JPH10296385A - Production of spherical graphite cast iron casting - Google Patents

Production of spherical graphite cast iron casting

Info

Publication number
JPH10296385A
JPH10296385A JP10644897A JP10644897A JPH10296385A JP H10296385 A JPH10296385 A JP H10296385A JP 10644897 A JP10644897 A JP 10644897A JP 10644897 A JP10644897 A JP 10644897A JP H10296385 A JPH10296385 A JP H10296385A
Authority
JP
Japan
Prior art keywords
casting
point
cast iron
graphite cast
eutectic solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10644897A
Other languages
Japanese (ja)
Inventor
Kentaro Yano
健太郎 矢野
Toshiki Yoshida
敏樹 吉田
Akinaga Oohira
章永 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP10644897A priority Critical patent/JPH10296385A/en
Publication of JPH10296385A publication Critical patent/JPH10296385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Mold Materials And Core Materials (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of a sound spherical graphite casing having no defect of shrinkage hole, etc. SOLUTION: Temp. variations at two points of an one point in the inner part of the casting and an one point near the surface, are compared and casting is executed by changing the casting shape and/or casting plan so that the ratio of an eutectic solidified completing time at the one point near the surface to that at the one point in the inner part becomes <=0.8, preferably <=0.7 decision factor. As the other way, the temp. variations in two points at an one point in the inner part of the casting and an one point near the surface, are compared and casting is executed by changing the casting shape and/or the casting plan so that the ratio of the time from the eutectic solidified start at the one point in the inner part to the eutectic solidified completion at the one point near the surface to that at the one point in the inner part becomes <=0.7, preferably <=0.6 decision factor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、球状黒鉛鋳鉄の鋳
造において、ひけ巣等の欠陥のない健全な球状黒鉛鋳鉄
鋳物を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of producing a sound spheroidal graphite cast iron casting free from defects such as shrinkage cavities in the casting of spheroidal graphite cast iron.

【0002】[0002]

【従来の技術】金属素形材を製造する一般的な方法の1
つに鋳造法がある。溶湯は必要な形状の鋳型キャビティ
に注湯され、凝固した後に鋳型から取出される。鋳型は
粘結材を混入した鋳砂から形成され、通常、キャビテ
ィ、堰、湯道および押湯を有する。一般に、キャビティ
内に注入された溶湯は、温度の低下とともに収縮するの
で、鋳物内部にひけ巣欠陥を生じるおそれがある。そこ
で、ひけ巣の有無をあらかじめ予測し、鋳造方案の設計
を行うことが望ましい。通常、ひけ巣の予測方法として
は、凝固シミュレーションによる「ホットスポット法」
が用いられている。これは、凝固過程でキャビティ内に
溶湯の島(周囲を凝固金属で囲まれた未凝固金属の島で
「ホットスポット」と呼ばれる。)ができると、未凝固
金属が凝固金属に完全に包囲されて溶湯の補給ができ
ず、空孔部が形成されることに着目し、ホットスポット
ができるか否かを判定することにより、鋳造方案の良否
を判定する方法である。
2. Description of the Related Art One of the general methods for producing a metal shaped material.
There is a casting method. The molten metal is poured into a mold cavity having a required shape, and is removed from the mold after solidification. The mold is formed from casting sand mixed with a binder and usually has cavities, weirs, runners and risers. In general, the molten metal injected into the cavity shrinks with a decrease in temperature, so that there is a possibility that a sink defect may occur inside the casting. Therefore, it is desirable to predict the presence or absence of shrinkage cavities in advance and design a casting plan. Usually, as a method for predicting the sink mark, the “hot spot method” by coagulation simulation is used.
Is used. This is because, during the solidification process, when an island of molten metal (an unsolidified metal island surrounded by solidified metal and called a “hot spot”) is formed in the cavity, the unsolidified metal is completely surrounded by the solidified metal. This method focuses on the fact that molten metal cannot be supplied and voids are formed, and determines whether or not a hot spot is formed, thereby determining the quality of the casting method.

