自在に軸支され電動機等の回転動力源
(図示略)によって駆動回転され、羽根車812が回転
する。また回転軸819は、羽根813を間に有する2
枚の側面板814間には貫通しておらず、軸無しの空間
を形成している。そして、散布器818の内部に固体粒
子Pがホッパ等から輸送管を通って供給される。通常、
固体粒子は、羽根車の上方(直上又は斜上方)から供給
する。散布器内に供給された固体粒子は散布器の羽根車
で外側に飛び散る。飛び散った固体粒子は、方向制御器
816の開口部817によって許された方向にのみ放出
され、外側の羽根車812の羽根813と羽根813と
の間に供給される。そして、羽根813に衝突し、羽根
車812の回転力で加速され、羽根車から噴出する。
[Impeller] FIGS. 3 to 6 show conceptual diagrams of an example of an impeller that can be used as a particle accelerator of an ejector. These correspond to centrifugal blasting devices used in the blasting field. In the drawing, the impeller 812 has a plurality of blades 813 fixed on both sides by two side plates 814, and a rotation center portion is a hollow portion 815 without the blades 813. Further, the direction controller 8 is provided in the hollow portion 815.
16 are inherent. The direction controller 816 has an opening 817 that is partially open in the circumferential direction, has a hollow cylindrical shape, and has the same rotation axis as the rotation axis of the impeller 812, and rotates independently of the impeller. It is free. When the impeller is actually used, the opening is fixed in an appropriate direction. Further, inside the directional controller, another impeller having a hollow inside and the same rotation axis as the rotation axis of the impeller 812 is provided as a sprayer 818 (see FIG. 5). The spreader 818 rotates with the outer impeller 812. A rotation shaft 819 is fixed to the center of rotation of the side plate 814.
The impeller 812 is rotatably supported by a bearing 820 and driven and rotated by a rotation power source (not shown) such as an electric motor. The rotating shaft 819 has a blade 813 between them.
It does not penetrate between the side plates 814 and forms a space without a shaft. Then, the solid particles P are supplied into the sprayer 818 from a hopper or the like through a transport pipe. Normal,
The solid particles are supplied from above (directly or obliquely above) the impeller. The solid particles supplied into the sprayer are scattered outward by the impeller of the sprayer. The scattered solid particles are emitted only in the direction allowed by the opening 817 of the direction controller 816 and supplied between the blades 813 of the outer impeller 812. Then, it collides with the impeller 813, is accelerated by the rotational force of the impeller 812, and ejects from the impeller.

【0038】なお、固体粒子の噴出方向は、図3〜図4
の様に略鉛直下方であるが、水平方向、或いは斜下方
(図示略)等としても良い。図6(A)及び図6(B)
に方向制御器816の開口部817の向きの設定より固
体粒子の噴出方向を調整する噴出方向制御の概念図を示
す(図6(A)、(B)では方向制御器はそれぞれ図示
の位置で固定されている)。なお、方向制御器816
は、その開口部の円周方向、幅方向の大きさを調整する
ことで、固体粒子の噴出量を調整することもできる。な
お、図4に於いては、回転軸819は側面板814の外
側のみで中空部815にまで貫通していない構成となっ
ているが、この他、中空部の直径より細い回転軸を該中
空部にまで貫通させたり、外周に固体粒子通り抜け用の
開口部を設けた中空筒状の回転軸の内部自身を中空部と
する構成などでも良い(図示略)。羽根813の形は、
図3〜図6の様な長方形の平板(直方体)が代表的であ
るが、この他、湾曲曲面板、スクリュープロペラ等のプ
ロペラ形等を用いる事も可能であり、用途、目的に応じ
て選択する。又、羽根の数は2枚〜10枚の範囲から通
常は選択する。羽根車の形状、枚数、回転速度、及び固
体粒子の質量や供給速度と供給方向、方向制御器の開口
部サイズ及び向きの組み合わせにより、加速された固体
粒子の噴出(吹出)方向、噴出速度、投射密度、噴出拡
散角等を調整する。
The ejection direction of the solid particles is shown in FIGS.
, But may be horizontal or obliquely downward (not shown). FIG. 6 (A) and FIG. 6 (B)
6A and 6B are conceptual diagrams of the ejection direction control for adjusting the ejection direction of the solid particles by setting the direction of the opening 817 of the direction controller 816 (in FIGS. 6A and 6B, the direction controllers are at the illustrated positions, respectively). Fixed). Note that the direction controller 816
By adjusting the size of the opening in the circumferential direction and the width direction, the ejection amount of solid particles can also be adjusted. In FIG. 4, the rotating shaft 819 is configured to be only outside the side plate 814 and not penetrate to the hollow portion 815. A configuration may be adopted in which the inside of a hollow cylindrical rotary shaft having an opening through which solid particles pass through is formed as a hollow part (not shown). The shape of the wing 813 is
A rectangular flat plate (a rectangular parallelepiped) as shown in FIGS. 3 to 6 is typical, but a curved curved plate, a propeller shape such as a screw propeller or the like can also be used. I do. The number of blades is usually selected from a range of 2 to 10 blades. By the combination of the shape, number, rotation speed, mass and supply speed and supply direction of the solid particles, and the opening size and direction of the direction controller, the ejection direction of the accelerated solid particles, the ejection speed, Adjust the projection density, ejection angle, etc.

【0039】また、図7は、羽根車の別の一例を示す概
念図である。同図の羽根車812aは、複数の平板状の
羽根813aがその両側を2枚の側面板814aで固定
された構造である。通常、固体粒子Pは、羽根車の上方
(直上又は斜上方)から供給する。また、側面板814
aは回転軸819aに対して幅方向の噴出方向の規制も
する。羽根車の形状、枚数、回転速度、及び固体粒子の
質量や供給速度と供給方向の組み合わせにより、加速さ
れた固体粒子の噴出(吹出)方向、噴出速度、投射密
度、噴出拡散角等を調整する。固体粒子の噴出方向は鉛
直下方(図示略)、水平方向(図7)、或いは斜下方
(図示略)等が可能である。また、上記した羽根車81
2、812a等の羽根車には、更に、更に必要に応じ、
固体粒子の噴出取出部分のみ開口させ、それ以外の羽根
車周囲を被覆する噴出ガイド(不図示)を備える事で、
固体粒子の噴出方向を揃えたり、固体粒子噴出方向制御
をすることもできる。噴出ガイドの開口部の形状は、例
えば、中空の円柱状、多角柱状、円錐状、多角錐状、魚
尾状等である。噴出ガイドは、単一開口部を有するもの
でも良いし、或いは内部がハニカム(蜂の巣)状に区画
されたものでも良い。
FIG. 7 is a conceptual diagram showing another example of the impeller. The impeller 812a shown in the drawing has a structure in which a plurality of flat blades 813a are fixed on both sides by two side plates 814a. Usually, the solid particles P are supplied from above (directly above or obliquely above) the impeller. Also, the side plate 814
a also regulates the jetting direction in the width direction with respect to the rotating shaft 819a. By adjusting the shape, the number, the rotation speed, the mass of the solid particles, the supply speed and the supply direction of the impellers, the direction of the ejection (spout) of the accelerated solid particles, the ejection speed, the projection density, the ejection diffusion angle, etc. are adjusted. . The ejection direction of the solid particles can be vertically downward (not shown), horizontal (FIG. 7), obliquely downward (not shown), or the like. In addition, the above-described impeller 81
2, 812a, etc., if necessary,
By providing an ejection guide (not shown) that opens only the ejection and extraction portion of solid particles and covers the periphery of the other impeller,
The ejection direction of the solid particles can be aligned, and the ejection direction of the solid particles can be controlled. The shape of the opening of the ejection guide is, for example, a hollow cylindrical shape, a polygonal column shape, a conical shape, a polygonal pyramid shape, a fish tail shape, or the like. The ejection guide may have a single opening, or may have an interior partitioned into a honeycomb shape.

【0040】羽根車812、812a等の羽根車の寸法
は、通常直径5〜60cm程度、羽根の幅は5〜20c
m程度、羽根の長さは、ほぼ羽根車の直径程度、羽根車
の回転数は500〜5000〔rpm〕程度である。固
体粒子の噴出速度は10〜50〔m/s〕程度、投射密
度は10〜150〔kg/m2 〕程度である。
The dimensions of the impellers such as the impellers 812 and 812a are usually about 5 to 60 cm in diameter, and the width of the impeller is 5 to 20c.
m, the length of the impeller is about the diameter of the impeller, and the rotation speed of the impeller is about 500-5000 [rpm]. The ejection speed of the solid particles is about 10 to 50 [m / s], and the projection density is about 10 to 150 [kg / m 2 ].

【0041】また、羽根車の羽根の材質は、セラミッ
ク、或いはスチール、高クロム鋳鋼、チタン、チタン合
金等の金属等から適宜選択すれば良い。固体粒子は羽根
に接触して加速されるので、羽根には、耐摩耗性のよい
高クロム鋳鋼、セラミックを用いると良い。
The material of the blades of the impeller may be appropriately selected from ceramics, metals such as steel, high chromium cast steel, titanium, and titanium alloy. Since the solid particles are accelerated upon contact with the blade, it is preferable to use a high chromium cast steel or ceramic having good wear resistance for the blade.

【0042】〔吹出ノズル〕固体粒子を流体と共に噴出
する固体粒子噴出手段として、図8に吹出ノズルを用い
た噴出器840の一例の概念図を示す。なお、同図に示
す噴出器840は固体粒子加速流体として気体を用い、
固体粒子噴出時に該気体と固体粒子を混合して噴出する
形態の噴出器の一例である。同図の噴出器840は、固
体粒子Pと流体Fを混合する誘導室841と、誘導室8
41内に流体Fを噴出する内部ノズル842と、ノズル
開口部843から固体粒子P及び流体Fを噴出する吹出
ノズル部844からなる。圧縮機又は送風機(不図示)
から適宜加圧タンク(不図示)を経て送られる流体F
を、内部ノズル842から噴出し誘導室841を経てノ
ズル844のノズル開口部843から噴出する際に、噴
出器内の誘導室841にて、高速で流れる流体流の作用
で負圧を作り、この負圧により固体粒子を流体流に導き
混合し、流体流で固体粒子を加速、搬送して、ノズル8
44のノズル開口部843から流体流と共に噴出するも
のである。なお、吹出ノズルには、固体粒子加速流体と
して液体を用いる吹出ノズル等もある。液体の場合は、
例えばポンプ(不図示、流体が液体の場合)により、流
体と固体粒子とを加圧タンク(不図示)に混合貯蔵して
おき、この混合液を吹出ノズルのノズル開口部から噴出
するもの等が使用される。
[Blowing Nozzle] FIG. 8 is a conceptual diagram showing an example of a blowing device 840 using a blowing nozzle as a solid particle blowing means for blowing solid particles together with a fluid. Note that the ejector 840 shown in the figure uses gas as a solid particle accelerating fluid,
It is an example of an ejector in a form in which the gas and the solid particles are mixed and ejected when the solid particles are ejected. The ejector 840 shown in the figure includes an induction chamber 841 for mixing the solid particles P and the fluid F, and an induction chamber 8
The nozzle 41 includes an internal nozzle 842 for ejecting the fluid F into the nozzle 41, and an ejection nozzle 844 for ejecting the solid particles P and the fluid F from the nozzle opening 843. Compressor or blower (not shown)
Fluid F sent from a pressure tank (not shown)
Is ejected from the nozzle 844 of the nozzle 844 by jetting from the internal nozzle 842 through the induction chamber 841, a negative pressure is created by the action of the fluid flow flowing at high speed in the induction chamber 841 in the ejector. The negative pressure guides and mixes the solid particles into the fluid flow, accelerates and transports the solid particles with the fluid flow,
44 is ejected together with the fluid flow from the nozzle opening 843. It should be noted that the blowing nozzle includes a blowing nozzle using a liquid as a solid particle accelerating fluid. For liquids,
For example, a pump (not shown, when the fluid is a liquid) mixes and stores the fluid and the solid particles in a pressurized tank (not shown), and ejects the mixed solution from the nozzle opening of the blowing nozzle. used.

