JP2003311371A - Method for casting vacuum chamber into sand mold - Google Patents

Method for casting vacuum chamber into sand mold

Info

Publication number
JP2003311371A
JP2003311371A JP2002125796A JP2002125796A JP2003311371A JP 2003311371 A JP2003311371 A JP 2003311371A JP 2002125796 A JP2002125796 A JP 2002125796A JP 2002125796 A JP2002125796 A JP 2002125796A JP 2003311371 A JP2003311371 A JP 2003311371A
Authority
JP
Japan
Prior art keywords
vacuum chamber
casting
alloy
sand mold
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002125796A
Other languages
Japanese (ja)
Inventor
Makoto Matsuura
誠 松浦
Mikiya Fukuda
幹也 福田
Hiroshi Masaki
浩 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIROSHIMA ALUMINUM INDUSTRY CO
Hiroshima Aluminum Industry Co Ltd
Original Assignee
HIROSHIMA ALUMINUM INDUSTRY CO
Hiroshima Aluminum Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIROSHIMA ALUMINUM INDUSTRY CO, Hiroshima Aluminum Industry Co Ltd filed Critical HIROSHIMA ALUMINUM INDUSTRY CO
Priority to JP2002125796A priority Critical patent/JP2003311371A/en
Publication of JP2003311371A publication Critical patent/JP2003311371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To cast a large scaled vacuum chamber hardly generating cavity in the thick thickness at a low cost without wasting a time and a material. <P>SOLUTION: The vacuum chamber is cast by pouring molten Al alloy containing 0.5-5.8 wt.% Ni and the balance Al or 0.5-2.4 wt.% Mn and the balance Al into a sand mold B. At this time, it is desirable that chillers 7 are disposed at places corresponding to the lower end of a space part 3 of the vacuum chamber shape or side walls of the vacuum chamber shape in the sand mold B and a feeder head 4 is disposed at the upper part of the sand mold B. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、半導体や液晶な
どの製造装置、蒸着装置などで真空容器として用いられ
る真空チャンバの砂型鋳造法に関し、特に、砂型鋳造法
を適用して真空チャンバを鋳造にする場合の鋳巣防止対
策に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sand mold casting method of a vacuum chamber used as a vacuum container in a semiconductor or liquid crystal manufacturing apparatus, a vapor deposition apparatus or the like, and more particularly to a sand chamber casting method to which a vacuum chamber is cast. In this case, it relates to measures for preventing porosity.

【0002】[0002]

【従来の技術】半導体製造装置などにおいて、シリコン
ウエハへの膜の生成やエッチング、シリコンウエハの移
動、搬送作業、シリコンウエハ検査などでは、真空チャ
ンバが用いられている。この真空チャンバは、圧延や鍛
造で作られたAl合金製ブロック材の削り出しやAl合
金製圧延板材の溶接などにより製造されているのが現状
である。
2. Description of the Related Art In a semiconductor manufacturing apparatus or the like, a vacuum chamber is used for forming and etching a film on a silicon wafer, moving a silicon wafer, carrying work, and inspecting a silicon wafer. At present, this vacuum chamber is manufactured by shaving an Al alloy block material made by rolling or forging, welding an Al alloy rolled plate material, and the like.

【0003】[0003]

【発明が解決しようとする課題】しかし、ブロック材の
削り出しでは、機械加工に時間がかかるとともに材料の
無駄が多いため、加工費や材料費が高くついて製造単価
が高くなる。特に最近は、シリコンウエハが従来の8イ
ンチサイズから12インチサイズへと移行しつつあり、
それに伴って半導体製造設備も大型化し、真空チャンバ
も1.5m〜2m角以上の大きさのものが必要になるな
ど大型化している。そのため、削り出しで真空チャンバ
を作る場合は加工費や材料費がより一層高くつくように
なり、製造単価が累積的に高くなる傾向にある。また、
溶接で製造される真空チャンバでは、溶接部にピンホー
ルや収縮割れなどの溶接欠陥が発生しやすく、特に、真
空チャンバが大型化して溶接部が長くなるにつれてそれ
らの溶接欠陥が発生しやすくなり、所要の真空性能を確
保することが困難になってくる。
However, in the machining of a block material, it takes time to machine and a large amount of material is wasted. Therefore, the machining cost and the material cost are high and the manufacturing unit cost is high. Especially recently, silicon wafers are shifting from the conventional 8-inch size to 12-inch size,
Along with this, the semiconductor manufacturing equipment is also increased in size, and the vacuum chamber is also increased in size, such as requiring a size of 1.5 m to 2 m square or more. Therefore, when the vacuum chamber is formed by shaving, the processing cost and the material cost are further increased, and the manufacturing unit price tends to be cumulatively increased. Also,
In a vacuum chamber manufactured by welding, weld defects such as pinholes and shrinkage cracks are likely to occur in the weld, and in particular, those weld defects are more likely to occur as the vacuum chamber becomes larger and the weld becomes longer, It becomes difficult to secure the required vacuum performance.

【0004】ところで、Al合金を原料として製品を製
造する方法として鋳造法がある。鋳造では、最終製品形
状に近い形状の鋳物を作ってその表面を仕上げ加工する
だけでよいので、ブロック材からの削り出しに比べて機
械加工がはるかに少なくてすみ、そのため、加工費を大
幅に下げることができるとともに材料の無駄も少ない。
しかし、鋳造法のうちでダイキャストや重力金型鋳造
法、低圧鋳造法などの金型を使う鋳造法は、高価な金型
や専用鋳造設備を必要とするので、真空チャンバのよう
な大型鋳物の多品種少量生産の場合には鋳造費が高くつ
き、かえってコスト高になる。
By the way, there is a casting method as a method for producing a product using an Al alloy as a raw material. In casting, it is only necessary to make a casting with a shape close to the final product shape and finish the surface, so much less machining is required compared to shaving from block material, so the processing cost is significantly increased. It can be lowered and less material is wasted.
However, among the casting methods, the die casting method, the gravity die casting method, the low pressure casting method, and the like that use dies require expensive dies and dedicated casting equipment, so large castings such as vacuum chambers are required. In the case of high-mix low-volume production, the casting cost will be high and the cost will be high.