【0003】溶湯のひけ性の判定方法としては、特開平
5−96365号公報『発明の名称:金属溶湯の引け性
の判定方法』、特表平6−504322号公報『発明の
名称:CV黒鉛鋳鉄の製造方法』に、容器中心部と容器
内壁部との冷却曲線を比較する方法がある。これらは溶
湯性状の違いにより凝固形態が鋳物内部と表面部とで異
なることに着目したもので、ひけ巣の発生しやすい溶湯
をあらかじめ判定するのに用いられる。
As methods for judging sinkability of molten metal, Japanese Patent Application Laid-Open No. Hei 5-96365, "Title of Invention: Method for Determining Metal Shrinkability", and Japanese Patent Publication No. 6-504322, "Title of Invention: CV Graphite" Cast Iron Manufacturing Method ”, there is a method of comparing the cooling curves of the container center portion and the container inner wall portion. These focus on the fact that the solidification form differs between the inside of the casting and the surface due to differences in the properties of the molten metal, and are used in advance to determine the molten metal in which sink cavities are likely to occur.

【0004】[0004]

【発明が解決しようとする課題】球状黒鉛鋳鉄の場合、
凝固の際に黒鉛晶出にともなう体積膨張がある。このた
め、ひけ巣発生の直接予測は非常に困難であるとされて
いる。ホットスポット法は、鋳鋼やアルミニウムなど凝
固の際にかなりの収縮を伴なう金属については有効であ
る。ところが、普通鋳鉄や球状黒鉛鋳鉄などのように共
晶凝固の際に黒鉛の晶出がみられる金属については、ホ
ットスポットを生じてもひけ巣を生じないことがある。
これは、球状黒鉛鋳鉄が凝固の際に収縮のみでなく膨張
も伴い、かつ全体が同時に凝固が進行するマッシィ凝固
であるという特殊性を有しているため、ひけ巣の発生メ
カニズムが複雑で十分に解明されていないことによる。
このように、球状黒鉛鋳鉄においては、ホットスポット
法でひけ巣の発生を正確に予測できるわけではなく、経
済的な押湯大きさの算定もなされていない。
SUMMARY OF THE INVENTION In the case of spheroidal graphite cast iron,
During solidification, there is a volume expansion accompanying graphite crystallization. For this reason, it is said that it is very difficult to directly predict the occurrence of shrinkage nests. The hot spot method is effective for metals such as cast steel and aluminum that undergo considerable shrinkage upon solidification. However, for metals such as ordinary cast iron and spheroidal graphite cast iron in which crystallization of graphite is observed during eutectic solidification, shrinkage cavities may not be formed even when hot spots are formed.
This is because the spheroidal graphite cast iron is not only shrunk but also expands when solidified, and it has the specialty that it is a massy solidification in which the entire solidification proceeds at the same time. It has not been clarified.
As described above, in spheroidal graphite cast iron, the occurrence of shrinkage cavities cannot be accurately predicted by the hot spot method, and the size of the riser is not economically calculated.

【0005】さらに、同一の溶湯であっても、鋳物形状
により、ひけ巣を生じる場合と生じない場合とがある。
ところが、特開平5−96365号公報に記載の方法は
単一の容器の内部と表面部の温度測定をおこない、溶湯
の差異によるひけ巣の発生を予測するため、溶湯性状の
管理をおこなうことは可能ではあるが、鋳物形状や鋳造
方案を決定することはできない。特表平6−50432
2号公報に記載の方法はCV鋳鉄に関するものであり、
ここで対象とする球状黒鉛鋳鉄に関するものとは異なっ
ているが、これも同様である。本発明の課題は、さまざ
まな鋳物形状に対して精度良く引け巣欠陥の発生を予測
し、これを鋳造方案の設計や鋳物形状の検討に役立て
て、健全な球状黒鉛鋳鉄を得ることにある。
[0005] Furthermore, depending on the shape of the casting, there is a case where a sink mark is formed and a case where the same molten metal is not formed.
However, the method described in JP-A-5-96365 measures the temperature of the inside and the surface of a single container, and predicts the occurrence of sink marks due to the difference in the molten metal. Although possible, casting shapes and casting schemes cannot be determined. Tokuhyo Hei 6-50432
No. 2 relates to CV cast iron,
This is different from the spheroidal graphite cast iron of interest here, but so is the same. An object of the present invention is to obtain a sound spheroidal graphite cast iron by accurately predicting the occurrence of shrinkage porosity defects in various casting shapes, and utilizing the prediction for design of casting plans and examination of casting shapes.