【0043】ノズル開口部の形状は、中空の円柱状、多
角柱状、円錐状、多角錐状、魚尾状等の形状のものを用
いる。吹出ノズルは、単一開口部を有するものでも良い
し、或いは内部がハニカム(蜂の巣)状に区画されたも
のでも良い。流体圧は吹付圧力で通常0.1〜100k
g/cm2 程度である。流体流の流速は、液流では通常
1〜80m/秒程度、気流では通常5〜80m/秒程度
である。誘導室やノズル部等の噴出器の材質は、セラミ
ック、スチール、チタン、チタン合金等から流体の種類
によって適宜選択すれば良い。なお、固体粒子は噴出器
内壁を通過するので、固体粒子に金属ビーズや無機粒子
を用いる場合には粒子が硬質であるので、耐摩耗性のよ
いセラミックを用いると良い。流体が液体の場合は、
錆、溶解、腐食等を生じない材料を選ぶ。例えば流体が
水ならば、ステンレス鋼、チタン、チタン合金、合成樹
脂、セラミックを用いる。但し、表面に防水加工すれ
ば、スチール等でも良い。
As the shape of the nozzle opening, a hollow cylindrical shape, polygonal column shape, conical shape, polygonal pyramid shape, fish tail shape or the like is used. The blowing nozzle may have a single opening, or may have an inside partitioned into a honeycomb shape. Fluid pressure is spraying pressure, usually 0.1-100k
g / cm 2 . The flow velocity of the fluid flow is usually about 1 to 80 m / sec for the liquid flow, and usually about 5 to 80 m / sec for the air flow. The material of the ejector such as the induction chamber and the nozzle portion may be appropriately selected from ceramics, steel, titanium, titanium alloy and the like according to the type of fluid. Since the solid particles pass through the inner wall of the ejector, when metal beads or inorganic particles are used as the solid particles, the particles are hard, and therefore, a ceramic having good wear resistance is preferably used. If the fluid is a liquid,
Select a material that does not cause rust, dissolution, corrosion, etc. For example, if the fluid is water, stainless steel, titanium, a titanium alloy, a synthetic resin, or ceramic is used. However, steel or the like may be used if the surface is waterproofed.

【0044】〔流体〕流体Fは、固体粒子加速流体とし
て、固体粒子を該流体流によって加速、搬送して、該流
体と共に固体粒子を固体粒子噴出手段から噴出させる場
合(吹出ノズル等)に用いる。流体Fは固体粒子を加速
する固体粒子加速流体である。流体には気体、液体とも
に利用可能であるが、通常は取扱いが容易な気体を用い
る。気体としては、空気が代表的であるが、炭酸ガス、
窒素等でも良い。液体としては、必ずしも限定されない
が、不燃性、乾燥の容易性、無毒性、低価格、入手の容
易性、等から水は好ましい材料の一つである。この他、
フロン、グリセリン、シリコン油等の不燃性の液体も使
用できる。液体を(気体もそうであるが)転写シートに
固体粒子と共に衝突させることができる。当然の事なら
がら、液体は気体よりも密度が高い為、気体よりも液体
の方が、流体流で固体粒子を加速する場合に加速し易
く、しかも液体が転写シートに衝突する場合に、気体と
等速度の衝突でも、衝突圧は気体に比べてより大きく且
つ実用性のある衝突圧が得られる。(また、固体粒子と
の密度差も少ないので固体粒子の搬送もし易い。)従っ
て、液体の場合は、転写圧として固体粒子の衝突圧以外
に、液体の衝突圧も利用でき、その分より大きな転写圧
を印加でき、その結果、転写シートを被転写基材の表面
凹凸形状へ追従させ成形する成形効果により大きなもの
が得られる。また、衝突圧印加時の加熱又は冷却手段と
して流体を用いる場合、気体よりも液体の方が比熱が大
きいので、より大きな加熱又は冷却効果が得られる。ま
た、液体が水の様な電気伝導体の場合は、気体の場合に
比べて静電気帯電に対する防爆対策もより容易となる。
[Fluid] The fluid F is used as a solid particle accelerating fluid when the solid particles are accelerated and conveyed by the fluid flow, and the solid particles are ejected together with the fluid from the solid particle ejection means (eg, an ejection nozzle). . The fluid F is a solid particle acceleration fluid for accelerating the solid particles. As the fluid, both gas and liquid can be used, but usually, gas which is easy to handle is used. Air is a typical gas, but carbon dioxide,
Nitrogen or the like may be used. Although the liquid is not necessarily limited, water is one of the preferred materials because of its nonflammability, ease of drying, non-toxicity, low cost, availability, and the like. In addition,
Nonflammable liquids such as chlorofluorocarbon, glycerin, and silicone oil can also be used. A liquid (as well as a gas) can be impinged on the transfer sheet along with the solid particles. Naturally, liquid has a higher density than gas, so liquid is easier to accelerate when solid particles are accelerated by a fluid flow than gas, and when liquid collides with a transfer sheet, Even at the same collision speed, the collision pressure is higher than that of gas and a practical collision pressure can be obtained. (Since the difference in density from the solid particles is small, the solid particles can be easily transported.) Therefore, in the case of a liquid, in addition to the collision pressure of the solid particles, the collision pressure of the liquid can be used as the transfer pressure. A transfer pressure can be applied, and as a result, a large effect can be obtained by molding the transfer sheet by following the surface irregularities of the substrate to be transferred. Further, when a fluid is used as the heating or cooling means when the collision pressure is applied, the liquid has a higher specific heat than the gas, so that a greater heating or cooling effect can be obtained. In addition, when the liquid is an electric conductor such as water, explosion-proof measures against electrostatic charging are easier than in the case of a gas.

【0045】〔衝突圧印加形態〕噴出器は、1個のみの
使用でも衝突圧印加領域の面積次第では可能だが、要求
する面積が大きい場合には複数用いて、転写シートに衝
突する固体粒子の衝突領域が所望の形状となる様にする
と良い。例えば、転写シート及び被転写基材の送り方向
に直交して幅方向に一直線状に複数列を配置して、幅方
向に直線状で幅広の帯状形状の衝突領域とする。或い
は、図9(A)の噴出器32の配置は千鳥格子状の配置
であり、図9(B)は一列配置だが、幅方向中央部は送
り方向の上流側で衝突する様にした配置である。図9
(B)の配置では、転写シートの被転写基材への衝突圧
による圧接は幅方向中央部から始まり、順次、幅方向両
端部に向かって圧接されて行く。この様にすると、幅方
向中央部に空気を抱き込んだまま、転写シートが被転写
基材に密着することを防止できる。図9の様に噴出器を
幅方向に複数個配列する場合には、個々の噴出器の加圧
領域が互いに一部重複し、全幅にわたってもれなく加圧
できる様に配列することが好ましい。図9(B)にその
ような配列の一例を示す。該図に於いて、点線部分が加
圧領域を示す。また、衝突圧印加時間を長くするには、
噴出器は、転写シート及び被転写基材の送り方向に向か
って2列以上配置する多段配置が好ましい。
[Collision Pressure Application Form] Although it is possible to use only one ejector depending on the area of the collision pressure application area, if the required area is large, a plurality of ejectors are used to reduce the solid particles colliding with the transfer sheet. Preferably, the collision area has a desired shape. For example, a plurality of rows are arranged in a straight line in the width direction perpendicular to the feeding direction of the transfer sheet and the transfer-receiving base material to form a wide and band-shaped collision region in the width direction. 9 (A) is a staggered arrangement, and FIG. 9 (B) is a single-row arrangement, but the center in the width direction is arranged so as to collide on the upstream side in the feed direction. It is. FIG.
In the arrangement (B), the pressing of the transfer sheet against the transfer-receiving substrate by the collision pressure starts from the center in the width direction and is sequentially pressed toward both ends in the width direction. With this configuration, it is possible to prevent the transfer sheet from closely adhering to the transfer-receiving substrate while holding the air in the center in the width direction. When a plurality of ejectors are arranged in the width direction as shown in FIG. 9, it is preferable that the pressurizing regions of the individual ejectors are partially overlapped with each other so that the ejectors are arranged so as to be able to pressurize the entire width. FIG. 9B shows an example of such an arrangement. In the figure, the dotted line indicates the pressure area. In addition, in order to lengthen the collision pressure application time,
It is preferable that the ejectors are arranged in two or more rows in the feed direction of the transfer sheet and the substrate to be transferred.

【0046】また、衝突圧は、必ずしも衝突領域内で全
て均一にする必要はない。図10は、転写シートの搬送
方向に直交する幅方向の中央部が最大の衝突圧で、幅方
向両端部に行くに従って衝突圧が低下する山型圧力分布
の設定例である。この設定は、圧が高い所(同図では中
央部)から低い所(同図では両側部)に向かって順次段
階的に圧接が進行することを助ける。但し、図10の如
き圧力分布とする場合、被転写基材上に於ける衝突圧
は、所望の凹凸面への転写が完全に行えて、なお且つ圧
過剰による転写シートの歪み、被転写基材の変形、破損
等の生じない適正圧力範囲内に全て納まる様に調整す
る。なお、ゴム製転写ローラによる曲面転写方法では、
転写ローラの中央部直径を太めとすれば、圧力的には中
央部は強くできるが、中央部と両端部とで円周長が異な
ってしまい、接触して圧印加され転写シートの送りを均
一に出来ない。衝突圧の調整は、噴出器から転写シート
に衝突する固体粒子の速度、単位時間当たりの衝突する
固体粒子数、及び1粒子の質量を制御することで調整す
る。これらのうち、固体粒子の速度を調整するには、例
えば羽根車を用いる噴出器の場合は、羽根車の回転数、
羽根車の直径等で調整する。また、吹出ノズルを用いる
噴出器の場合は、バルブの開閉量、バルブに連結する固
体粒子を搬送する管の内径の大小、圧力調整器(レギュ
レータ)等を用いて噴出器直前の流体圧(流体単体、又
は流体と固体粒子との混合物)の調整により、噴出する
固体粒子及び流体流の速度を制御することで調整する。
Further, it is not necessary to make the collision pressures all uniform in the collision area. FIG. 10 shows a setting example of a mountain-shaped pressure distribution in which the central portion in the width direction orthogonal to the transfer direction of the transfer sheet has the maximum collision pressure, and the collision pressure decreases toward both ends in the width direction. This setting assists the pressure welding to proceed in a stepwise manner from a place where the pressure is high (the center part in the figure) to a place where the pressure is low (the both sides in the figure). However, in the case of a pressure distribution as shown in FIG. 10, the impact pressure on the substrate to be transferred is such that the transfer to the desired uneven surface can be completely performed, the transfer sheet is distorted due to excessive pressure, and the transfer Adjust so that it is all within the appropriate pressure range that does not cause deformation or breakage of the material. In the curved surface transfer method using a rubber transfer roller,
If the diameter of the central part of the transfer roller is made large, the central part can be strengthened in terms of pressure, but the circumferential length differs between the central part and both ends. Can not do. The collision pressure is adjusted by controlling the speed of the solid particles colliding from the ejector with the transfer sheet, the number of solid particles colliding per unit time, and the mass of one particle. Among these, in order to adjust the speed of the solid particles, for example, in the case of an ejector using an impeller, the rotation speed of the impeller,
Adjust with the diameter of the impeller. In the case of an ejector using an ejection nozzle, the opening and closing amount of a valve, the size of the inner diameter of a pipe for conveying solid particles connected to the valve, the fluid pressure (fluid By controlling the velocity of the ejected solid particles and the flow of the fluid, the adjustment is performed by controlling the single particles or the mixture of the fluid and the solid particles.