【0005】一方、砂型鋳造法は、簡便な設備で安価な
砂を原料とした砂型で鋳物を鋳造するため、設備費があ
まりかからず、また、鋳物の大きさや形状の自由度が非
常に高くて多品種少量生産に向いているという利点を有
している。この砂型鋳造法で上記の真空チャンバを鋳造
すれば、真空チャンバを安価にかつ簡単に多品種少量生
産することができるが、砂型鋳造法の欠点として鋳巣欠
陥が発生しやすいという問題があり、真空チャンバ表
面、特に真空側になるチャンバ内面に鋳巣欠陥が発生す
るとその欠陥部からのガス放出や真空シール不良などに
より真空度が低下し、真空チャンバとして使えなくな
る。
On the other hand, in the sand mold casting method, since the casting is cast with a sand mold using inexpensive sand as a raw material with a simple facility, the facility cost is not so high, and the degree of freedom of the size and shape of the casting is very high. It has the advantage that it is expensive and suitable for high-mix low-volume production. If the above vacuum chamber is cast by this sand mold casting method, the vacuum chamber can be produced inexpensively and easily in a large variety of small quantities, but there is a problem that a cavity defect is likely to occur as a drawback of the sand mold casting method, When a porosity defect is generated on the surface of the vacuum chamber, particularly on the inner surface of the chamber on the vacuum side, the degree of vacuum is lowered due to gas emission from the defective part, defective vacuum sealing, etc., and the vacuum chamber cannot be used.

【0006】ここで、鋳巣の種類には、溶湯が凝固収縮
するときに凝固部への溶湯補給が不足して空洞が生じて
起こる引けによる鋳巣と、溶湯中に溶解していた水素等
の分子が、鋳型内で溶湯が凝固するときにガスとして鋳
物中に放出されて起こるガスによる鋳巣との2種類があ
る。前者の引けによる鋳巣については、溶湯が凝固する
とき、凝固界面へ向けて常に十分な溶湯補給ができるよ
うに鋳物の一方の端から他方に向かって順次方向性を持
たせて凝固させる、いわゆる指向性凝固させるような鋳
造方案を採用することによって引けによる鋳巣の発生を
抑えることが可能である。しかしながら、後者のガスに
よる鋳巣については、砂型鋳造の場合にはその対策が非
常に困難であり、その理由は次のようである。
[0006] Here, as for the types of cavities, when the molten metal solidifies and shrinks, the molten metal is not replenished to the solidified portion and a cavity is created to cause voids, and hydrogen that has been dissolved in the molten metal. There are two types, ie, a cavity of a molecule produced by the gas generated by being released into the casting as a gas when the molten metal is solidified in the mold. With regard to the cast cavity due to the former shrinkage, when the molten metal is solidified, it is solidified by sequentially giving directionality from one end of the casting to the other so that sufficient molten metal replenishment can always be performed toward the solidification interface, so-called By adopting a casting method that causes directional solidification, it is possible to suppress the occurrence of porosity due to shrinkage. However, in the latter case, it is very difficult to take countermeasures for the porosity caused by the gas in the sand casting, and the reason is as follows.

【0007】すなわち、鋳型内でAl合金の凝固が進行
していくとき、その凝固界面には液体と固体とが混じり
合った粥状の固液共存域が存在し、凝固時のガス放出は
その固液共存域に発生することがわかっており、この固
液共存域の幅が広いほどガスによる鋳巣が発生しやすく
なる傾向にある。この固液共存域の幅は凝固速度に反比
例し、砂型鋳造では砂型の熱伝導性が非常に悪いために
凝固速度が小さく、そのため、固液共存域の幅が大きく
なりガスによる鋳巣が多発する。さらに、鋳物の肉厚が
増えて溶湯の持つ熱容量が大きくなるにつれて凝固速度
が急速に減少の傾向を示し、特に、鋳物の肉厚が15m
m以上になると、一般鋳造用のAl合金を使った通常の
砂型鋳造法では、冷し金などを使用した場合でもガスに
よる鋳巣発生を防止することは不可能であった。
That is, when solidification of the Al alloy proceeds in the mold, there is a porridge-like solid-liquid coexistence region in which liquid and solid are mixed at the solidification interface, and gas release during solidification is It is known that it occurs in the solid-liquid coexistence region, and the wider the solid-liquid coexistence region, the more easily the gas-induced porosity tends to occur. The width of this solid-liquid coexistence region is inversely proportional to the solidification rate, and in sand mold casting, the solidification rate is small because the sand mold's thermal conductivity is very poor. To do. Furthermore, the solidification rate tends to decrease rapidly as the casting thickness increases and the heat capacity of the molten metal increases.
If it is more than m, it is impossible to prevent the formation of porosity due to gas by the usual sand casting method using an Al alloy for general casting even when using a chill metal or the like.

【0008】ここで、真空チャンバは一般に15mm以
上の肉厚を持ち、大型の真空チャンバの場合には肉厚が
50mmを超える場合もあるために、上記のように通常
の砂型鋳造法では鋳巣のない健全な真空チャンバを製造
することはできない。
Here, the vacuum chamber generally has a wall thickness of 15 mm or more, and in the case of a large vacuum chamber, the wall thickness may exceed 50 mm. It is not possible to manufacture a sound vacuum chamber without.

【0009】この発明はかかる点に鑑みてなされたもの
であり、その目的とするところは、砂型鋳造法によって
鋳物の肉厚が15mm以上であっても鋳巣がほとんどな
く大型の真空チャンバとして十分に適用できる健全な砂
型鋳造鋳物を時間や材料を無駄なく安価に提供すること
である。
The present invention has been made in view of the above points, and an object thereof is to provide a large vacuum chamber with almost no cavities even if the casting has a wall thickness of 15 mm or more by the sand mold casting method. It is to provide a sound sand casting that can be applied to, at a low cost, without wasting time and materials.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、この発明は、鋳物の原料であるAl合金の組成を特
定し、好ましくは砂型内に冷し金と押し湯を設置し、肉
厚が15mm以上でかつ鋳巣がほとんどない健全な真空
チャンバを鋳造することを特徴とする。
In order to achieve the above-mentioned object, the present invention specifies the composition of an Al alloy which is a raw material for casting, and preferably puts a cold metal and a feeder in a sand mold, It is characterized by casting a sound vacuum chamber having a thickness of 15 mm or more and having almost no porosity.