【0006】[0006]

【課題を解決するための手段】発明者が鋭意研究をおこ
ない、さまざまな鋳物の冷却状況とひけ巣との関係を調
べた結果、鋳物表面の共晶凝固の終了時間が鋳物内部の
共晶凝固終了時間に比べ比較的早いものにおいて、ひけ
巣欠陥がなくなることがわかった。そこで、鋳物表面と
鋳物内部の温度差を把握し、比較することで、ひけ巣欠
陥発生の予測が可能であることを見いだした。すなわ
ち、球状黒鉛鋳鉄鋳物の製造方法において、鋳物の内部
1点と表面近傍1点の2点の温度変化を比較し、前記内
部1点での共晶凝固終了時間に対する前記表面近傍1点
での共晶凝固終了時間の比が判定係数以下となるように
鋳物形状および/または鋳造方案を変更して鋳造を行
う。前記判定係数は0.8以下、好ましくは0.7以下
とする。もしくは、前記内部1点の共晶凝固開始から共
晶凝固終了までの時間に対する、前記内部1点の共晶凝
固開始から前記表面近傍1点の共晶凝固終了までの時間
の比が判定係数以下となるように鋳物形状および/また
は鋳造方案を変更して鋳造を行う。この場合の判定係数
は0.7以下、好ましくは0.6以下とする。本発明の
この製造方法を用いることにより、ひけ巣の低減が可能
である。
Means for Solving the Problems The inventor conducted intensive research and examined the relationship between the cooling conditions of various castings and shrinkage cavities. As a result, the ending time of eutectic solidification on the casting surface was found to be eutectic solidification inside the casting. It was found that shrinkage cavities disappeared relatively earlier than the end time. Therefore, it has been found that it is possible to predict the occurrence of shrinkage porosity defects by grasping and comparing the temperature difference between the casting surface and the inside of the casting. That is, in the method of manufacturing a spheroidal graphite cast iron casting, the temperature change at two points, one point inside the casting and one point near the surface, is compared, and the time at the one point near the surface relative to the eutectic solidification end time at the one point inside is compared. Casting is performed by changing the casting shape and / or the casting plan so that the ratio of the eutectic solidification end time is equal to or less than the determination coefficient. The determination coefficient is 0.8 or less, preferably 0.7 or less. Alternatively, the ratio of the time from the start of the eutectic solidification of one internal point to the end of the eutectic solidification of one point near the surface to the time from the start of the eutectic solidification of the one internal point to the end of the eutectic solidification is equal to or less than the determination coefficient. The casting is performed by changing the casting shape and / or the casting plan so that The determination coefficient in this case is 0.7 or less, preferably 0.6 or less. By using this manufacturing method of the present invention, shrinkage nests can be reduced.

【0007】すなわち、図1に示すような鋳物内部で共
晶凝固終了時間が比較的遅い位置(鋳物の内部の部位)
1、およびそこに近い表面近傍(鋳物の表面部の部位)
2について、図2に示すように、それぞれの冷却曲線を
求め、それらの冷却曲線から共晶凝固終了時間を比較す
ることにより、ひけ巣の発生を予測するものである。な
お、図2において、Taは鋳物内部の共晶凝固開始時
間、Tbは鋳物内部の共晶凝固終了時間、およびTcは
鋳物表面部の共晶凝固終了時間を示す。
That is, a position where the eutectic solidification end time is relatively late in the casting as shown in FIG. 1 (a part inside the casting).
1, and near the surface (the part of the surface of the casting)
2, as shown in FIG. 2, the occurrence of shrinkage cavities is predicted by obtaining respective cooling curves and comparing the eutectic solidification end time from the cooling curves. In FIG. 2, Ta indicates the eutectic solidification start time in the casting, Tb indicates the eutectic solidification end time in the casting, and Tc indicates the eutectic solidification end time in the casting surface.