【0047】〔噴出器の被転写基材に対する配置方法〕
羽根車を用いた噴出器の場合は、固体粒子の噴出方向
は、原理的に羽根車回転軸に平行方向にはあまり広がら
ず、該回転軸に直交方向に広がる傾向がある。一方、吹
出ノズルの場合は、噴出する固体粒子の広がりは、羽根
車による噴出器の場合よりも広がりが少なく、且つ広が
っても通常はどの方向にも均一で等方的である。このよ
うな噴出器の特性を考慮して、噴出器の配置は決めれば
良い。しかし、一つ噴出器で所望の衝突領域の大きさ及
び衝突方向に出来ない時は、噴出器を複数用いれば良
い。この様に、複数の噴出器を被転写基材の被転写面に
対して配置する場合は、本来は、各噴出器は被転写基材
に平行に配列し、且つ各噴出器の噴出方向が被転写基材
の包絡面の法線方向になる様な配置が基本である。この
様な平行配置は、被転写基材の被転写面(凹凸表面)の
包絡面に垂直に固体粒子を衝突させ、基本的に衝突圧を
最大に有効利用できるからである。しかし、本発明で
は、あえて被転写基材の被転写面の包絡面に対して斜め
に、固体粒子の少なくとも一部又は全部が衝突する様に
する。従って、例えば図11の様に、被転写基材Bの被
転写面の包絡面(の搬送方向に直角の断面形状)が円型
になる円筒状の凸曲面であれば、複数の噴出器32を用
意し各噴出器が主とし受け持つ個別の衝突面(凸曲面の
接平面)に対して、斜めに固体粒子が衝突する様に、噴
出器の向きをそれが受け持つ被転写基材面の包絡面に法
線方向に対して斜め向けて配置すると良い。この様に噴
出器の配置は、対象とする被転写基材の凹凸形状に合わ
せて、噴出器の噴出方向を固体粒子が斜めに衝突する様
に合わせると良い。ただ、複数設けた噴出器の向きは、
その全てを転写シート支持体側面に対して必ずしも全て
斜めにする必要はない。一部は垂直であっても良いし、
図11の様に、被転写基材の同一の被転写面領域に対し
て、異なる2方向から斜めに固体粒子が衝突する様に噴
出器32aを更に設けても良い。また、噴出器は多めに
設けておき、製造する被転写基材によっては、一部の噴
出器は停止させても良い。
[Method of arranging ejector with respect to substrate to be transferred]
In the case of an ejector using an impeller, the ejection direction of solid particles does not spread in principle in a direction parallel to the rotation axis of the impeller, but tends to spread in a direction perpendicular to the rotation axis. On the other hand, in the case of the blowing nozzle, the spread of the ejected solid particles is smaller than that in the case of the ejector using the impeller, and even if it spreads, it is usually uniform and isotropic in any direction. The arrangement of the ejectors may be determined in consideration of such characteristics of the ejectors. However, when it is not possible to achieve a desired collision area size and collision direction with one ejector, a plurality of ejectors may be used. As described above, when a plurality of ejectors are arranged on the transfer surface of the substrate to be transferred, each ejector is originally arranged in parallel with the substrate to be transferred, and the ejection direction of each ejector is The basic arrangement is such that it is in the direction of the normal to the envelope surface of the substrate to be transferred. This is because such a parallel arrangement allows solid particles to collide perpendicularly to the envelope surface of the surface to be transferred (the uneven surface) of the substrate to be transferred, and basically allows the collision pressure to be used most effectively. However, in the present invention, at least a part or all of the solid particles collide obliquely with respect to the envelope surface of the transfer-receiving surface of the transfer-receiving substrate. Therefore, as shown in FIG. 11, for example, if the envelope surface (the cross-sectional shape perpendicular to the transport direction) of the transfer-receiving surface of the transfer-receiving substrate B is a cylindrical convex curved surface having a circular shape, the plurality of ejectors 32 may be used. And the direction of the ejector so that the solid particles collide obliquely with the individual collision surface (tangential plane of the convex surface) that each ejector mainly serves, and the envelope of the surface of the substrate to be transferred, which the ejector bears It is good to arrange it obliquely to the surface with respect to the normal direction. In this way, it is preferable that the ejection device is arranged so that the ejection direction of the ejection device is obliquely collided with the solid particles according to the uneven shape of the target substrate to be transferred. However, the direction of the multiple ejectors is
It is not always necessary to make all of them oblique to the side surface of the transfer sheet support. Some may be vertical,
As shown in FIG. 11, an ejector 32a may be further provided so that solid particles collide obliquely from two different directions with respect to the same transfer surface area of the transfer substrate. Further, a large number of ejectors may be provided, and some ejectors may be stopped depending on the substrate to be transferred.

【0048】〔チャンバ使用での連続転写の一形態〕と
ころで、固体粒子を実際に使用する場合、固体粒子を周
囲の雰囲気中に飛散させずに且つ循環再利用するのが好
ましい。そこで、次に、本発明の曲面転写方法の一形態
として、チャンバを使用して固体粒子の飛散防止及び循
環再利用をしながら連続転写を行う本発明の曲面転写装
置の一形態の概念図を示す図12に従い、本発明を更に
詳述する。
[One Form of Continuous Transfer Using Chamber] When solid particles are actually used, it is preferable that the solid particles be recycled without being scattered in the surrounding atmosphere. Then, next, as an embodiment of the curved surface transfer method of the present invention, a conceptual diagram of one embodiment of the curved surface transfer device of the present invention which performs continuous transfer while preventing scattering and circulating reuse of solid particles by using a chamber. The present invention will be described in further detail with reference to FIG.

【0049】同図の装置は、長尺の転写シートSを用
い、凹凸表面を有する平板状の被転写基材Bに、装飾層
等を順次連続的に転写する装置である。同図装置は、基
材搬送手段として被転写基材Bを搬送する基材搬送装置
10と、シート供給手段として転写シートSを供給する
シート供給装置20と、チャンバ33内において固体粒
子Pを固体粒子噴出手段である4基の噴出器32から噴
出して、転写シートの支持体側に衝突させて衝突圧を順
次印加し、転写シートを被転写基材に押圧する衝突圧印
加手段である衝突圧印加部30を備える。4基の噴出器
32は、例えば前記した羽根車利用のものである。羽根
車では各噴出器からは固体粒子はある程度の広がりをも
って噴出される。そして、噴出器から最も多く固体粒子
が噴出される方向をその噴出器の最大噴出方向として、
各噴出器の各最大噴出方向は鉛直面内に於いて被転写基
材に対して傾斜する様に配置してある。また各噴出器の
各最大噴出方向は水平面内に於いて、搬送方向の上流側
と下流側、幅方向手前側と奥側と、都合前後左右の四方
向から固体粒子が衝突する様にしてある。チャンバ33
は、転写シート及び被転写基材の出入口を除いて、衝突
圧にさらされる転写シート及び被転写基材、噴出器の少
なくとも開口部を外部から覆い、固体粒子を外部の作業
雰囲気中に漏らさないようにしている。この為、チャン
バー内部は、好ましくは外部よりも気圧を低く(負圧)
する。
The apparatus shown in the figure is an apparatus for sequentially and successively transferring a decorative layer and the like to a flat transfer substrate B having an uneven surface using a long transfer sheet S. The apparatus includes a substrate transporting device 10 that transports a substrate to be transferred B as a substrate transporting device, a sheet feeding device 20 that feeds a transfer sheet S as a sheet feeding device, and solid particles P in a chamber 33. Collision pressure is a collision pressure application unit that ejects from four ejection units 32 as particle ejection units, collides against the support side of the transfer sheet, sequentially applies the collision pressure, and presses the transfer sheet against the substrate to be transferred. An application unit 30 is provided. The four ejectors 32 are, for example, those using the impeller described above. In the impeller, solid particles are ejected from each ejector with a certain extent. Then, the direction in which the most solid particles are ejected from the ejector is defined as the maximum ejection direction of the ejector.
Each jetting direction of each jetting device is arranged so as to be inclined with respect to the substrate to be transferred in the vertical plane. The maximum ejection direction of each ejector in the horizontal plane is such that solid particles collide from the upstream and downstream sides in the transport direction, the front side and the back side in the width direction, and from the front, rear, left and right directions. . Chamber 33
Except for the entrance of the transfer sheet and the base material to be transferred, except for the transfer sheet and the base material to be exposed to the collision pressure, at least the opening of the ejector is covered from the outside, and the solid particles are not leaked into the outside working atmosphere. Like that. For this reason, the pressure inside the chamber is preferably lower than that outside (negative pressure).
I do.

【0050】基材搬送手段である基材搬送装置10は、
搬送用駆動回転ローラ列、無限軌道式のコンベアベルト
等から成る。なお、基材搬送手段は、被転写基材を少な
くとも噴出器に対向する位置まで搬送するが、同図装置
では、さらにその後、剥離ローラ60まで被転写基材を
搬送する。シート供給手段であるシート供給装置20
は、シート送出装置21、シート支持装置22、シート
排出装置23、その他ガイドローラ等から成る。なお、
シート供給手段は、転写シートを少なくとも噴出器に対
向する位置まで供給するが、同図装置では、更にその
後、剥離ローラ60を経てシート排出装置23まで搬送
する。衝突圧印加手段である衝突圧印加部30は、固体
粒子を貯蔵し噴出器32に供給するホッパ31、噴出器
32、チャンバ33、衝突圧の固体粒子のホッパまでの
帰還路であるドレン管34、固体粒子を気体と分離する
分離装置35、回収固体粒子の搬送気体を吸引排気する
真空ポンプ36等を備える。噴出器は鉛直方向で略下方
に向かって固体粒子を噴出する。その結果、被転写基材
に対して斜めに固体粒子を衝突させる。なお、本発明の
曲面転写装置は、上記固体粒子噴出手段、転写シート供
給手段、基材搬送手段を少なくとも備える装置だが、更
に同図装置は、転写シートを加熱するシート加熱装置4
0をチャンバ内の噴出器の上流側に、被転写基材を加熱
する基材加熱装置41をチャンバ外上流側に、被転写基
材に接着剤の塗工や下地塗装等を適宜行う基材塗工装置
50を基材加熱装置の上流側に、剥離ローラ60をチャ
ンバ下流側に、チャンバ下流側で剥離ローラ上流側に風
冷による冷却装置70を備え、更に、転写シートと被転
写基材との予備的密着を促進する吸引排気装置90等も
備えた装置となっている。
The substrate transporting device 10 as the substrate transporting means includes:
It is composed of a row of driving rotary rollers for conveyance, an endless conveyor belt, and the like. The substrate transporting unit transports the substrate to be transferred at least to a position facing the ejector. In the apparatus shown in the figure, the substrate is further transported to the peeling roller 60 thereafter. Sheet feeding device 20 as sheet feeding means
Is composed of a sheet feeding device 21, a sheet supporting device 22, a sheet discharging device 23, and other guide rollers. In addition,
The sheet supply unit supplies the transfer sheet to at least a position facing the ejector. In the apparatus shown in the figure, the transfer sheet is further conveyed to the sheet discharge device 23 via the peeling roller 60. A collision pressure application unit 30 serving as a collision pressure application unit includes a hopper 31 for storing and supplying solid particles to an ejector 32, an ejector 32, a chamber 33, and a drain pipe 34 serving as a return path to the hopper for the solid particles having the collision pressure. A separation device 35 for separating solid particles from gas, a vacuum pump 36 for sucking and exhausting a carrier gas for the collected solid particles, and the like. The ejector ejects the solid particles substantially downward in the vertical direction. As a result, the solid particles collide with the transfer substrate at an angle. Note that the curved surface transfer device of the present invention is a device including at least the solid particle ejection unit, the transfer sheet supply unit, and the base material conveyance unit, and the device in the figure further includes a sheet heating device 4 for heating the transfer sheet.
0 is located upstream of the ejector in the chamber, a substrate heating device 41 for heating the substrate to be transferred is located upstream of the chamber, and a substrate for appropriately applying an adhesive or undercoating the substrate to be transferred. A coating device 50 is provided upstream of the substrate heating device, a peeling roller 60 is provided downstream of the chamber, and a cooling device 70 by air cooling is provided downstream of the chamber and upstream of the peeling roller. The apparatus is also provided with a suction / exhaust device 90 for promoting preliminary close contact with the device.