【0011】具体的には、請求項1に記載の発明が講じ
た解決手段は、Niを0.5〜5.8wt%を含み残部
がAlのAl合金又はMnを0.5〜2.4wt%含み
残部がAlのAl合金の溶湯を砂型に注湯して真空チャ
ンバを鋳造することを特徴とする。
[0011] Specifically, the solving means devised by the invention described in claim 1 is 0.5 to 2.4 wt% of Al alloy or Mn containing 0.5 to 5.8 wt% of Ni and the balance of Al. %, And the balance is Al. A molten aluminum alloy is poured into a sand mold to cast a vacuum chamber.

【0012】上記の構成により、請求項1に記載の発明
では、上述の如き組成のAl合金は、合金状態図におけ
る液体から固体に相変化するときの温度範囲が一般の鋳
造用Al合金に比べて小さいため、鋳造時にAl合金の
溶湯が砂型内で凝固していくときの凝固界面における固
液共存域の幅が一般の鋳造用合金に比べて小さくなり、
その結果、ガスによる鋳巣の発生が抑えられて健全な真
空チャンバが得られる。しかも、経費があまりかからな
い砂型鋳造法であるため、製作コストが低減する。
With the above-mentioned structure, in the invention according to claim 1, the Al alloy having the above-mentioned composition has a temperature range at the time of phase change from liquid to solid in the alloy phase diagram as compared with general casting Al alloys. Therefore, the width of the solid-liquid coexistence region at the solidification interface when the molten aluminum alloy solidifies in the sand mold during casting becomes smaller than that of general casting alloys.
As a result, the generation of porosity due to gas is suppressed, and a sound vacuum chamber is obtained. Moreover, since the sand mold casting method is inexpensive, the manufacturing cost is reduced.

【0013】請求項2に記載の発明が講じた解決手段
は、請求項1に記載の発明において、真空チャンバは、
底壁及び側壁の肉厚15mm以上の容器形状であること
を特徴とする。
According to a second aspect of the present invention, there is provided a solution according to the first aspect, in which the vacuum chamber is
It is characterized in that the bottom wall and the side wall have a container shape with a wall thickness of 15 mm or more.

【0014】上記の構成により、請求項2に記載の発明
では、厚肉であるにもかかわらず、鋳巣のない健全な真
空チャンバが得られる。
With the above construction, according to the second aspect of the present invention, it is possible to obtain a sound vacuum chamber having no porosity despite having a thick wall.

【0015】請求項3に記載の発明が講じた解決手段
は、請求項1又は2に記載の発明において、砂型内の少
なくとも真空チャンバ形状空間部の下端又は真空チャン
バの側壁に対応する箇所に冷し金を配置し、かつ砂型上
部に押し湯を配置していることを特徴とする。
According to a third aspect of the present invention, in the solution according to the first or second aspect of the invention, at least the lower end of the vacuum chamber-shaped space or the side wall of the vacuum chamber in the sand mold is cooled. It is characterized by arranging a metal plate and arranging a riser on the upper part of the sand mold.

【0016】上記の構成により、請求項3に記載の発明
では、砂型内の溶湯には、冷し金の部分から熱容量の大
きい押し湯の方向に向かって温度勾配が生じ、その温度
勾配に沿って凝固界面の固液共存域が移動していき指向
性凝固する。その際、固液共存域に発生したガスは固液
共存域とともに移動していって最終凝固部となる押し湯
部に集まり、鋳物製品部分にはガスが残らず鋳巣がほと
んど発生しない。
With the above construction, in the invention according to claim 3, a temperature gradient is generated in the molten metal in the sand mold from the chill metal portion toward the direction of the riser having a large heat capacity, and along the temperature gradient. Then, the solid-liquid coexisting region at the solidification interface moves and the directional solidification occurs. At that time, the gas generated in the solid-liquid coexistence region moves together with the solid-liquid coexistence region and collects in the riser part which is the final solidification part, and no gas remains in the casting product part, and almost no porosity is generated.

【0017】[0017]

【発明の実施の形態】以下、この発明の実施の形態に係
る砂型鋳造法について図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A sand mold casting method according to an embodiment of the present invention will be described below with reference to the drawings.

【0018】この実施の形態では、半導体製造装置など
に用いられる矩形箱型の真空チャンバA(図2参照)を
砂型鋳造法により鋳造する場合を例示するが、真空チャ
ンバAはその用途によって外形が六角形や円筒形などの
ものも用いられており、本発明はそれらについても適用
できる。
In this embodiment, a rectangular box type vacuum chamber A (see FIG. 2) used in a semiconductor manufacturing apparatus or the like is cast by a sand casting method, but the outer shape of the vacuum chamber A depends on its application. Hexagonal shapes and cylindrical shapes are also used, and the present invention can be applied to them.

【0019】鋳造に際して、真空チャンバAの原料とな
るAl合金からなる溶湯と、図1に示すような鋳造用鋳
型としての砂型Bとを用意する。
At the time of casting, a molten metal made of an Al alloy as a raw material for the vacuum chamber A and a sand mold B as a casting mold as shown in FIG. 1 are prepared.

【0020】上記砂型Bは、上型1と下型2との2つの
砂型で構成されており、これら上型1と下型2とが組み
合わされた中間部に、鋳造しようとする真空チャンバA
の形状に対応した真空チャンバ形状空間部3が形成され
ている。本例では、真空チャンバAは、内寸法が400
mm角、深さが600mm、肉厚が底壁a1及び側壁a
2共に60mmの容器形状であるが、特に、底壁a1及
び側壁a2の肉厚が15mm以上の場合に著効を発揮す
る。すなわち、真空チャンバAの肉厚が15mm以上に
なると、一般鋳造用のAl合金を使った通常の砂型鋳造
法では、冷し金などを使用した場合でも鋳巣のない健全
な真空チャンバAを鋳造することはできないが、本発明
ではこれを可能にしようとすることである。
The sand mold B is composed of two sand molds, an upper mold 1 and a lower mold 2, and a vacuum chamber A to be cast at an intermediate portion where the upper mold 1 and the lower mold 2 are combined.
The vacuum chamber shape space portion 3 corresponding to the shape of is formed. In this example, the vacuum chamber A has an internal dimension of 400
mm square, depth 600 mm, wall thickness a1 and bottom wall a1
Both 2 have a container shape of 60 mm, but particularly when the wall thickness of the bottom wall a1 and the side wall a2 is 15 mm or more, a remarkable effect is exhibited. That is, when the thickness of the vacuum chamber A is 15 mm or more, a normal sand mold casting method using an Al alloy for general casting casts a sound vacuum chamber A with no cavities even when a chill is used. This is not possible, but the present invention seeks to enable this.