【0008】[0008]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施の形態1)以下、本発明の実施の形態1を図3に
示す。実施の形態1は熱電対による実際の測定、およ
び、コンピュータによるシミュレーション計算を用いる
ことが可能であり、以下の〜のステップで行う。 鋳物形状、方案を検討する。 鋳物形状においてそのうち凝固が比較的遅いと思われ
る鋳物内部1点と、その近傍の鋳物表面部1点とを観察
点とする。 それぞれの観察点の冷却曲線を測定、もしくは計算す
る。(図2参照) 鋳物内部の共晶凝固終了時間(Tb)を求める。ここ
で、Tbとは注湯してから鋳物内部1点での共晶凝固が
終了するまでの時間(秒)を意味する。 鋳物表面部の共晶凝固終了時間(Tc)を求める。こ
こで、Tcとは注湯してから鋳物表面部1点での共晶凝
固が終了するまでの時間(秒)を意味する。 凝固終了時間比Tc/Tbを計算する。 共晶凝固終了時間比が判定係数0.8(より好ましく
は0.7)より大きい場合は、ひけ巣ありと判定し、
へ戻り、鋳物形状、もしくは方案を再検討する。必要に
応じてこの工程を繰り返し、凝固終了時間比が判定係数
より小さくなった場合、ひけ巣なしと判定し、実際の生
産をおこなう。
(Embodiment 1) FIG. 3 shows Embodiment 1 of the present invention. In the first embodiment, actual measurement using a thermocouple and simulation calculation using a computer can be used. Study casting shape and plan. In the casting shape, one point inside the casting, where solidification is considered to be relatively slow, and one point near the casting surface are set as observation points. Measure or calculate the cooling curve at each observation point. (See FIG. 2) The eutectic solidification end time (Tb) inside the casting is determined. Here, Tb means the time (second) from the pouring to the end of eutectic solidification at one point inside the casting. The eutectic solidification end time (Tc) of the casting surface is determined. Here, Tc means the time (second) from the pouring to the end of eutectic solidification at one point on the casting surface. The coagulation end time ratio Tc / Tb is calculated. When the eutectic solidification end time ratio is larger than the determination coefficient 0.8 (more preferably 0.7), it is determined that there is a sink mark,
Return to and review the casting shape or plan. This step is repeated as necessary, and when the coagulation end time ratio becomes smaller than the determination coefficient, it is determined that there is no sink mark, and actual production is performed.

【0009】(実施の形態2)または、鋳物表面部が共
晶凝固を終了した時の鋳物内部の凝固状態を求め、判定
係数と比較することもでき、この実施の形態2を図4に
示す。実施の形態2は以下の〜のステップで行う。 鋳物形状、方案を検討する。 鋳物形状においてそのうち凝固が比較的遅いと思われ
る鋳物内部1点と、その近傍の鋳物表面部1点とを観察
点とする。 それぞれの観察点の冷却曲線を測定、もしくは計算す
る。(図2参照) 鋳物内部の共晶凝固開始時間(Ta)、および鋳物内
部の共晶凝固終了時間(Tb)を求める。 鋳物表面部の共晶凝固終了時間(Tc)を求める。 内部固相率(Tc−Ta)/(Tb−Ta)を計算す
る。ここで、この式の分子(Tc−Ta)は鋳物内部の
共晶凝固開始から鋳物表面部の共晶凝固終了までの時間
(秒)であり、この式の分母(Tb−Ta)は鋳物内部
の共晶凝固開始から共晶凝固終了までの時間(秒)であ
る。 内部固相率が判定係数0.7より大きい場合は、ひけ
巣ありと判定し、へ戻り、鋳物形状、もしくは方案を
再検討する。必要に応じてこの工程を繰り返し、凝固終
了時間比が判定係数より小さくなった場合、ひけ巣なし
と判定し、実際の生産を行う。
(Embodiment 2) Alternatively, the solidification state inside the casting when the surface of the casting has completed eutectic solidification can be obtained and compared with a judgment coefficient. This embodiment 2 is shown in FIG. . The second embodiment is performed in the following steps (1) to (4). Study casting shape and plan. In the casting shape, one point inside the casting, where solidification is considered to be relatively slow, and one point near the casting surface are set as observation points. Measure or calculate the cooling curve at each observation point. (See FIG. 2) The eutectic solidification start time (Ta) inside the casting and the eutectic solidification end time (Tb) inside the casting are determined. The eutectic solidification end time (Tc) of the casting surface is determined. The internal solid fraction (Tc-Ta) / (Tb-Ta) is calculated. Here, the numerator (Tc-Ta) of this equation is the time (second) from the start of eutectic solidification inside the casting to the end of eutectic solidification on the casting surface, and the denominator (Tb-Ta) of this equation is inside the casting. Is the time (sec) from the start of eutectic solidification to the end of eutectic solidification. When the internal solid phase ratio is larger than the determination coefficient 0.7, it is determined that there is a sink mark, and the process returns to the step to reconsider the casting shape or the plan. This step is repeated as necessary, and when the coagulation end time ratio becomes smaller than the determination coefficient, it is determined that there is no sink mark and actual production is performed.