【0051】先ず、同図の装置では、板状の被転写基材
Bを、基材搬送装置10で一枚ずつ搬送し、基材塗工装
置50により接着剤を全面或いは凸部のみ等と所望の部
分に塗工する。もしも、接着剤に溶剤分がある場合は、
次の基材加熱装置41で被転写基材及び接着剤を加熱す
ると共に、蒸発成分を揮発乾燥させる。なお、基材塗工
装置50及び基材加熱装置41を複数連結して、接着剤
塗工前に、下塗り塗装や下塗り塗装前のシーラ塗装等を
転写と同時に連続的に行っても良い。そして、被転写基
材Bは、加熱装置41で加熱された後、衝突圧印加部3
0のチャンバ33内に搬送、供給される。
First, in the apparatus shown in the figure, a plate-shaped substrate to be transferred B is transported one by one by a substrate transport device 10, and an adhesive is applied to the entire surface or only the convex portions by a substrate coating device 50. Apply to desired parts. If the adhesive has a solvent,
The substrate to be transferred and the adhesive are heated by the next substrate heating device 41, and the evaporated components are evaporated and dried. Note that a plurality of the substrate coating devices 50 and the substrate heating devices 41 may be connected to each other, and the undercoating or the sealer coating before the undercoating may be performed simultaneously with the transfer before the adhesive is applied. Then, after the transfer substrate B is heated by the heating device 41, the collision pressure application unit 3
0 is conveyed and supplied into the chamber 33.

【0052】転写シートSは、シート送出装置21、シ
ート支持装置22、シート排出装置23等からなるシー
ト供給装置20により張力が加えられ、シート送出装置
21にセットされた供給ロールから巻き出され、ガイド
ローラを経て衝突圧印加部30のチャンバ33内に入
る。なお、転写時に接着剤を転写シートに施す場合は、
転写シートがシート送出装置21から衝突圧印加部30
に供給される間に、接着剤塗工装置(図示せず)で接着
剤を塗工し、更に溶剤乾燥を要す場合は、乾燥装置(図
示せず)乾燥後に、衝突圧印加部に供給する。
The transfer sheet S is tensioned by a sheet feeding device 20 including a sheet feeding device 21, a sheet supporting device 22, a sheet discharging device 23, etc., and is unwound from a feeding roll set in the sheet feeding device 21. It enters the chamber 33 of the collision pressure applying unit 30 via the guide roller. When applying the adhesive to the transfer sheet during transfer,
The transfer sheet is fed from the sheet feeding device 21 to the collision pressure applying unit 30.
When the adhesive is applied by an adhesive coating device (not shown) while the solvent is being supplied, and the solvent is required to be further dried, the drying device (not shown) is dried and then supplied to the collision pressure applying section. I do.

【0053】さらに、転写シートSはチャンバ33内に
入ったところで図12(B)に示す如く、幅方向両端を
シート支持装置22で挟持されつつ(図12(A)では
図示略)、その転写層側の面を搬送される被転写基材B
側に向ける様に対向して被転写基材Bの上方を僅かに空
間を開けて(衝突圧等を作用させない何もしない状態の
場合)、搬送される被転写基材Bと平行に等速度で移送
され、衝突圧を受けて被転写基材Bに接触させるまでの
間、両者の間隙を維持しながら搬送される。シート支持
装置22は、被転写基材の横幅よりも広幅とした転写シ
ートの両端を表裏両面から挟持しながら転写シートの移
送に合わせて回転するベルト等から成る。ここでは被転
写基材は包絡面が略平板状なので、シート支持装置によ
る上記間隙にて、衝突圧による転写シートの被転写基材
への完全な接触は、幅方向中央部では時間的に先に幅方
向の両端近傍は遅れて行われる様にしてある。これは、
被転写基材と転写シート間(特にその中央部付近)に空
気を残して密着しない様にするための策の一つである。
なお、転写シートを被転写基材の近傍を等速度で移送す
る際に、被転写基材に対して僅かに離すか又は接触状態
として移送するかは、被転写基材の表面凹凸の形状、被
転写基材の予熱温度と、転写シートの熱変形性、固体粒
子の衝突圧、接着剤の活性化温度等を適宜勘案して選択
する。そして、シート支持装置で挟持搬送されて衝突圧
の印加を受けるまでに、ヒータ加熱、赤外線加熱、誘電
加熱、誘導加熱、熱風加熱等によるシート加熱装置40
で、転写シートは加熱されて軟化し、衝突圧印加時に延
伸され易くなる。なお、同図ではシート加熱装置はチャ
ンバ内に設けてあるので、熱風加熱の場合は、風量は少
なくした方が良い。それは、空気をチャンバ内に入れる
ことになり、後述する様な、チャンバ内の負圧の維持を
邪魔し、また、固体粒子を攪拌するからである。なお、
基材加熱装置で加熱されて衝突圧印加部に供給される被
転写基材によっても、転写シートは間接的に加熱され
る。シート加熱装置による加熱は、転写シートの予熱不
要時は省略できる。
Further, as shown in FIG. 12 (B), when the transfer sheet S enters the chamber 33, both ends in the width direction are sandwiched by the sheet support device 22 (not shown in FIG. 12 (A)). Transferred substrate B transported on the layer side surface
A slight space is opened above the substrate B to be transferred so as to face the side (in the case where nothing is performed without applying an impact pressure or the like), and the speed is parallel to the substrate B to be conveyed. Until it comes into contact with the transfer-receiving substrate B under the impact pressure, while maintaining the gap therebetween. The sheet supporting device 22 includes a belt or the like that rotates in accordance with the transfer of the transfer sheet while sandwiching both ends of the transfer sheet having a width wider than the width of the base material. Here, since the envelope surface of the substrate to be transferred is substantially flat, complete contact of the transfer sheet with the substrate by the impact pressure at the center in the width direction is temporally earlier at the above-described gap by the sheet supporting device. In the vicinity of both ends in the width direction, the operation is performed with a delay. this is,
This is one of the measures for preventing air from leaving and adhering between the base material to be transferred and the transfer sheet (particularly near the center thereof).
When transferring the transfer sheet at a constant speed in the vicinity of the transfer substrate, whether the transfer sheet is slightly separated or transferred as a contact state with respect to the transfer substrate, the shape of the surface unevenness of the transfer substrate, The preheating temperature of the substrate to be transferred, the thermal deformability of the transfer sheet, the collision pressure of solid particles, the activation temperature of the adhesive, and the like are appropriately taken into consideration. The sheet heating device 40 is heated by heater heating, infrared heating, dielectric heating, induction heating, hot air heating, or the like before being nipped and conveyed by the sheet supporting device and receiving the application of collision pressure.
Then, the transfer sheet is heated and softened, and is easily stretched when a collision pressure is applied. Since the sheet heating device is provided in the chamber in the figure, it is better to reduce the air volume in the case of hot air heating. This is because air enters the chamber, hinders the maintenance of a negative pressure in the chamber and agitates the solid particles as described later. In addition,
The transfer sheet is also indirectly heated by the transfer target substrate heated by the substrate heating device and supplied to the collision pressure applying unit. Heating by the sheet heating device can be omitted when preheating of the transfer sheet is unnecessary.

【0054】一方、固体粒子Pはホッパ31からチャン
バ33内にある4基の噴出器32の各々に供給され、そ
こで図3〜図6の様な羽根車によって加速されてチャン
バ33内で各噴出器の最大噴出方向が被転写基材の包絡
面に対して斜交するようにして噴出される。また、噴出
器からの固体粒子は転写シートSに向かっても斜めに噴
出する。そして、転写シートは、噴出器から噴出する固
体粒子の衝突にさらされる。衝突時の固体粒子の単位時
間当たりの運動量の変化分が、転写シートを被転写基材
へ押し付ける衝突圧となる。ここでは、また、被転写基
材及び転写シートが搬送される全幅を衝突領域とする。
そして、被転写基材及び転写シートが搬送されるにつれ
て、長手方向の全領域が順次衝突圧にさらされて行く。
なお、シート支持装置は、固体粒子が、転写シートの幅
方向両端から回り込んで、転写シートと被転写基材間に
流入する事も防止する。そして、転写シートは、斜めに
衝突する成分を有する固体粒子衝突圧で被転写基材に押
圧され、被転写基材の凹凸表面の凹部内へも、しかもそ
の凹部側面までも確実に転写シートは延ばされて変形す
ることで、凹部側面も含めた被転写基材の凹凸表面形状
に追従して成形されて、活性化している接着剤により転
写層が被転写基材に密着する。転写シートが密着した被
転写基材は、衝突圧開放前から転写シートがチャンバ外
に出るまでの間に放冷等により冷却する。
On the other hand, the solid particles P are supplied from the hopper 31 to each of the four jets 32 in the chamber 33, where they are accelerated by impellers as shown in FIGS. The container is ejected such that the maximum ejection direction is oblique to the envelope surface of the substrate to be transferred. The solid particles from the ejector also eject obliquely toward the transfer sheet S. Then, the transfer sheet is exposed to collision of solid particles ejected from the ejector. The change in the momentum of the solid particles per unit time at the time of collision is the collision pressure for pressing the transfer sheet against the transfer-receiving substrate. Here, the entire width in which the base material to be transferred and the transfer sheet are conveyed is defined as a collision area.
Then, as the transfer base material and the transfer sheet are conveyed, the entire region in the longitudinal direction is sequentially exposed to the collision pressure.
The sheet supporting device also prevents solid particles from flowing around from both ends in the width direction of the transfer sheet and flowing between the transfer sheet and the base material. Then, the transfer sheet is pressed against the transfer substrate by solid particle collision pressure having a component that obliquely collides, and the transfer sheet is securely inserted into the recesses on the uneven surface of the transfer substrate, and even to the side surfaces of the recesses. By being extended and deformed, it is formed following the uneven surface shape of the transferred substrate including the concave side surface, and the transfer layer adheres to the transferred substrate by the activated adhesive. The substrate to which the transfer sheet is in close contact is cooled by cooling or the like before the impact pressure is released and before the transfer sheet comes out of the chamber.