【0021】上記真空チャンバ形状空間部3は真空チャ
ンバAの開口部a3を下に向けた状態になっており、上
記上型1の真空チャンバ形状空間部3上方には、円柱状
の押し湯4が形成されている。さらに、鋳造の際にAl
溶湯を製品部である真空チャンバ形状空間部3及び押し
湯4へ供給するための湯口5が上型1に形成されてお
り、その湯口5下端は連通路6によって真空チャンバ形
状空間部3へ連通している。また、上記真空チャンバ形
状空間部3の下端及び真空チャンバAの内壁のうち側壁
2の内面に対応する箇所には、厚さ約20mmの鋳鉄製
の板からなる冷し金7が複数設置されている。上記押し
湯4は鋳造において最終凝固部となる部分で、押し湯4
の作用としては冷し金7近傍から押し湯4に向かって砂
型B内の溶湯に温度勾配を与えて指向性凝固を促進させ
るが、そのほかに鋳物製品部が凝固収縮する際に不足す
る溶湯を供給すること、さらには、製品部へ溶湯圧力ヘ
ッドをかけて加圧し鋳物を緻密にする作用なども持って
いる。
The vacuum chamber-shaped space 3 is in a state in which the opening a3 of the vacuum chamber A faces downward, and above the vacuum chamber-shaped space 3 of the upper mold 1, a cylindrical feeder 4 is provided. Are formed. In addition, when casting Al
The upper mold 1 is formed with a sprue 5 for supplying the molten metal to the vacuum chamber-shaped space 3 which is a product part and the riser 4, and the lower end of the spout 5 is connected to the vacuum chamber-shaped space 3 by a communication passage 6. is doing. In addition, a plurality of chills 7 made of a cast iron plate having a thickness of about 20 mm are installed at the lower end of the vacuum chamber-shaped space 3 and the inner wall of the vacuum chamber A corresponding to the inner surface of the side wall 2. There is. The above-mentioned riser 4 is a part which becomes a final solidification part in casting, and the riser 4
The effect of this is to give a temperature gradient to the molten metal in the sand mold B from the vicinity of the chill metal 7 toward the molten metal 4 to promote directional solidification, but in addition to this In addition to supplying, it also has the function of applying a molten metal pressure head to the product section to pressurize it and make the casting dense.

【0022】上述の如き砂型BにAl合金の溶湯を注湯
して真空チャンバAを鋳造するのであるが、Al合金の
溶湯としては、Niを0.5〜5.8wt%を含み残部
がAlのAl合金又はMnを0.5〜2.4wt%含み
残部がAlのAl合金の溶湯を用いる。前者のAl−N
i系合金において、Niの含有量を0.5〜5.8wt
%に設定したのは、Niの含有量が0.5wt%を下回
って純Alに近づいてくると、流動性が悪くなって鋳造
しにくくなったり、強度や硬さが急速に低下するなどの
弊害が発生するようになる一方、共晶点(5.8wt
%)を上回ると固液共存域の温度幅が急激に広くなって
鋳巣防止効果が期待できなくなるためである。
The molten aluminum alloy is poured into the sand mold B as described above to cast the vacuum chamber A. The molten aluminum alloy contains 0.5 to 5.8 wt% of Ni and the balance is Al. Al alloy or a melt of Al alloy containing 0.5 to 2.4 wt% of Mn and the balance of Al is used. The former Al-N
In the i-based alloy, the Ni content is 0.5 to 5.8 wt.
% Is set so that when the Ni content falls below 0.5 wt% and approaches to pure Al, the fluidity deteriorates and it becomes difficult to cast, and the strength and hardness decrease rapidly. While adverse effects will occur, the eutectic point (5.8 wt
%), The temperature range of the solid-liquid coexisting region becomes so wide that the effect of preventing porosity cannot be expected.

【0023】後者のAl−Mn系合金において、Mnの
含有量を0.5〜2.4wt%に設定したのは、Mnの
含有量が0.5wt%を下回って純Alに近づいてくる
と、上記Al−Ni系合金の場合と同様に、流動性が悪
くなって鋳造しにくくなったり、強度や硬さが急速に低
下するなどの弊害が発生するようになる一方、共晶点
(2.4wt%)を上回ると固液共存域の温度幅が急激
に広くなって鋳巣防止効果が期待できなくなるためであ
る。なお、Al−Mn系合金の共晶点以下における固液
共存域の幅は、図4の状態図から判るようにAl−Ni
系合金(図3の状態図参照)に比べて非常に狭く鋳巣防
止には有利である。ただし、このAl−Mn系合金はA
l−Ni系合金に比べて凝固収縮時の鋳造割れが発生し
やすく、無機自硬性砂型など鋳物凝固収縮に対する変形
抵抗が大きい鋳型を使う場合や、鋳物の肉厚が薄い場合
などには不利になることがあるので、いずれを用いるか
は目的や用途に応じて適宜選定すればよい。
In the latter Al-Mn-based alloy, the Mn content is set to 0.5 to 2.4 wt% when the Mn content is less than 0.5 wt% and approaches the pure Al. As in the case of the above Al-Ni alloy, the flowability deteriorates and it becomes difficult to cast, and the strength and hardness are rapidly decreased, while the eutectic point (2 This is because the temperature range of the solid-liquid coexistence region is rapidly widened and the effect of preventing blowholes cannot be expected if the content exceeds 0.4 wt%. The width of the solid-liquid coexistence region below the eutectic point of the Al-Mn alloy is Al-Ni, as can be seen from the state diagram of FIG.
It is much narrower than the system alloys (see the state diagram in FIG. 3) and is advantageous for preventing porosity. However, this Al-Mn alloy is A
Compared to l-Ni alloys, casting cracks tend to occur during solidification shrinkage, which is disadvantageous when using a mold such as an inorganic self-hardening sand mold that has a large deformation resistance to solidification shrinkage of castings or when the wall thickness of castings is thin. Therefore, which one is used may be appropriately selected according to the purpose and application.