【0010】表1は、本発明をさまざまな形状の鋳物に
適用し、ひけ巣の有無を判定した結果を、実際の鋳造結
果およびホットスポット法と比較して示す。すなわち、
鋳物の形状は、図5、図7および図9が横長の直方体、
図1がフランジ付きの円筒体、図10が円柱体、図11
が球体である。
Table 1 shows the results of applying the present invention to castings of various shapes and judging the presence or absence of sink marks in comparison with the actual casting results and the hot spot method. That is,
The shape of the casting is shown in FIG. 5, FIG. 7 and FIG.
1 is a cylinder with a flange, FIG. 10 is a cylinder, FIG.
Is a sphere.

【0011】[0011]

【表1】 [Table 1]

【0012】例えば、図5に示す板厚さ30mmの鋳物
について、前記の共晶凝固時間比を用いてひけ巣の判定
する場合、鋳物表面部Bおよび鋳物内部Aの冷却曲線を
シミュレーション計算で求めると、図6のようになる。
ここで凝固時間比を計算すると、0.88(表1におい
て、鋳物形状図5の欄の記載参照)となり、実際にこの
形状で鋳造をおこなうとひけ巣欠陥を生じる。そこで、
図7に示すように板厚を50mmに厚くし、シミュレー
ション計算で冷却曲線を求める。この冷却曲線を図8に
示す。ここで凝固時間比を計算すると、0.72(表1
において、鋳物形状図7の欄の記載参照)となり、実際
の鋳造でもひけ巣欠陥を生じなくなっている。
For example, in the case of determining a shrinkage cavity using the above-mentioned eutectic solidification time ratio for a casting having a plate thickness of 30 mm shown in FIG. 5, cooling curves of the casting surface portion B and the casting interior A are obtained by simulation calculation. Is as shown in FIG.
Here, when the solidification time ratio is calculated, it becomes 0.88 (see the description in the column of FIG. 5 of the casting shape in Table 1), and when casting is actually performed with this shape, shrinkage cavities occur. Therefore,
As shown in FIG. 7, the plate thickness is increased to 50 mm, and a cooling curve is obtained by simulation calculation. This cooling curve is shown in FIG. Here, when the solidification time ratio was calculated, it was 0.72 (Table 1).
In the casting, see the description in the column of FIG. 7), and no shrinkage cavities occur even in actual casting.

【0013】[0013]

【発明の効果】以上の説明で明らかなように、本発明は
非常に精度良くひけ巣欠陥の発生を予測できるため、鋳
造方案の設計や鋳物形状の検討において、押湯大きさの
最小化、不良率の低減等の効果がある。これにより低コ
ストで効率よく球状黒鉛鋳鉄鋳物を製造することが可能
である。
As is clear from the above description, since the present invention can predict the occurrence of shrinkage cavities with high accuracy, it is possible to minimize the size of the feeder in designing a casting plan and examining a casting shape. This has the effect of reducing the defective rate. This makes it possible to efficiently manufacture a spheroidal graphite cast iron casting at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フランジ付きの円筒体形状の鋳物を示す図であ
る。
FIG. 1 is a view showing a cylindrical-shaped casting with a flange.

【図2】図1の鋳物の冷却曲線を示す図である。FIG. 2 is a diagram showing a cooling curve of the casting of FIG. 1;

【図3】実施の形態1のステップを示す図である。FIG. 3 is a diagram showing steps in the first embodiment.

【図4】実施の形態2のステップを示す図である。FIG. 4 is a diagram showing steps in the second embodiment.

【図5】直方体形状をした鋳物を示す図である。FIG. 5 is a view showing a casting having a rectangular parallelepiped shape.

【図6】図5の鋳物の冷却曲線を示す図である。FIG. 6 is a diagram showing a cooling curve of the casting of FIG. 5;

【図7】直方体形状をした鋳物を示す図である。FIG. 7 is a view showing a casting having a rectangular parallelepiped shape.