【0055】一方、転写シートへの衝突に供された後の
固体粒子は、転写シートの幅方向両端部からシート支持
装置22の側面を迂回して下方に落下する他、残りの部
分は転写シート支持体上に載置されたまま下流側に移送
された後、チャンバ33とは基材搬送装置10の上部の
み別室に区画された小チャンバ71に入る。そして、そ
こでは、冷風送風機からなる冷却装置70から転写シー
ト及び被転写基材上に向かって冷風を吹き付け、転写シ
ート上に残留する固体粒子を転写シート端部からチャン
バ下部に吹き落とすと同時に、被転写基材及び転写シー
トを、転写シートが剥離可能な温度にまで冷却させる。
チャンバの下部に集まった固体粒子は、そこからドレン
管34で吸引され元のホッパ31に収集される。また、
固体粒子の回収搬送用としてチャンバ中の空気も、固体
粒子と共にドレン管34で吸引され、ホッパ上部の気流
と固体粒子の分離装置35に搬送される。該分離装置3
5では図示の如く、気流で搬送されて来た固体粒子は水
平方向に装置空洞内に放出され、気体に対して密度の大
きい固体粒子は自重で下方に落下し、気体はそのまま水
平に流れて、フィルターで気流と共に移動しようとする
残余の固体粒子を濾過した上で、真空ポンプ36で系外
に排出される。この様にして固体粒子が、転写シート及
び被転写基材が出入りするチャンバ出入口開口部から、
空気と共に周囲に流出しない様にする。また、固体粒子
のチャンバ系外への流出防止、及び固体粒子のチャンバ
からホッパへの逆流防止には、チャンバ内を外部より低
圧にすると良い。このチャンバの圧力調整は、前記真空
ポンプ36の排気量、更に排風機(図示せず)をチャン
バに適宜接続してその排気量等によるチャンバ外に流出
する気体量と、噴出器から固体粒子と共にチャンバ内に
入る気体量(特に、気体を固体粒子加速流体として用い
る吹出ノズル等の噴出器の場合)、更に送風機(図示せ
ず)をチャンバに適宜接続してチャンバ内に入れる気体
量(特に、羽根車による噴出器の場合)等とのバランス
を調整する事で行う。
On the other hand, the solid particles that have been subjected to the collision with the transfer sheet fall downward from both ends in the width direction of the transfer sheet, bypassing the side surface of the sheet supporting device 22, and the remaining part is transferred. After being transported to the downstream side while being placed on the support, only the upper part of the substrate transfer device 10 with the chamber 33 enters the small chamber 71 partitioned into a separate room. And, there, at the same time as blowing cool air from the cooling device 70 consisting of a cool air blower toward the transfer sheet and the substrate to be transferred, and blowing down solid particles remaining on the transfer sheet from the end of the transfer sheet to the lower part of the chamber, The transfer substrate and the transfer sheet are cooled to a temperature at which the transfer sheet can be peeled.
The solid particles collected in the lower part of the chamber are sucked from there by the drain tube 34 and collected in the original hopper 31. Also,
The air in the chamber for collecting and transporting the solid particles is also sucked by the drain tube 34 together with the solid particles, and is transported to the airflow / solid particle separation device 35 above the hopper. The separation device 3
In FIG. 5, as shown in the drawing, solid particles conveyed by air flow are discharged into the apparatus cavity in the horizontal direction, and solid particles having a high density relative to the gas fall downward by their own weight, and the gas flows horizontally as it is. The remaining solid particles that are to move with the airflow are filtered by a filter, and then discharged out of the system by a vacuum pump 36. In this way, the solid particles are transferred from the chamber entrance through which the transfer sheet and the substrate to be transferred enter and exit,
Avoid spilling with air. Further, in order to prevent the solid particles from flowing out of the chamber system and to prevent the solid particles from flowing back from the chamber to the hopper, it is preferable that the pressure in the chamber be lower than that of the outside. The pressure of the chamber is adjusted by adjusting the exhaust amount of the vacuum pump 36, the amount of gas flowing out of the chamber due to the exhaust amount and the like by connecting an exhaust fan (not shown) to the chamber, and the solid particles from the ejector. The amount of gas entering the chamber (especially in the case of an ejector such as a blowing nozzle using gas as a solid particle accelerating fluid), and the amount of gas entering the chamber by connecting a blower (not shown) as appropriate to the chamber (particularly, This is done by adjusting the balance with the impeller (in the case of an impeller using an impeller).

【0056】そして、密着した被転写基材と転写シート
とは、チャンバの外部下流側にある冷却装置70で冷風
吹き付けにより強制冷却した後、転写シート(の支持
体)を、剥離ローラ60により被転写基材から剥離除去
する。その結果、転写シートの転写層として装飾層等が
被転写基材の凹凸表面に転写形成された、化粧材Dが得
られる。一方、剥離ローラ通過後の転写シート(の支持
体)は、シート排出装置23に排出ロールとして巻き取
る。
Then, the adhered transfer substrate and the transfer sheet are forcibly cooled by blowing cool air with a cooling device 70 located on the downstream side outside the chamber. Peel off from the transfer substrate. As a result, a decorative material D in which a decorative layer or the like is transferred and formed as a transfer layer of the transfer sheet on the uneven surface of the base material to be transferred is obtained. On the other hand, (the support of) the transfer sheet after passing through the peeling roller is wound around the sheet discharge device 23 as a discharge roll.

【0057】なお、液体を固体粒子加速流体に用いた吹
出ノズルを噴出器とする場合は、冷却装置とは別にその
上又は下流に、或いは冷却装置自身と兼用で、乾燥機を
設けて、例えば室温又は温風の空気を吹きつけで、液体
を乾燥、又は吹き飛ばして除去する。また、接着剤等に
電離放射線硬化性樹脂を用い硬化させる場合は、噴出器
と剥離ローラ間に、水銀灯(紫外線光源)等の電離放射
線照射装置を設けて、硬化させる。
When a blowing nozzle using liquid as a solid particle accelerating fluid is used as an ejector, a dryer is provided separately above or downstream from the cooling device, or also as the cooling device itself. The liquid is dried or blown off by blowing air at room temperature or warm air to remove it. When using an ionizing radiation-curable resin for the adhesive or the like, the resin is cured by providing an ionizing radiation irradiation device such as a mercury lamp (ultraviolet light source) between the ejector and the peeling roller.

【0058】〔チャンバ使用時の接着剤等の加熱方法〕
以上、本発明の一形態として、チャンバ内で固体粒子を
衝突させる一例を説明したが、チャンバ使用時に於け
る、接着剤活性化、或いは転写シート延伸性向上等の為
の加熱方法を更に説明する。
[Method of heating adhesive or the like when using chamber]
As described above, as an embodiment of the present invention, an example in which solid particles collide in a chamber has been described. However, a heating method for activating an adhesive or improving transfer sheet stretchability when the chamber is used will be further described. .

【0059】転写シートの加熱手段は任意であり、衝突
圧印加前の加熱では、例えばヒータ加熱、赤外線加熱、
誘電加熱、誘導加熱、熱風加熱等を用いる。図12の装
置は、衝突圧印加前の加熱を、加熱後は冷却されない様
に噴出器直前で行うべくチャンバ内にシート加熱装置4
0を設けた例である。ただ、チャンバ内で加熱しその手
段に熱風加熱を用い場合は(後述する被転写基材の加熱
でも同様だが)、吹き付け風量は少なくした方が良い。
それは、空気をチャンバ内に入れることになり、固体粒
子加速用に空気を用いる場合も含めて、固体粒子回収用
の真空ポンプの負荷増になるからである。また、シート
加熱は図12に例示の様にチャンバ33内で行う以外
に、加熱による転写シートの伸びが転写シート搬送に支
障を来さない様にすれば、チャンバの外部、或いはチャ
ンバの内部及び外部の両方で行っても良い。また、加熱
は転写シートの裏面側、表面側、表裏両面のいずれから
行っても良い。なお、シート加熱は、シート支持装置に
よって幅方向両端を支持されてから行うのが好ましい。
その前では、シートが送り方向に伸びたり、下方に垂下
して、移送に支障を来し易い。次に、衝突圧印加中の加
熱手段では、加熱固体粒子、固体粒子加速用流体を用い
る場合はその加熱流体も使用できる。また、噴出器の間
隙に分散して熱源を設けて加熱しても良い。もちろん、
衝突圧の印加中及び印加前の加熱を併用できるし、衝突
圧印加中の加熱のみの場合もある。
The transfer sheet may be heated by any means. For example, heater heating, infrared heating,
Dielectric heating, induction heating, hot air heating, or the like is used. The apparatus shown in FIG. 12 includes a sheet heating device 4 in the chamber so that heating before the application of the collision pressure is performed immediately before the ejector so as not to be cooled after the heating.
This is an example in which 0 is provided. However, in the case where heating is performed in the chamber and hot air heating is used as the heating means (similarly to heating of a substrate to be transferred, which will be described later), it is better to reduce the amount of blowing air.
This is because air will be introduced into the chamber, and the load on the vacuum pump for collecting solid particles will increase, including when air is used for accelerating solid particles. In addition to performing the sheet heating in the chamber 33 as illustrated in FIG. 12, if the transfer sheet is not stretched by the heating so as not to hinder the transfer sheet conveyance, the outside of the chamber, or the inside of the chamber and It may be performed both externally. Heating may be performed from any of the back side, front side, and front and back sides of the transfer sheet. Note that the sheet heating is preferably performed after both ends in the width direction are supported by the sheet supporting device.
Before that, the sheet is likely to extend in the feeding direction or hang down, thereby hindering the transfer. Next, in the heating means during the application of the collision pressure, when a heated solid particle or a fluid for accelerating solid particles is used, the heated fluid can also be used. Further, heating may be performed by providing a heat source dispersed in the gap between the ejectors. of course,
The heating during and before the application of the collision pressure can be used in combination, and the heating during the application of the collision pressure alone may be performed.

【0060】また、被転写基材に接着剤塗工やシーラ塗
装を施し、基材加熱装置41等で溶剤分を加熱乾燥する
のであれば、そこで被転写基材は加熱され、また、加熱
された被転写基材から間接的に転写シートもある程度加
熱できる。従って、転写シートの加熱も必要な場合で
も、被転写基材からの間接的加熱や、固体粒子や固体粒
子加速流体による加熱で充分な場合には、転写シート専
用のシート加熱装置は省略することもできる。
If the substrate to be transferred is coated with an adhesive or a sealer and the solvent is heated and dried by the substrate heating device 41 or the like, the substrate to be transferred is heated and then heated. The transfer sheet can also be heated to some extent indirectly from the transferred substrate. Therefore, even when heating of the transfer sheet is necessary, if the indirect heating from the transfer-receiving substrate or the heating by the solid particles or the solid particle accelerating fluid is sufficient, the sheet heating device dedicated to the transfer sheet is omitted. Can also.