【0024】次に、実施例を示す。Next, examples will be shown.

【0025】第1実施例では、図2の真空チャンバAの
材料として、Niを4.0wt%含み残部がAlのAl
−Ni系合金を用いた。その成分表を表1に示す。な
お、この成分表には主成分であるNi以外に他の微量成
分が含まれているが、これは一般鋳造用合金における場
合と同様に、原料Alインゴットから、あるいは溶湯処
理材などから不純物として混入したものであり、本発明
の鋳巣防止効果に対して直接影響するものではない。ま
た、鋳造割れ防止や機械的性質改善などの目的でNa、
Ti、Mg等の元素を微量に添加する場合もあるが、こ
れも同様に本発明の鋳巣防止効果に対して直接影響する
ものではない。
In the first embodiment, as the material of the vacuum chamber A of FIG. 2, Al containing 4.0 wt% of Ni and the balance of Al is used.
-Ni-based alloy was used. The composition table is shown in Table 1. It should be noted that this component table contains other trace components in addition to Ni as the main component. However, this is similar to the case of the general casting alloy, but this is an impurity from the raw material Al ingot or from the molten metal treatment material. They are mixed and do not directly affect the blowhole preventing effect of the present invention. Also, for the purpose of preventing casting cracks and improving mechanical properties, Na,
In some cases, a trace amount of elements such as Ti and Mg may be added, but this also does not directly affect the blowhole prevention effect of the present invention.

【0026】[0026]

【表1】 [Table 1]

【0027】ここで、このAl−Ni系合金の合金状態
図は、図3のようになっている。この状態図から、第1
実施例のAl−4.0wt%Ni合金の場合、約650
℃以上では液体状態であり、温度が低下してくると約6
50℃から溶湯の凝固が開始し、その後、約640℃ま
では固体と液体が共存する固液共存域となって凝固が進
行していき、約640℃で凝固完了して全てが固体状態
となる。ガスに起因する鋳巣は、この固液共存域におい
て合金液体中に溶解していたガス分子が温度低下による
溶解度低下のために気体として外部に放出された時に発
生するもので、固液共存域は粥状の非常に粘度の高い状
態にあるため、そこに放出されたガスは外方へ移動しに
くくそのままトラップされて凝固し鋳物に空孔を形成し
て鋳巣となる。このことから、合金状態図の固液共存域
が広いほどガス発生の機会が増えて、ガスによる鋳巣発
生傾向が増大することになる。第1実施例のAl−Ni
系合金の場合と、鋳造用Al合金として最も一般的な基
本合金系であるAl−Si系合金の合金状態図(図5参
照)とを比較してみると、実用の合金成分量範囲(S
i:3〜18wt%)におけるAl−Si系合金の固液
共存域は、Al−Ni系合金の場合に比べてその温度幅
が全体的に広くガスによる鋳巣が発生しやすくなる傾向
にあることが判る。なお、Al−Si系合金の共晶点近
傍(Si:11.7wt%)では、その温度幅は狭くな
ってくるが、固液境界線の傾きが非常に大きく成分量変
化に敏感であるため、わずかにSi量が変動しても固液
温度域の温度幅が急激に増大する可能性がある。そのた
め、このような合金系で安定した鋳巣防止効果を得るこ
とは困難であり、ある程度の合金成分量のばらつきが不
可避である量産では現実的ではない。その他の代表的な
鋳造用アルミ合金系の場合として、図6にAl−Mg系
合金及び図7にAl−Cu系合金の合金状態図をそれぞ
れ示すが、いづれも実用の合金成分量範囲(Al−Mg
系合金ではMg:3〜6wt%、Al−Cu系合金では
Cu:2〜5wt%)では、上述のAl−Si系合金の
場合と同様に、固液共存域の温度幅が全体的に広くガス
による鋳巣が発生しやすくなる傾向にあることが判る。
Here, the alloy phase diagram of this Al--Ni alloy is as shown in FIG. From this state diagram,
In the case of the Al-4.0 wt% Ni alloy of the example, about 650
Above ℃, it is in a liquid state, and when the temperature drops, it will be about 6
Solidification of the molten metal starts at 50 ° C, and then solidification progresses to a solid-liquid coexistence region where solids and liquids coexist up to about 640 ° C. Become. The porosity caused by the gas is generated when the gas molecules dissolved in the alloy liquid in this solid-liquid coexistence region are released to the outside as a gas due to the decrease in solubility due to the temperature decrease. Since it is in a porridge-like state with a very high viscosity, the gas released there is difficult to move outward and is trapped as it is to solidify and form voids in the casting to form a porosity. From this fact, the wider the solid-liquid coexistence region in the alloy phase diagram, the more the chances of gas generation increase, and the tendency of the gas to generate cavities increases. Al-Ni of the first embodiment
A comparison between the case of a system alloy and the alloy phase diagram of an Al-Si system alloy (see FIG. 5), which is the most general basic alloy system as an Al alloy for casting (see FIG. 5), shows the range of practical alloy composition (S
In the solid-liquid coexistence region of the Al-Si alloy in (i: 3 to 18 wt%), the temperature range is generally wider than in the case of the Al-Ni alloy, and gas-induced cavities are likely to occur. I understand. In the vicinity of the eutectic point of the Al-Si alloy (Si: 11.7 wt%), the temperature width becomes narrower, but the solid-liquid boundary line has a very large inclination and is sensitive to changes in the component amounts. Even if the amount of Si slightly changes, the temperature range in the solid-liquid temperature range may sharply increase. Therefore, it is difficult to obtain a stable porosity preventive effect with such an alloy system, and it is not realistic in mass production in which a certain amount of variation in alloy component amount is unavoidable. As other typical aluminum alloys for casting, FIG. 6 shows alloy state diagrams of Al-Mg alloys and FIG. 7 shows Al-Cu alloys. -Mg
In the case of the Al-based alloy, Mg: 3 to 6 wt% and the Al-Cu based alloy, Cu: 2 to 5 wt%), the temperature range of the solid-liquid coexistence region is generally wide, as in the case of the Al-Si based alloy described above. It can be seen that gas blowouts tend to occur.