【図8】図7の鋳物の冷却曲線を示す図である。FIG. 8 is a diagram showing a cooling curve of the casting of FIG. 7;

【図9】直方体形状をした鋳物を示す図である。FIG. 9 is a view showing a casting having a rectangular parallelepiped shape.

【図10】段付円柱形状をした鋳物を示す図である。FIG. 10 is a view showing a casting having a stepped cylindrical shape.

【図11】球体の形状をした鋳物を示す図である。FIG. 11 is a view showing a casting having a spherical shape.

【符号の説明】[Explanation of symbols]

1 鋳物内部 2 鋳物表面部 3 鋳物 4 押湯 Ta 鋳物内部の共晶凝固開始時間 Tb 鋳物内部の共晶凝固終了時間 Tc 鋳物表面部の共晶凝固終了時間 Reference Signs List 1 Casting interior 2 Casting surface 3 Casting 4 Feeder Ta Eutectic solidification start time inside cast Tb Eutectic solidification end time inside cast Tc Eutectic solidification end time inside cast surface

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 球状黒鉛鋳鉄鋳物の製造方法において、
鋳物の内部1点と表面近傍1点の2点の温度変化を比較
し、前記内部1点での共晶凝固終了時間に対する前記表
面近傍1点での共晶凝固終了時間の比が判定係数以下と
なるように鋳物形状および/または鋳造方案を変更して
鋳造することを特徴とする球状黒鉛鋳鉄鋳物の製造方
法。
1. A method for producing a spheroidal graphite cast iron casting, comprising:
The temperature change at two points, one point inside the casting and one point near the surface, is compared, and the ratio of the eutectic solidification end time at one point near the surface to the eutectic solidification end time at one point inside the casting is equal to or less than the determination coefficient. A method for producing a spheroidal graphite cast iron casting, wherein the casting is changed while changing the shape of the casting and / or the casting plan so that
【請求項2】 前記判定係数を0.8以下とすることを
特徴とする請求項1記載の球状黒鉛鋳鉄鋳物の製造方
法。
2. The method for producing a spheroidal graphite cast iron casting according to claim 1, wherein the determination coefficient is 0.8 or less.
【請求項3】 前記判定係数を好ましくは0.7以下と
することを特徴とする請求項1記載の球状黒鉛鋳鉄鋳物
の製造方法。
3. The method for producing a spheroidal graphite cast iron casting according to claim 1, wherein said determination coefficient is preferably 0.7 or less.
【請求項4】 球状黒鉛鋳鉄鋳物の製造方法において、
鋳物の内部1点と表面近傍1点の2点の温度変化を比較
し、前記内部1点の共晶凝固開始から共晶凝固終了まで
の時間に対する、前記内部1点の共晶凝固開始から前記
表面近傍1点の共晶凝固終了までの時間の比が判定係数
以下となるように鋳物形状および/または鋳造方案を変
更して鋳造することを特徴とする球状黒鉛鋳鉄鋳物の製
造方法。
4. A method for producing a spheroidal graphite cast iron casting, comprising:
The temperature changes at two points, one point inside the casting and one point near the surface, are compared, and the time from the start of the eutectic solidification of the inside one point to the end of the eutectic solidification, from the start of the eutectic solidification of the inside one point to the time A method for producing a spheroidal graphite cast iron casting, wherein casting is performed by changing a casting shape and / or a casting plan so that a ratio of time until completion of eutectic solidification at one point near a surface is equal to or less than a determination coefficient.
【請求項5】 前記判定係数を0.7以下とすることを
特徴とする請求項4記載の球状黒鉛鋳鉄鋳物の製造方
法。
5. The method for producing a spheroidal graphite cast iron casting according to claim 4, wherein the determination coefficient is 0.7 or less.
【請求項6】 前記判定係数を好ましくは0.6以下と
することを特徴とする請求項4記載の球状黒鉛鋳鉄鋳物
の製造方法。
6. The method for producing a spheroidal graphite cast iron casting according to claim 4, wherein said determination coefficient is preferably 0.6 or less.
JP10644897A 1997-04-23 1997-04-23 Production of spherical graphite cast iron casting Pending JPH10296385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10644897A JPH10296385A (en) 1997-04-23 1997-04-23 Production of spherical graphite cast iron casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10644897A JPH10296385A (en) 1997-04-23 1997-04-23 Production of spherical graphite cast iron casting