【0061】次に、被転写基材の加熱は、衝突圧印加
前、或いは衝突圧印加中、或いは衝突圧印加前及び印加
中のいずれでも良い。被転写基材を加熱することで、転
写シートを熱して延伸性向上を図る場合に、熱せられた
転写シート温度が低下するのを防止できる。また、被転
写基材側から転写シートを加熱することもできる。被転
写基材の加熱は、チャンバの外部又は内部、或いは外部
及び内部で行えば良い。外部及び内部の加熱では、充分
な予熱が必要な場合でも、長い搬送距離を使って加熱す
ることができる。長い基材加熱装置をチャンバの内部に
設ける為に、チャンバ自身の内容積が大きくなるなら
ば、基材加熱装置の一部又は全部をチャンバの外部に設
けて、チャンバの内容積を小さくした方が、固体粒子の
飛散、回収等を考慮した取扱上は有利だからである。チ
ャンバの内部で加熱する利点は、衝突圧印加の直前ま
で、或いは衝突圧印加中までも、加熱できることであ
り、特に熱容量が大きい被転写基材をその被転写面近傍
のみ効果的に予熱しようとする場合等である。なお、上
流側に配置した基材塗工装置による塗装や接着剤を乾燥
すべく、溶剤分や水分を蒸発させる役割も持たせた基材
加熱装置の場合は、チャンバ内部に配置するのは好まし
くない。チャンバ内に充満した蒸発した溶剤や水分の排
気手段が必要となり、また溶剤の場合は防爆対策を考慮
する必要も生じる。このような目的の基材加熱装置は、
チャンバの外部に配置するか、内部に配置したとして
も、外部に蒸発用の基材加熱装置(乾燥炉)を別に配置
することが好ましい。もちろん、下塗り塗装は別ライン
で行う形態とすれば、基材加熱装置を乾燥装置と兼用す
る必要はない。被転写基材の加熱手段としては、誘導加
熱や誘電加熱は基材内部から加熱できるが、一方、ヒー
タ加熱、赤外線加熱、熱風加熱は、凹凸表面側からの加
熱が効率的である。また、被転写基材は裏面側からも加
熱してもよい。チャンバの開口部に被転写基材が搬送さ
れた後に、衝突圧印加直前又は印加中まで加熱するなら
ば、基材裏面側からの加熱は、装置スペース的にも好ま
しい。衝突圧印加中加熱は、衝突圧印加部上流側での加
熱に加えて、噴出器の間隙に分散して熱源を設けてもよ
い(転写シートを通しての加熱となる)。
The substrate to be transferred may be heated before the collision pressure is applied, during the application of the collision pressure, or before and during the application of the collision pressure. By heating the transfer-receiving substrate, it is possible to prevent a decrease in the temperature of the heated transfer sheet when the transfer sheet is heated to improve the stretchability. Further, the transfer sheet can be heated from the side of the substrate to be transferred. The substrate to be transferred may be heated outside or inside the chamber, or outside and inside. External and internal heating can be accomplished using long transport distances, even when sufficient preheating is required. If the internal volume of the chamber itself becomes large in order to provide a long substrate heating device inside the chamber, it is better to provide a part or all of the substrate heating device outside the chamber and reduce the internal volume of the chamber. However, it is advantageous in terms of handling in consideration of scattering and recovery of solid particles. The advantage of heating inside the chamber is that it can be heated just before the collision pressure is applied, or even during the application of the collision pressure. Particularly, it is intended to effectively preheat the transfer substrate having a large heat capacity only in the vicinity of the transfer surface. And so on. In addition, in the case of a substrate heating device that also has a role of evaporating a solvent or moisture in order to dry the coating and the adhesive by the substrate coating device disposed on the upstream side, it is preferable that the substrate heating device be disposed inside the chamber. Absent. A means for exhausting the evaporated solvent or moisture filled in the chamber is required, and in the case of a solvent, it is necessary to consider explosion-proof measures. The substrate heating device for such purpose is
Even if it is arranged outside or inside the chamber, it is preferable to separately arrange a substrate heating device (drying furnace) for evaporation outside. Of course, if the undercoating is performed on a separate line, it is not necessary to use the substrate heating device as a drying device. As the heating means for the transfer-receiving substrate, induction heating and dielectric heating can be performed from the inside of the substrate. On the other hand, heater heating, infrared heating, and hot-air heating are efficient from the uneven surface side. The substrate to be transferred may also be heated from the back side. If the substrate to be transferred is heated to just before or during the application of the collision pressure after the substrate to be transferred is conveyed to the opening of the chamber, the heating from the back side of the substrate is also preferable from the viewpoint of the apparatus space. As for the heating during the application of the collision pressure, in addition to the heating on the upstream side of the collision pressure application unit, a heat source may be provided dispersedly in the gap between the ejectors (heating through the transfer sheet).

【0062】〔接着剤の強制冷却〕また、接着剤が熱融
着型の場合は、転写シートが被転写基材に密着後に接着
剤を強制冷却すれば、凹部内部にまで追従、成形された
転写シートの固着化を促進して、転写シートに復元力が
ある場合に圧解放後、転写シートが元の形状に戻ること
を防止し、転写シート(の支持体)の剥離除去をより早
くできるので、転写抜け防止や生産速度向上が図れる。
この為には、衝突圧印加中に、衝突圧を開放しないまま
冷却固体粒子を用いたり、或いは固体粒子加速流体を用
いる場合は冷却流体を用いたり、衝突圧印加後に、風冷
等の他の冷却手段を用いて接着剤層を冷却すると良い。
被転写基材の熱容量が大の場合は、冷却固体粒子及び冷
却流体以外にも、低温流体の吹き付け、基材搬送用のロ
ーラやベルトコンベア等の冷却により、被転写基材を裏
面から冷却できる。或いは、チャンバ内でのこれら冷却
の後にチャンバ外で、或いはチャンバ内では冷却せずに
チャンバ外のみで、表や裏からの冷風吹き付け等で冷却
しても良い。
[Forced Cooling of Adhesive] In the case where the adhesive is of the heat-sealing type, if the adhesive is forcibly cooled after the transfer sheet is in close contact with the base material to be transferred, the adhesive will follow the inside of the concave portion and be formed. It promotes the fixation of the transfer sheet, prevents the transfer sheet from returning to its original shape after pressure release when the transfer sheet has a restoring force, and allows the transfer sheet (support) to be separated and removed more quickly. Therefore, transfer omission can be prevented and production speed can be improved.
For this purpose, during the application of the collision pressure, the cooling solid particles are used without releasing the collision pressure, or when using the solid particle acceleration fluid, the cooling fluid is used. It is preferable to cool the adhesive layer using cooling means.
When the heat capacity of the transferred substrate is large, in addition to the cooling solid particles and the cooling fluid, the transferred substrate can be cooled from the back surface by spraying a low-temperature fluid and cooling the rollers and belt conveyor for transferring the substrate. . Alternatively, after the cooling in the chamber, the cooling may be performed by blowing cool air from the front or back, or the like, outside the chamber after cooling inside the chamber, or without cooling inside the chamber, only outside the chamber.

【0063】〔空気抜き〕また、衝突圧印加前に、転写
層や被転写基材上の接着剤層等となる接着剤が加熱され
たとしても活性状態とならないならば、或いは活性状態
になる前の時間的過程が使えるならば、被転写基材と転
写シートとの非粘着の接触を行えるので、転写シートを
被転写基材の凹凸表面に接触させて、転写シートと被転
写基材間の空隙の空気を強制的に抜き取る、「空気抜
き」をすると良い。空気抜きで、転写シートと被転写基
材間の空気が転写時に残留する「エア噛み」、更にはそ
れに起因する転写抜けを防げる。空気抜きは、例えば図
12の装置では、吸引排気ノズル91及び真空ポンプ9
2等からなる吸引排気装置90で行う。吸引排気ノズル
91は、転写シートの転写層側で、且つ搬送される被転
写基材の搬送方向に沿う両辺に隣接する両側に(図12
(B)参照)、被転写基材の搬送方向に沿って設け、転
写シートと被転写基材間の空気を、真空ポンプ92で吸
引し排気すれば良い。吸引排気ノズル91の開口部外周
は例えばブラシで囲いブラシ先端を被転写基材及び転写
シートに接触させれば、それらの搬送に支障なく空気抜
きできる。また、空気抜きは衝突圧印加中まで行うのが
良い。なお、空気抜きと転写シートの予熱とのタイミン
グは、転写シートが予熱されて軟化する速度、軟化の度
合いにもより、どちらを先に開始しても良いが、両方を
同時に開始しても良い。空気抜きは、被転写基材の被転
写面が例えば岩肌調やスタッコ調等の凹凸面の場合は効
果的である。
[Air Vent] If the adhesive to be the transfer layer or the adhesive layer on the substrate to be transferred is heated before the collision pressure is applied, if the adhesive is not activated, or if the adhesive is not activated, If the time process can be used, non-adhesive contact between the transfer substrate and the transfer sheet can be performed, so the transfer sheet is brought into contact with the uneven surface of the transfer substrate, and the transfer sheet and the transfer substrate It is advisable to perform “air bleeding” by forcibly removing the air in the gap. By removing the air, the air between the transfer sheet and the substrate to be transferred can be prevented from remaining “at the time of transfer”, and the transfer can be prevented. For example, in the apparatus shown in FIG.
This is performed by a suction / exhaust device 90 composed of 2 or the like. The suction / exhaust nozzles 91 are provided on the transfer layer side of the transfer sheet and on both sides adjacent to both sides along the transport direction of the transferred base material (FIG. 12).
(B) is provided along the transfer direction of the transfer substrate, and the air between the transfer sheet and the transfer substrate may be sucked and exhausted by the vacuum pump 92. The outer periphery of the opening of the suction / exhaust nozzle 91 is surrounded by, for example, a brush, and if the tip of the brush is brought into contact with the base material to be transferred and the transfer sheet, air can be vented without any trouble in transporting them. Further, it is preferable that the air be removed until the collision pressure is applied. The timing of the air release and the preheating of the transfer sheet may be started in either order depending on the speed at which the transfer sheet is preheated and softened, and the degree of softening, or both may be started simultaneously. Air bleeding is effective when the surface to be transferred of the base material to be transferred has a rough surface such as a rock surface tone or a stucco tone.

【0064】〔その他〕以上、本発明の曲面転写方法を
説明して来たが、本発明は上記説明に限定されるもので
はない。例えば、図12の装置による曲面転写方法の説
明では、転写シートの被転写基材への圧接は、長尺帯状
の転写シート及び枚葉の被転写基材を用い、両者を一体
的に搬送移動させつつ、固定の噴出器で固体粒子衝突圧
を連続印加する形態であったが、転写シートの被転写基
材への圧接は、その時だけ転写シート及び被転写基材を
停止させて、基材一個ごとに間欠的に行っても構わない
(これらに対して例えば噴出器を移動させる)。また、
被転写基材及び転写シートともに枚葉の形態で供給する
形態でも構わない。また、噴出器の固体粒子噴出方向と
転写シート及び被転写基材との位置関係は、被転写基材
の凹凸表面が成す包絡面に対して固体粒子を斜めに衝突
させる位置関係を維持したとしても、被転写基材の載置
又は搬送方向は、水平面内(図2、図12)以外にも、
斜面内(図1、図7(B))、鉛直面内(図示略)等が
あり、また被転写基材及び転写シートが水平面内でも、
支持体側が下側、すなわち、下から上に固体粒子を噴出
させ衝突させても良い。また、衝突圧印加前に、弾性体
ローラによる転写シートの被転写基材への押圧を予備的
に行っても良い。また、チャンバ内は窒素等の不活性ガ
スを充満させて、転写層の下地塗膜層等に(硬化前の)
電離放射線硬化性樹脂を用いる場合に、空気中の酸素、
水蒸気等が該樹脂の硬化を阻害するのを防止しても良
い。
[Others] The curved surface transfer method of the present invention has been described above, but the present invention is not limited to the above description. For example, in the description of the curved surface transfer method using the apparatus shown in FIG. 12, the transfer sheet is pressed against the transfer base material by using a long strip-shaped transfer sheet and a single-sheet transfer base material, and integrally transferring the two. While the solid jet impingement pressure was continuously applied by a fixed ejector, the transfer sheet was pressed against the transfer substrate only when the transfer sheet and the transfer substrate were stopped. It may be performed intermittently one by one (for example, the ejector is moved to these). Also,
Both the substrate to be transferred and the transfer sheet may be supplied in the form of a single sheet. In addition, the positional relationship between the ejection direction of the solid particles of the ejector and the transfer sheet and the transferred substrate is such that the positional relationship in which the solid particles obliquely collide with the envelope surface formed by the uneven surface of the transferred substrate is maintained. Also, the placement or transport direction of the substrate to be transferred is not limited to a horizontal plane (FIGS. 2 and 12).
There are a slope (FIGS. 1 and 7B), a vertical plane (not shown), and the like.
The solid particles may be ejected from the lower side of the support, that is, from the bottom to the upper side to collide with the solid particles. Further, before applying the collision pressure, the transfer sheet may be preliminarily pressed against the transfer base material by the elastic roller. In addition, the inside of the chamber is filled with an inert gas such as nitrogen to form an undercoat film layer of the transfer layer (before curing).
When using ionizing radiation curable resin, oxygen in the air,
Water vapor or the like may be prevented from hindering the curing of the resin.