【0028】これらの一般鋳造用Al合金に対して第1
実施例のAl−Ni系合金では、図3の合金状態図にお
ける共晶点(5.8wt%)以下の範囲における固液共
存域の幅及び固液境界線の傾きは非常に小さいため、合
金成分量がばらついても常に安定した高い鋳巣防止効果
を得ることができる。
First for these general casting Al alloys
In the Al—Ni alloys of the examples, the width of the solid-liquid coexistence region and the inclination of the solid-liquid boundary line in the range of the eutectic point (5.8 wt%) or less in the alloy phase diagram of FIG. Even if the component amounts vary, it is possible to always obtain a stable and high effect of preventing blowholes.

【0029】つまり、第1実施例において、Niを4.
0wt%含み残部がAlのAl−Ni系合金を砂型Bの
真空チャンバ形状空間部3に注湯すると、溶湯は冷し金
7で熱を強制的に奪われて凝固速度を速めながら押し湯
4側に向かって凝固し(指向性凝固)、そのとき、凝固
界面に存在する固液共存域も上記押し湯4に向かって移
行し、固液共存域で発生したガスも凝固界面とともに押
し湯4に向かって移行し最終的に押し湯4に集まる。溶
湯は上記押し湯4で最終的に凝固し、その結果、押し湯
凝固部に鋳巣が集まり、製品部である真空チャンバAに
は鋳巣がほとんどなくなる。また原料であるAl−Ni
系合金の溶湯は固液共存域が狭くて鋳巣の原因となるガ
スが発生しにくいという特性とも相俟って、鋳巣防止効
果を確実に得ることができる。なお、押し湯凝固部及び
湯口凝固部は製品とならないため、真空チャンバAから
切除される。
That is, in the first embodiment, Ni was added to 4.
When an Al-Ni alloy containing 0 wt% and the balance being Al is poured into the vacuum chamber-shaped space portion 3 of the sand mold B, the molten metal is cooled and the heat is forcibly taken away by the metal 7 to accelerate the solidification rate and to push the molten metal 4 Solidification toward the side (directional solidification), and at that time, the solid-liquid coexistence region existing at the solidification interface also moves toward the above-mentioned riser 4, and the gas generated in the solid-liquid coexistence region also rises along with the solidification interface 4 And finally gathers in the hot water 4. The molten metal is finally solidified by the above-mentioned feeder 4, and as a result, cavities are gathered in the solidified portion of the feeder and the vacuum chamber A which is the product part has almost no cavities. In addition, the raw material Al-Ni
In combination with the characteristic that the solid-liquid coexisting region is narrow in the molten alloy and the gas that causes the porosity is less likely to be generated, the porosity prevention effect can be reliably obtained. Since the riser solidification part and the sprue solidification part do not become products, they are cut off from the vacuum chamber A.

【0030】第2実施例では、図2の真空チャンバAの
材料として、Mnを1.5wt%含み残部がAlのAl
−Mn系合金を用いた。その成分表を表2に示す。上記
第1実施例と同様に真空チャンバAを鋳造した。このA
l−Mn系合金の状態図を図4に示す。
In the second embodiment, as the material of the vacuum chamber A of FIG. 2, Al containing 1.5 wt% of Mn and the balance of Al is used.
A —Mn-based alloy was used. The composition table is shown in Table 2. The vacuum chamber A was cast in the same manner as in the first embodiment. This A
FIG. 4 shows a phase diagram of the 1-Mn-based alloy.

【0031】[0031]

【表2】 [Table 2]

【0032】これらの第1及び第2実施例で製作した真
空チャンバAにおける鋳巣防止効果を確認するため、製
作した真空チャンバAを全面機械加工した後、それぞれ
のチャンバ各部から幅50mm、長さ50mmの試片を
切り出し、試片表面を顕微鏡観察するとともにその外観
写真の画像解析を行い、表面に存在する鋳巣の発生状況
を数値化して測定した。さらに、この真空チャンバAの
真空性能を確認するため、観察後の試片から直径9m
m、長さ30mmのガス放出特性測定用の試片を削り出
して、ランズレー法により材料からの放出ガス量を測定
した。表3はそれらの調査結果の一部を示したもので、
比較のために、従来の鋳物用アルミ合金(JIS AC
4C材及びAC7A材)で鋳造した場合についても同様
に調査した結果を示し、さらに、従来の削り出し真空チ
ャンバ用の材料についての調査結果も示してある。表3
に示すように、第1及び第2実施例(Al−Ni系合
金、Al−Mn系合金)の鋳物材と従来鋳物材,
(AC4C、AC7A)とを比較した場合、第1及び第
2実施例のいづれの鋳物材も従来鋳物材,に比べて
鋳巣発生量、ガス放出量ともに非常に少なく、第1及び
第2実施例の鋳巣防止効果を確認することができた。ま
た、第1及び第2実施例と従来削り出し材の場合の性能
比較をすると、同等に近い性能を示していることが判
る。
In order to confirm the porosity prevention effect in the vacuum chamber A manufactured in these first and second embodiments, the manufactured vacuum chamber A was machined over its entire surface, and then each chamber had a width of 50 mm and a length of 50 mm. A test piece of 50 mm was cut out, the surface of the test piece was observed under a microscope, and an image of the appearance of the test piece was analyzed. Furthermore, in order to confirm the vacuum performance of this vacuum chamber A, the diameter of the specimen after observation was 9 m.
A sample for measuring gas emission characteristics having a length of m and a length of 30 mm was cut out and the amount of gas released from the material was measured by the Landsley method. Table 3 shows some of those survey results.
For comparison, conventional aluminum alloys for casting (JIS AC
The results of the same investigation are shown for the case of casting with 4C material and AC7A material), and also the investigation result of the material for the conventional shaving vacuum chamber is shown. Table 3
As shown in FIG. 1, casting materials of the first and second embodiments (Al-Ni alloys, Al-Mn alloys) and conventional casting materials,
When compared with (AC4C, AC7A), both of the casting materials of the first and second embodiments are much smaller in both the amount of generated porosity and the amount of gas released than the conventional casting material. It was possible to confirm the effect of preventing porosity in the example. In addition, comparing the performances of the first and second embodiments and the conventional machined material, it can be seen that the performances are almost equal.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【発明の効果】以上説明したように、請求項1に係る発
明によれば、Niを0.5〜5.8wt%を含み残部が
AlのAl合金又はMnを0.5〜2.4wt%含み残
部がAlのAl合金の溶湯を砂型に注湯して真空チャン
バを鋳造するので、固液共存域の幅を狭くして鋳巣のほ
とんどない健全な真空チャンバを安価に鋳造することが
できる。
As described above, according to the first aspect of the present invention, the Al alloy containing 0.5 to 5.8 wt% of Ni and the balance of Al or 0.5 to 2.4 wt% of Mn is used. Since the molten metal of the Al alloy containing the remaining balance is poured into the sand mold to cast the vacuum chamber, the width of the solid-liquid coexisting region can be narrowed and a sound vacuum chamber with almost no porosity can be cast at low cost. .