Publications (1)

Publication Number Publication Date
JPH10296385A true JPH10296385A (en) 1998-11-10

Family

ID=14433905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10644897A Pending JPH10296385A (en) 1997-04-23 1997-04-23 Production of spherical graphite cast iron casting

Country Status (1)

Country Link
JP (1) JPH10296385A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533571A (en) * 1998-12-18 2002-10-08 シンター カスト エービー Method for producing CGI or SGI casting, method for determining amount of structural modifier to be added to molten cast iron, equipment therefor and computer program product
EP1878520A1 (en) * 2005-04-26 2008-01-16 Kimura Chuzosho Co, LTD. Method for predicting and preventing shrinkage cavity of iron casting
WO2019087435A1 (en) * 2017-11-06 2019-05-09 株式会社I2C技研 Casting solidification analysis method, casting method, and electronic program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002533571A (en) * 1998-12-18 2002-10-08 シンター カスト エービー Method for producing CGI or SGI casting, method for determining amount of structural modifier to be added to molten cast iron, equipment therefor and computer program product
EP1878520A1 (en) * 2005-04-26 2008-01-16 Kimura Chuzosho Co, LTD. Method for predicting and preventing shrinkage cavity of iron casting
EP1878520A4 (en) * 2005-04-26 2008-07-02 Kimura Chuzosho Co Ltd Method for predicting and preventing shrinkage cavity of iron casting
WO2019087435A1 (en) * 2017-11-06 2019-05-09 株式会社I2C技研 Casting solidification analysis method, casting method, and electronic program
JPWO2019087435A1 (en) * 2017-11-06 2020-11-12 株式会社I2C技研 Solidification analysis method, casting method and electronic program during casting
US11745258B2 (en) 2017-11-06 2023-09-05 I2C Co., Ltd Casting solidification analysis method, casting method, and electronic program

Similar Documents

Publication Publication Date Title
Markov et al. Computational and experimental modeling of new forging ingots with a directional solidification: the relative heights of 1.1
US4358948A (en) Method and apparatus for predicting metallographic structure
JPH10296385A (en) Production of spherical graphite cast iron casting
EP3311157B1 (en) Apparatus and method for analysis of molten metals
JPH05200485A (en) Graphite casting mold
JP2003311371A (en) Method for casting vacuum chamber into sand mold
Farhang Mehr Quantitative assessment of the effect of copper chills on casting/chill interface behavior and the microstructure of sand cast A319 alloy
Chakravarti et al. A study on solidification of large iron casting in a thin water cooled copper mould
JPH07155897A (en) Mold structure and casting method
Li et al. Influence of mold temperature on microstructure and shrinkage porosity of the A357 alloys in gravity die casting
JPH0596365A (en) Method for deciding shrinkage property of molten metal
CN105772687A (en) Automobile mold casting compositely casted through cold work die steel and gray iron, pouring system and casting method
US8276644B2 (en) Mold and casting method using the mold and design method of the mold
Miyamoto et al. Shrinkage Analysis Considering Expansion and Contraction Behavior in Heavy Section Spheroidal Graphite Iron Castings
Fraś et al. The transition from gray to white cast iron during solidification: Part II. Experimental verification
JPH05123842A (en) Method for predicting temperature at unsolidified part in cast slab in continuous casting
JP2021053662A (en) Prediction method of generation position of shrinkage cavity in cast
Abubakar et al. Minimization of Shrinkage Defect in Crankshaft Casting
JP2637004B2 (en) Evaluation method of powder for continuous casting of low carbon steel
Mote et al. A Study on Simulation and Experimental Analysis of Gating System
JP2001121242A (en) Optimizing means for casting plan utilizing cae
JP4265268B2 (en) Solidification analysis method for castings
JPH10305361A (en) Solidification analysis for low pressure casting, its low pressure casting and castings
JP3403322B2 (en) Design method of aluminum DC casting mold using elasto-plastic solidification stress analysis and the mold
Javaid Effect of Different Mold Materials on the Solidification Rate and Microstructure of Magnesium Alloy Plate Castings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A131 Notification of reasons for refusal

Effective date: 20071207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080404

Free format text: JAPANESE INTERMEDIATE CODE: A02