【0065】〔化粧材〕本発明で得られる化粧材は、外
壁、塀、屋根、門扉、破風板等の外装材、壁面、天井等
の建築内装材、窓枠、扉、手摺、敷居、鴨居等の建具、
箪笥等の家具の表面材、弱電・OA機器のキャビネッ
ト、或いは自動車等の車両内装材等の各種分野で用いら
れ得る。なお、転写後の化粧材の表面に、更に透明保護
層を塗装する等しても良い。この様な透明保護層として
は、ポリ4フッ化エチレン、ポリフッ化ビニリデン等の
フッ素樹脂、ポリメタクリル酸メチル等のアクリル樹
脂、シリコーン樹脂、ウレタン樹脂の1種又は2種以上
等をバインダーとし、これに必要に応じて、ベンゾトリ
アゾール、超微粒子酸化セリウム等の紫外線吸収剤、ヒ
ンダードアミン系ラジカル捕捉剤等の光安定剤、着色顔
料、体質顔料、滑剤等を添加した塗料を用いる。塗工は
スプレー塗装、フローコート等を用いる。透明保護層の
膜厚は1〜100μm程度である。
[Cosmetic Materials] The cosmetic materials obtained by the present invention include exterior materials such as outer walls, fences, roofs, gates, and gable boards, architectural interior materials such as walls and ceilings, window frames, doors, handrails, sills, and Kamoi. Such as fittings,
It can be used in various fields such as a surface material of furniture such as a chest, a cabinet of light electric / OA equipment, and a vehicle interior material such as an automobile. Note that a transparent protective layer may be further applied on the surface of the decorative material after the transfer. As such a transparent protective layer, one or two or more of a fluororesin such as polytetrafluoroethylene and polyvinylidene fluoride, an acrylic resin such as polymethyl methacrylate, a silicone resin, and a urethane resin are used as a binder. If necessary, use a paint to which an ultraviolet absorber such as benzotriazole or ultrafine cerium oxide, a light stabilizer such as a hindered amine radical scavenger, a coloring pigment, an extender pigment, or a lubricant is added. Spray coating, flow coating, etc. are used for coating. The thickness of the transparent protective layer is about 1 to 100 μm.

【0066】[0066]

【実施例】次に実施例により本発明を更に説明する。先
ず、三次元的表面凹凸を有する被転写基材Bとして図1
3(A)の平面図及び図13(B)の要部斜視図に例示
する様な、大柄な凹凸として深さ1.5mm、開口幅5
mmの目地の溝状凹部401と、煉瓦積み模様の平坦凸
部402とを有し、微細な凹凸として平坦凸部上に深さ
が0.1〜0.5mmの範囲に分布する梨地調の微細凹
凸403を有する、大柄な凹凸と微細な凹凸とが重畳し
た三次元的表面凹凸を有する厚さ12mmのケイ酸カル
シウム板を用意した。そして、該凹凸面に下地塗装及び
下塗り塗装をオフラインで別の装置で行った。また、転
写シートSは支持体に厚さ100μmのポリプロピレン
系熱可塑性エラストマーフィルムの片面に、転写層とな
る装飾層として該凹凸面形状と位置同調したセメントの
目地を有する煉瓦調の絵柄を順次グラビア印刷したもの
を用意した。絵柄インキのバインダーの樹脂としては、
アクリル樹脂と塩化ビニル−酢酸ビニル共重合体との
8:2(重量比)の混合物を、また、着色顔料として
は、弁柄、イソインドリノン、カーボンブラック、チタ
ン白を用いた。
The present invention will be further described with reference to the following examples. First, FIG. 1 shows a transfer substrate B having three-dimensional surface irregularities.
As illustrated in the plan view of FIG. 3A and the perspective view of the main part of FIG.
mm-shaped groove-shaped concave portion 401 and a brick-patterned flat convex portion 402, and a pear-finished tone having a depth of 0.1 to 0.5 mm distributed on the flat convex portion as fine irregularities. A 12-mm-thick calcium silicate plate having three-dimensional surface irregularities in which large irregularities and fine irregularities were superimposed, having fine irregularities 403 was prepared. Then, undercoating and undercoating were performed on the uneven surface by another apparatus offline. The transfer sheet S is a gravure film in which a brick-like pattern having a cement joint whose position is synchronized with the shape of the uneven surface as a decorative layer serving as a transfer layer is sequentially provided on one side of a polypropylene-based thermoplastic elastomer film having a thickness of 100 μm on a support. I prepared a printed version. As the resin for the binder of the pattern ink,
A mixture of an acrylic resin and a vinyl chloride-vinyl acetate copolymer in a ratio of 8: 2 (weight ratio) was used, and as a coloring pigment, red iron oxide, isoindolinone, carbon black, and titanium white were used.

【0067】次に、図12に示す様な装置で、噴出器に
は図3〜図6の様な羽根車を用いた噴出器を使用し、上
記被転写基材Bを、その凹凸面を上にして搬送用ローラ
列からなる基材搬送装置10上に水平に載置して水平方
向に搬送し、基材塗工装置50にて、ポリアミド系樹脂
からなる無溶剤のホットメルト型の感熱溶融型接着剤を
30g/m2 溶融塗工後、基材加熱装置41で接着剤及
び被転写基材を加熱して、衝突圧印加部30に供給し
た。一方転写シートSも、シート供給装置20により、
その支持体側を上にして、しかも絵柄の目地部と被転写
基材の目地状の溝状凹部とが位置合わせ(見当合わせ)
される様にして、且つ被転写基材と平行にして衝突圧印
加部に供給した。被転写基材Bが衝突圧印加部のチャン
バ33に入ったところで、転写シートを被転写基材に接
近させた。そして、1対のエンドレスベルト状のシート
支持装置22で転写シートの幅方向両端を表裏で挟持し
た。その状態で、転写シートの支持体側から電熱線ヒー
タによる輻射熱を用いたシート加熱装置40で、転写シ
ートの予熱、接着剤の活性化、被転写基材の加熱を行っ
た。
Next, in the apparatus as shown in FIG. 12, an ejector using an impeller as shown in FIG. 3 to FIG. It is placed horizontally on the substrate transporting device 10 composed of a row of transporting rollers and transported in the horizontal direction. After the melt-type adhesive was melt-coated at 30 g / m 2 , the adhesive and the substrate to be transferred were heated by the substrate heating device 41 and supplied to the collision pressure applying unit 30. On the other hand, the transfer sheet S is also
The joint side of the pattern is aligned with the joint-shaped groove-shaped concave portion of the base material to be transferred with the support side facing up (register registration).
And supplied to the collision pressure applying unit in parallel with the transfer-receiving substrate. When the substrate B to be transferred entered the chamber 33 of the collision pressure applying section, the transfer sheet was brought close to the substrate to be transferred. Then, both ends in the width direction of the transfer sheet were sandwiched between the front and back sides by a pair of endless belt-shaped sheet support devices 22. In this state, preheating of the transfer sheet, activation of the adhesive, and heating of the substrate to be transferred were performed by the sheet heating device 40 using radiant heat from a heating wire heater from the support side of the transfer sheet.

【0068】次いで、固体粒子Pとして平均粒径0.4
mmの球形の亜鉛球を、図示の如く最大噴出方向を互い
に対向させる様に被転写基材に傾斜させた2基の噴出器
を一組として、対向方向を搬送方向と搬送方向に直行方
向とで各一組、都合2組、4器の噴出器32から噴出さ
せて転写シートの支持体側法線に対して、固体粒子の最
大噴出方向が30°となる様に斜めに衝突させ、転写シ
ートを被転写基材に圧接した。噴出器の羽根車の回転数
は3600〔rpm〕、固体粒子の噴出速度は40〔m
/s〕であった。そして、転写シートが目地の凹部内に
まで延ばされて熱融着し、チャンバ33から続いてその
下流側に設けた小チャンバ71内に於いて冷却装置70
で冷風を吹き付けて、接着剤を冷却して接着温度以下に
冷却すると共に、転写シート上に残留した固体粒子を転
写シート端部からチャンバ下部に向かって落として除去
した後、転写シートの支持体を剥離ローラ60で剥がし
取り、化粧材Dを得た。化粧材は表面凹凸の大柄な凹凸
の凹部側面にまで転写シートが追従して絵柄が転写され
ていた。更に、この化粧材の転写層の表面に、2重量%
のベンゾトリアゾール系紫外線吸収剤を含むポリフッ化
ビニリデンのエマルション塗料を乾燥時厚さ10μmに
塗布して、透明保護層を形成して、透明保護層付きの化
粧材を得た。
Next, the solid particles P have an average particle size of 0.4.
mm spherical zinc spheres, as shown in the figure, a pair of two ejectors inclining the substrate to be transferred so that the maximum ejecting directions are opposed to each other as a set, and the opposing directions are the conveying direction and the direction perpendicular to the conveying direction. Then, two sets are expelled from the four jetting devices 32, and obliquely collide with the normal to the support side of the transfer sheet so that the maximum jetting direction of the solid particles becomes 30 °. Was pressed against the substrate to be transferred. The rotation speed of the impeller of the ejector is 3600 [rpm], and the ejection speed of the solid particles is 40 [m
/ S]. Then, the transfer sheet is extended to the inside of the concave portion of the joint and heat-sealed, and is continuously cooled from the cooling device 70 in the small chamber 71 provided downstream from the chamber 33.
After blowing the cold air to cool the adhesive and cool it to the bonding temperature or lower, solid particles remaining on the transfer sheet are dropped from the end of the transfer sheet toward the lower part of the chamber, and are removed. Was peeled off by a peeling roller 60 to obtain a decorative material D. In the decorative material, the pattern was transferred by the transfer sheet following the concave side surface of the large irregularities of the surface irregularities. Furthermore, 2% by weight of the surface of the transfer layer
A polyvinylidene fluoride emulsion paint containing a benzotriazole-based ultraviolet absorber was applied to a dry thickness of 10 μm to form a transparent protective layer, and a decorative material with a transparent protective layer was obtained.

【0069】[0069]

【発明の効果】 本発明によれば、大きな三次元的凹凸表面が装飾され
た化粧材が容易に得られる。もちろん、窓枠、サッシ等
の二次元的凹凸も可能であり、平板状の板材以外にも、
瓦の様に全体として(包絡面形状が)波うち形状のも
の、或いは凸又は凹に湾曲した形状のものでも容易に得
られる。 また、大柄な凹凸表面の凸部上、凹部内(底部や凸部
と底部の連結部分である側面)も転写できる。特に、固
体粒子を斜めに衝突させるので、凹部内の側面にまで、
確実に転写できる。その上、大柄な凹凸の凸部上に、更
に微細な凹凸模様(例えば、ヘアライン、梨地等)が有
る場合でも、その微細凹凸の凹部内にまで、転写にて装
飾できる。 また、従来のゴムローラ押圧方式の様に、被転写基材
の凹凸部によるローラ等部品の損耗も無い。 以上の結果、従来に無く極めて意匠性に優れた化粧材
が得られる。
According to the present invention, a decorative material having a large three-dimensional uneven surface decorated can be easily obtained. Of course, two-dimensional irregularities such as window frames and sashes are also possible.
It can be easily obtained even if it has a wavy shape (envelope surface shape) as a whole, or a convex or concave curved shape like a tile. In addition, it is also possible to transfer on the convex portion of the large irregular surface and inside the concave portion (the bottom portion or the side surface which is the connecting portion between the convex portion and the bottom portion). In particular, since the solid particles collide obliquely, even to the side surface inside the recess,
Transfer can be performed reliably. In addition, even if there is a finer uneven pattern (for example, a hairline or a satin finish) on the large pattern unevenness, the decoration can be transferred to the inside of the fine unevenness. Further, unlike the conventional rubber roller pressing method, there is no wear of parts such as the roller due to the concave and convex portions of the substrate to be transferred. As a result, a decorative material having an extremely excellent design property is obtained, which has never been obtained before.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において固体粒子を斜めに衝突させる一
形態を説明する概念図。
FIG. 1 is a conceptual diagram illustrating an embodiment in which solid particles collide obliquely in the present invention.