【0035】請求項2に係る発明によれば、底壁及び側
壁の肉厚が15mm以上の真空チャンバであっても、鋳
巣のほとんどない健全な真空チャンバとすることができ
る。
According to the second aspect of the present invention, even if the vacuum chamber has a bottom wall and a side wall with a wall thickness of 15 mm or more, a sound vacuum chamber with almost no porosity can be obtained.

【0036】請求項3に係る発明によれば、砂型内に配
置した冷し金と押し湯とで溶湯を指向性凝固させて鋳巣
欠陥のほとんどない健全な真空チャンバを確実に得るこ
とができる。
According to the third aspect of the present invention, it is possible to surely obtain a sound vacuum chamber having almost no porosity defects by directionally solidifying the molten metal with the chill metal and the molten metal placed in the sand mold. .

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態に係る砂型鋳造法に用い
た砂型の断面図である。
FIG. 1 is a sectional view of a sand mold used in a sand mold casting method according to an embodiment of the present invention.

【図2】真空チャンバの斜視図である。FIG. 2 is a perspective view of a vacuum chamber.

【図3】Al−Ni系合金の状態図である。FIG. 3 is a phase diagram of an Al—Ni based alloy.

【図4】Al−Mn系合金の状態図である。FIG. 4 is a phase diagram of an Al—Mn based alloy.

【図5】Al−Si系合金の状態図である。FIG. 5 is a phase diagram of an Al—Si alloy.

【図6】Al−Mg系合金の状態図である。FIG. 6 is a phase diagram of an Al—Mg based alloy.

【図7】Al−Cu系合金の状態図である。FIG. 7 is a phase diagram of an Al—Cu based alloy.

【符号の説明】[Explanation of symbols]

3 真空チャンバ形状空間部 4 押し湯 7 冷し金 A 真空チャンバ a1 底壁 a2 側壁 B 砂型 3 Vacuum chamber shape space 4 hot water 7 chilled money A vacuum chamber a1 bottom wall a2 side wall B sand mold

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 27/04 B22D 27/04 F // C22C 21/00 C22C 21/00 L N (72)発明者 正木 浩 広島県広島市安佐南区長束3丁目44番17− 8号 広島アルミニウム工業株式会社内 Fターム(参考) 4E093 KA10 PB01 PB15 UC10 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) B22D 27/04 B22D 27/04 F // C22C 21/00 C22C 21/00 L N (72) Inventor Hiroshi Masaki Hiroshima Prefecture Hiroshima City, Asanami-ku, Nagatsuka 3-44-17-8, Hiroshima Aluminum Industry Co., Ltd. F-term (reference) 4E093 KA10 PB01 PB15 UC10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Niを0.5〜5.8wt%を含み残部
がAlのAl合金又はMnを0.5〜2.4wt%含み
残部がAlのAl合金の溶湯を砂型に注湯して真空チャ
ンバを鋳造することを特徴とする真空チャンバの砂型鋳
造法。
1. A molten metal of an Al alloy containing 0.5 to 5.8 wt% of Ni and the balance of Al or 0.5 to 2.4 wt% of Mn and the balance of Al is poured into a sand mold. A sand casting method for a vacuum chamber, which comprises casting the vacuum chamber.
【請求項2】 請求項1記載の真空チャンバの砂型鋳造
法において、 真空チャンバは、底壁及び側壁の肉厚15mm以上の容
器形状であることを特徴とする真空チャンバの砂型鋳造
法。
2. The sand casting method for a vacuum chamber according to claim 1, wherein the vacuum chamber has a container shape having a wall thickness of 15 mm or more on the bottom wall and the side wall.
【請求項3】 請求項1又は2に記載の真空チャンバの
砂型鋳造法において、 砂型内の少なくとも真空チャンバ形状空間部の下端又は
真空チャンバの側壁に対応する箇所に冷し金を配置し、
かつ砂型上部に押し湯を配置していることを特徴とする
真空チャンバの砂型鋳造法。
3. The sand mold casting method for a vacuum chamber according to claim 1 or 2, wherein a chill is disposed at least at a lower end of the vacuum chamber shape space portion or a side wall of the vacuum chamber in the sand mold,
In addition, a sand casting method for a vacuum chamber, characterized in that hot water is placed above the sand casting.
JP2002125796A 2002-04-26 2002-04-26 Method for casting vacuum chamber into sand mold Pending JP2003311371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125796A JP2003311371A (en) 2002-04-26 2002-04-26 Method for casting vacuum chamber into sand mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125796A JP2003311371A (en) 2002-04-26 2002-04-26 Method for casting vacuum chamber into sand mold

Publications (1)

Publication Number Publication Date
JP2003311371A true JP2003311371A (en) 2003-11-05

Family

ID=29540417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125796A Pending JP2003311371A (en) 2002-04-26 2002-04-26 Method for casting vacuum chamber into sand mold

Country Status (1)