【図2】本発明において固体粒子を斜めに衝突させる他
の形態を説明する概念図。
FIG. 2 is a conceptual diagram illustrating another embodiment in which solid particles collide obliquely in the present invention.

【図3】羽根車を用いた噴出器の一形態を説明する概念
図(正面図)。
FIG. 3 is a conceptual diagram (front view) illustrating one embodiment of an ejector using an impeller.

【図4】図3の羽根車部分の斜視図。FIG. 4 is a perspective view of an impeller part of FIG. 3;

【図5】図3の羽根車内部を説明する概念図。FIG. 5 is a conceptual diagram illustrating the inside of the impeller of FIG. 3;

【図6】羽根車にて噴出方向を調整する説明図。FIG. 6 is an explanatory diagram for adjusting the ejection direction with an impeller.

【図7】羽根車を用いた噴出器の別の形態を説明する概
念図であり、(A)は正面図、(B)は側面図。
FIGS. 7A and 7B are conceptual diagrams illustrating another embodiment of an ejector using an impeller, wherein FIG. 7A is a front view and FIG. 7B is a side view.

【図8】吹出ノズルによる噴出器の一形態を説明する概
念図。
FIG. 8 is a conceptual diagram illustrating one embodiment of an ejector using an ejection nozzle.

【図9】噴出器の各種配置形態を示す平面図。(A)は
千鳥格子状に並べた配置、(B)は中央部は上流側にし
て、両端になるにつれて下流側にずらした配置。
FIG. 9 is a plan view showing various arrangement forms of the ejector. (A) is an arrangement arranged in a houndstooth check pattern, (B) is an arrangement in which the central portion is on the upstream side, and is shifted to the downstream side toward both ends.

【図10】衝突圧に幅方向分布を設けた説明図。FIG. 10 is an explanatory diagram in which a collision direction is provided with a width distribution.

【図11】噴出器の向き一形態を示す流れ方向からみた
側面図。
FIG. 11 is a side view showing one aspect of the ejector viewed from the flow direction.

【図12】本発明の曲面転写方法を実施し得る曲面転写
装置の一形態の概念図で、(A)は基材搬送方向の側面
から見た図で、(B)は(A)の装置の噴出器部分を基
材搬送方向から見た概略装置図。
12A and 12B are conceptual views of one embodiment of a curved surface transfer device capable of performing the curved surface transfer method of the present invention, wherein FIG. FIG. 2 is a schematic device diagram of the ejector portion of FIG.

【図13】被転写基材の三次元表面凹凸の一例を示す説
明図であり、(A)は平面図、(B)は要部斜視図。
FIGS. 13A and 13B are explanatory views showing an example of three-dimensional surface irregularities of a base material to be transferred, wherein FIG. 13A is a plan view and FIG.

【符号の説明】[Explanation of symbols]

1 固体粒子噴出手段(噴出器) 2 基材搬送手段(基材搬送装置) 10 基材搬送装置(基材搬送手段) 20 シート供給装置(シート供給手段) 21 シート送出装置 22 シート支持装置 23 シート排出装置 24 シート支持台 30 衝突圧印加部(衝突圧印加手段) 31 ホッパ 32 噴出器(固体粒子噴出手段) 33 チャンバ 34 ドレン管 35 分離装置 36 真空ポンプ 40 シート加熱装置 41 基材加熱装置 50 基材塗工装置 60 剥離ローラ(剥離手段) 70 冷却装置 71 小チャンバ 90 吸引排気装置(吸引排気手段) 91 吸引排気ノズル 92 真空ポンプ 401 溝状凹部 402 平坦凸部 403 微細凹凸 812、812a羽根車 813、813a 羽根 814、814a 側面板 815 中空部 816 方向制御器 817 開口部 818 散布器 819、819a 回転軸 820 軸受 840 吹出ノズルを用いた噴出器 841 誘導室 842 内部ノズル 843 ノズル開口部 844 ノズル B 被転写基材 D 化粧材 E 被転写基材の凹凸表面が成す包絡面 F 流体 P 固体粒子 S 転写シート REFERENCE SIGNS LIST 1 solid particle ejection means (ejection unit) 2 substrate transport means (substrate transport apparatus) 10 substrate transport apparatus (substrate transport means) 20 sheet supply device (sheet supply means) 21 sheet feed device 22 sheet support device 23 sheet Discharge unit 24 Sheet support table 30 Collision pressure applying unit (collision pressure applying unit) 31 Hopper 32 Jetting unit (Solid particle jetting unit) 33 Chamber 34 Drain tube 35 Separation device 36 Vacuum pump 40 Sheet heating device 41 Substrate heating device 50 Material coating device 60 Peeling roller (peeling means) 70 Cooling device 71 Small chamber 90 Suction and exhaust device (Suction and exhaust device) 91 Suction and exhaust nozzle 92 Vacuum pump 401 Groove-shaped concave portion 402 Flat convex portion 403 Fine unevenness 812, 812a impeller 813 , 813a Blade 814, 814a Side plate 815 Hollow portion 816 Direction controller 81 Opening portion 818 Sprayer 819, 819a Rotating shaft 820 Bearing 840 Jetting device using blowing nozzle 841 Induction chamber 842 Internal nozzle 843 Nozzle opening 844 Nozzle B Transfer receiving substrate D Cosmetic material E The uneven surface of transfer receiving substrate Envelope F Fluid P Solid particle S Transfer sheet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉川 浩久 東京都新宿区市谷加賀町一丁目1番1号 大日本印刷株式会社内 (72)発明者 宮下 治雄 東京都新宿区市谷加賀町一丁目1番1号 大日本印刷株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hirohisa Yoshikawa 1-1-1, Ichigaya-Kagacho, Shinjuku-ku, Tokyo Inside Dai Nippon Printing Co., Ltd. (72) Inventor Haruo Miyashita 1-1-1, Ichigaga-cho, Ichigaya-cho, Shinjuku-ku, Tokyo No. 1 Inside Dai Nippon Printing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 凹凸表面を有する被転写基材の凹凸表面
側に、支持体と転写層とからなる転写シートの転写層側
を対向させ、該転写シートの支持体側に固体粒子を衝突
させ、その衝突圧を利用して、被転写基材の凹凸表面へ
の転写シートの圧接を行い、転写層が被転写基材に接着
後、転写シートの支持体を剥離除去することで、転写層
を被転写基材に転写する曲面転写方法であって、 転写シートに衝突させる固体粒子のうち少なくともその
一部に、被転写基材の凹凸表面が成す包絡面に対して斜
めに衝突する様な固体粒子を含めて、転写シートに固体
粒子を衝突させる、曲面転写方法。
1. A transfer sheet comprising a support and a transfer layer, wherein the transfer layer side of a transfer sheet comprising a support and a transfer layer is opposed to the uneven surface side of the transfer-receiving base material having the uneven surface, and solid particles collide with the support side of the transfer sheet. Utilizing the collision pressure, the transfer sheet is pressed against the uneven surface of the substrate to be transferred, and after the transfer layer adheres to the substrate to be transferred, the support of the transfer sheet is peeled off to remove the transfer layer. A method of transferring a curved surface onto a substrate to be transferred, the solid being such that at least a part of solid particles colliding with a transfer sheet obliquely collides with an envelope surface formed by the uneven surface of the substrate to be transferred. A curved surface transfer method in which solid particles, including particles, collide with a transfer sheet.
【請求項2】 凹凸表面を有する被転写基材の凹凸表面
側に、支持体と転写層とからなる転写シートの転写層側
を対向させ、該転写シートの支持体側に固体粒子を衝突
させ、その衝突圧を利用して、転写シートを被転写基材
の凹凸表面に圧接して転写する方法を実施する為に使用
される装置であって、少なくとも、 固体粒子を噴出する固体粒子噴出手段と、 被転写基材を固体粒子噴出手段に対向する位置まで搬送
する基材搬送手段と、 転写シートを固体粒子噴出手段と被転写基材との間に位
置させる転写シート供給手段と、を備え、 前記固体粒子噴出手段と基材搬送手段との関係を、転写
シートに衝突させる固体粒子のうち少なくともその一部
に、被転写基材の凹凸表面が成す包絡面に対して斜めに
衝突する様な固体粒子を含めて、転写シートに固体粒子
が衝突する様な、固体粒子噴出方向と被転写基材の凹凸
表面との相対的関係が成立する関係とした、曲面転写装
置。
2. The transfer layer side of a transfer sheet comprising a support and a transfer layer is opposed to the uneven surface side of a transfer-receiving base material having an uneven surface, and solid particles collide with the support side of the transfer sheet. An apparatus used for carrying out a method of transferring a transfer sheet by pressing the transfer sheet against an uneven surface of a substrate to be transferred by utilizing the collision pressure, wherein at least a solid particle ejecting means for ejecting solid particles is provided. A substrate transport means for transporting the substrate to be transferred to a position facing the solid particle ejecting means, and a transfer sheet supply means for positioning a transfer sheet between the solid particle ejecting means and the transferred substrate, The relationship between the solid particle ejecting means and the substrate transporting means is such that at least some of the solid particles that collide with the transfer sheet obliquely collide with the envelope surface formed by the uneven surface of the substrate to be transferred. The transfer system, including solid particles, Preparative the like solid particles impact, the relative relationship between the solid particles injection direction and the irregular surface of the transfer substrate has the relationship established, the curved transfer device.
JP12013797A 1997-04-24 1997-04-24 Method for transferring curved face and device for transferring curved face Withdrawn JPH10297186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12013797A JPH10297186A (en) 1997-04-24 1997-04-24 Method for transferring curved face and device for transferring curved face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12013797A JPH10297186A (en) 1997-04-24 1997-04-24 Method for transferring curved face and device for transferring curved face

Publications (1)

Publication Number Publication Date
JPH10297186A true JPH10297186A (en) 1998-11-10

Family

ID=14778889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12013797A Withdrawn JPH10297186A (en) 1997-04-24 1997-04-24 Method for transferring curved face and device for transferring curved face

Country Status (1)

Country Link
JP (1) JPH10297186A (en)

Similar Documents

Publication Publication Date Title
JP3220849B2 (en) Curved surface transfer method and transfer sheet used therefor
JP3247984B2 (en) Curved surface transfer method and curved surface transfer device
JP3208368B2 (en) Curved surface transfer method and transfer sheet
JPH11170791A (en) Method and apparatus for transferring curved surface
JPH11170793A (en) Method for transferring
JP2949618B2 (en) Curved surface transfer method and curved surface transfer device
JPH10305698A (en) Method and apparatus for transferring curved surface
JP3235018B2 (en) Curved surface transfer method and curved surface transfer device
JPH11147397A (en) Method for transfer on curved surface and apparatus for transfer on curved surface
JPH10297186A (en) Method for transferring curved face and device for transferring curved face
JPH10272897A (en) Method and apparatus for transferring curved surface
JPH11170786A (en) Method and apparatus for transferring curved surface
JPH10272896A (en) Method for transferring curved surface
JPH10309895A (en) Method and apparatus for transferring curved surface
JPH10287098A (en) Method and apparatus for transferring curved surface
JPH10297183A (en) Method for transferring curved face and device for transferring curved face
JPH10329494A (en) Method and apparatus for transferring curved surface
JPH11170790A (en) Method and apparatus for transferring curved surface
JPH10315696A (en) Curved surface transferring method and device therefor
JPH10315693A (en) Curved surface transferring method and device therefor
JPH10337995A (en) Method and apparatus for transferring curved surface
JPH10278498A (en) Method and apparatus for transferring curved surface
JPH10297182A (en) Method for transferring curved face and device for transferring curved face
JPH10305697A (en) Method and apparatus for transferring curved surface
JPH10337993A (en) Method and apparatus for transferring curved surface

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706