Country Link
JP (1) JP2003311371A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260624A (en) * 2006-03-29 2007-10-11 Tokyo Electron Ltd Vacuum vessel for use in vacuum apparatus, and method for manufacturing the same
KR100774844B1 (en) 2006-07-26 2007-11-08 현대중공업 주식회사 Manufacturing apparatus of steel casting cylinder cover for marine engine
CN102672111A (en) * 2012-04-28 2012-09-19 浙江坤博机械制造有限公司 Method for casting hydraulic oil cylinder of die-casting machine
CN103128252A (en) * 2012-07-27 2013-06-05 宁夏共享集团有限责任公司 Method of casting thick-wall casting through sand insulation cold iron
JP2014036964A (en) * 2012-08-10 2014-02-27 Tanida Gokin Kk Differential pressure casting method, casting thereby and aluminum alloy material used therefor
JP5458295B1 (en) * 2013-09-10 2014-04-02 有限会社ファンドリーテック・コンサルティング Casting method without using hot water
CN104043780A (en) * 2014-06-24 2014-09-17 南通华东油压科技有限公司 Vane pump casting mold and casting process thereof
CN104525857A (en) * 2014-12-15 2015-04-22 滁州金诺实业有限公司 Upper box structure for refrigerator inner liner mold on the basis of V-process casting
JP5758535B1 (en) * 2014-09-29 2015-08-05 株式会社日▲高▼合金 Manufacturing method of metal molded product and image
KR20170070538A (en) * 2015-12-14 2017-06-22 주식회사 씨에이치솔루션 Vacuum chamber casting apparatus, vacuum chamber manufacturing method and vacuum chamber manufactured by the method
CN108515145A (en) * 2018-04-13 2018-09-11 安徽合力股份有限公司合肥铸锻厂 A kind of technique based on Pressure casting semiaxis

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007260624A (en) * 2006-03-29 2007-10-11 Tokyo Electron Ltd Vacuum vessel for use in vacuum apparatus, and method for manufacturing the same
KR100774844B1 (en) 2006-07-26 2007-11-08 현대중공업 주식회사 Manufacturing apparatus of steel casting cylinder cover for marine engine
CN102672111B (en) * 2012-04-28 2014-07-09 浙江坤博机械制造有限公司 Method for casting hydraulic oil cylinder of die-casting machine
CN102672111A (en) * 2012-04-28 2012-09-19 浙江坤博机械制造有限公司 Method for casting hydraulic oil cylinder of die-casting machine
CN103128252A (en) * 2012-07-27 2013-06-05 宁夏共享集团有限责任公司 Method of casting thick-wall casting through sand insulation cold iron
JP2014036964A (en) * 2012-08-10 2014-02-27 Tanida Gokin Kk Differential pressure casting method, casting thereby and aluminum alloy material used therefor
JP5458295B1 (en) * 2013-09-10 2014-04-02 有限会社ファンドリーテック・コンサルティング Casting method without using hot water
CN104043780A (en) * 2014-06-24 2014-09-17 南通华东油压科技有限公司 Vane pump casting mold and casting process thereof
JP5758535B1 (en) * 2014-09-29 2015-08-05 株式会社日▲高▼合金 Manufacturing method of metal molded product and image
CN104525857A (en) * 2014-12-15 2015-04-22 滁州金诺实业有限公司 Upper box structure for refrigerator inner liner mold on the basis of V-process casting
CN104525857B (en) * 2014-12-15 2016-07-13 滁州金诺实业有限公司 Inner container of icebox mould box structure is cast based on V method
KR20170070538A (en) * 2015-12-14 2017-06-22 주식회사 씨에이치솔루션 Vacuum chamber casting apparatus, vacuum chamber manufacturing method and vacuum chamber manufactured by the method
CN108515145A (en) * 2018-04-13 2018-09-11 安徽合力股份有限公司合肥铸锻厂 A kind of technique based on Pressure casting semiaxis
CN108515145B (en) * 2018-04-13 2022-02-25 安徽合力股份有限公司合肥铸锻厂 Process based on static pressure casting half shaft

Similar Documents

Publication Publication Date Title
Chung et al. A study on semisolid processing of A356 aluminum alloy through vacuum-assisted electromagnetic stirring
CN105525158A (en) Semi-solid die-casting aluminum alloy material and die-casting molding method using same
US5143564A (en) Low porosity, fine grain sized strontium-treated magnesium alloy castings
Di Sabatino et al. A review on the fluidity of Al based alloys
KR100801970B1 (en) Tool for producing cast components, method for producing said tool, and method for producing cast components
JP2003311371A (en) Method for casting vacuum chamber into sand mold
Birru et al. Effects of grain refinement and residual elements on hot tearing of A713 aluminium cast alloy
Han Ablation casting: solidification characteristics, microstructure formation, and mechanical properties
IE920017A1 (en) Method for obtaining composite cast cylinder heads
JPH0732947B2 (en) Method for lost foam casting of aluminum alloy products under low pressure
Timelli et al. Effect of superheat and oxide inclusions on the fluidity of A356 alloy
BH et al. Development of a nucleation-accelerated-semisolid-slurry-making method and its application to rheo-diecasting of ADC10 alloy
Jiang et al. Novel technologies for the lost foam casting process
EP1344590B1 (en) Reduction casting method
US6554053B2 (en) Method of minimizing the size of primary silicon in Al-Si alloy
Uludağ et al. The effect of holding time and solidification rate on porosity of A356
US20050103461A1 (en) Process for generating a semi-solid slurry
JP3167854B2 (en) Pressure casting method and pressure casting apparatus for aluminum alloy
JP2008260048A (en) Casting method
Colak et al. Investigation and modelling of the effects of solidification time and grain refinement on the grain size of a sand-cast Al4Cu alloy
JPH10298723A (en) Manufacture of aluminum alloy die casting
JP2002035921A (en) Method for preventing coarse primary crystal silicon defect of aluminum alloy casting and method for manufacturing aluminum alloy casting
EP1346785A2 (en) Reduction casting method
Dugic et al. An investigation of the effect of five different inoculants on the metal expansion penetration in grey cast iron
KANLICA et al. The Effect of Grain Refiner and Mechanical Vibration on Feedability in Sand and Plaster Mold Casting of Etial 177 Aluminum Alloy