JP2014036964A - Differential pressure casting method, casting thereby and aluminum alloy material used therefor - Google Patents

Differential pressure casting method, casting thereby and aluminum alloy material used therefor Download PDF

Info

Publication number
JP2014036964A
JP2014036964A JP2012179056A JP2012179056A JP2014036964A JP 2014036964 A JP2014036964 A JP 2014036964A JP 2012179056 A JP2012179056 A JP 2012179056A JP 2012179056 A JP2012179056 A JP 2012179056A JP 2014036964 A JP2014036964 A JP 2014036964A
Authority
JP
Japan
Prior art keywords
differential pressure
pressure
molten metal
mass
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012179056A
Other languages
Japanese (ja)
Inventor
Koichi Komai
公一 駒井
Kaname Fujii
要 藤井
Hiroyo Taniuchi
大世 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANIDA GOKIN KK
Ishikawa Prefecture
Original Assignee
TANIDA GOKIN KK
Ishikawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANIDA GOKIN KK, Ishikawa Prefecture filed Critical TANIDA GOKIN KK
Priority to JP2012179056A priority Critical patent/JP2014036964A/en
Publication of JP2014036964A publication Critical patent/JP2014036964A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a differential pressure casting method for restraining a casting defect such as gas porosity caused by a composition of an aluminum alloy, by using the aluminum alloy for holding high alumite treatment performance for molten metal.SOLUTION: The molten metal is composed of the aluminum alloy including Si: 0.8-2.0 mass%, Mg: 0.3-0.45 mass%, Ti: 0.1-0.2 mass% and Fe: 0.1 mass% or less, and casting is executed by raising a holding container 3 for holding the molten metal and a storage container 5 for storing a casting mold S up to predetermined pressure P of atmospheric pressure or more, by using a differential pressure casting device. When coagulating the molten metal, differential pressure between the inside of the holding container 3 and the inside of the storage container 5 is set to predetermined differential pressure ΔPz, and the molten metal is coagulated while feeding the molten metal.

Description

本発明は、珪素(Si)を含有するアルミニウム(Al)合金を用いた差圧鋳造方法に係り、特に、例えば半導体製造装置に用いる真空チャンバ等の鋳造品に用いて好適な差圧鋳造方法に関する。   The present invention relates to a differential pressure casting method using an aluminum (Al) alloy containing silicon (Si), and more particularly to a differential pressure casting method suitable for use in a cast product such as a vacuum chamber used in a semiconductor manufacturing apparatus, for example. .

近時、軽量化のニーズから、Al及びAl合金からなる構造部材が広く利用されており、Al合金材は、加工が比較的容易なことや低コストなこと、金属汚染が極めて少ないという特徴から、半導体製造装置に使用される真空部品(例えば真空チャンバ)の材料として多く選択されている。   Recently, structural members made of Al and Al alloys are widely used due to the need for weight reduction. Al alloy materials are relatively easy to process, low in cost, and extremely low in metal contamination. Many materials are selected as materials for vacuum parts (for example, vacuum chambers) used in semiconductor manufacturing equipment.

従来、コストダウンのために真空部品を鋳物化することが検討されているが、鋳造において必要となる溶湯の流動性は、Siを多く含有させることによって高まることが知られている。一方で、真空部品の真空度の向上のためにアルマイト処理性を高める際には、含有Siが少ない方が有利であることが知られている。   Conventionally, it has been studied to cast a vacuum part for cost reduction, but it is known that the fluidity of the molten metal required in casting is enhanced by containing a large amount of Si. On the other hand, it is known that when the alumite processability is improved to improve the degree of vacuum of the vacuum part, it is advantageous that the content of Si is less.

このため、含有Siの少ないAl合金(Si含有量が1.2〜3.0%)を溶湯として用い、キャビティに該溶湯を充填する湯口を複数備える金型を用いて、保持炉に貯留される溶湯を加圧又は吸引する低圧鋳造法で前記複数の湯口から金型のキャビティに溶湯を充填し、アルマイト処理性を高めつつキャビティに不足なく溶湯を充填する鋳造方法が案出されている(特許文献1参照)。また、溶湯の流動性を高める作用と、アルマイト処理性を阻害する作用の両作用を示すSi含有量を最適化した結果、Si含有量が4〜6%の範囲内のアルミニウム合金を用いて鋳造される真空容器が案出されている(特許文献2参照)。   For this reason, Al alloy with low Si content (Si content is 1.2 to 3.0%) is used as the molten metal, and is stored in the holding furnace using a mold having a plurality of gates for filling the molten metal in the cavity. A casting method has been devised in which the molten metal is filled into the mold cavity from the plurality of sprues by a low pressure casting method in which the molten metal is pressurized or sucked, and the molten metal is filled into the cavity without deficiency while improving the alumite processability ( Patent Document 1). In addition, as a result of optimizing the Si content which shows both the effect of increasing the fluidity of the molten metal and the effect of inhibiting the alumite treatment property, casting is performed using an aluminum alloy having a Si content in the range of 4 to 6%. A vacuum vessel has been devised (see Patent Document 2).

特開2004−174517号公報JP 2004-174517 A 特開2007−260624号公報JP 2007-260624 A

しかしながら、上記特許文献1記載の鋳造方法は、含有させるSiを少量にしたことで鋳造品にガスポロシティや引け巣等の鋳造欠陥が発生しやすくなり、高い信頼性で高真空度を維持する必要のある真空部品に適用することは困難である。   However, in the casting method described in Patent Document 1, casting defects such as gas porosity and shrinkage cavities are likely to occur in the cast product by reducing the amount of Si contained, and it is necessary to maintain a high degree of vacuum with high reliability. It is difficult to apply to certain vacuum parts.

また、上記特許文献2記載の真空容器は、Si含有量が4%よりも少なくなると、鋳造欠陥が発生しやすくなり、又湯回り不良及び湯境等の欠陥が発生しないようにSiの下限値を4%と設定しているが、より高真空度でアルマイト処理性の高い真空チャンバが求められる昨今の産業的な要求を満たすためには、Si含有量が4%程度のアルマイト処理性では不足である。   In addition, the vacuum container described in Patent Document 2 has a Si lower limit so that casting defects are likely to occur when the Si content is less than 4%, and defects such as poor hot water and hot water boundaries do not occur. Is set at 4%, but in order to meet the recent industrial demands for vacuum chambers with higher vacuum and high anodizing ability, the anodizing ability with Si content of about 4% is insufficient. It is.

そこで、本発明は、Si含有量の少ないAl合金を用いつつ、その他マグネシウム(Mg),チタン(Ti),及び鉄(Fe)の含有量を適切に設定し、かつ溶湯を保持する保持容器及び鋳型が収納される収納容器に所定の圧力をかけることにより、アルミニウム合金の組成に起因する鋳造欠陥を抑制し、もって上述の課題を解決した特定組成からなるアルミニウム合金を用いた差圧鋳造方法を提供することを目的とする。   Therefore, the present invention uses an Al alloy with a low Si content, while appropriately setting the contents of other magnesium (Mg), titanium (Ti), and iron (Fe) and holding a molten metal, A differential pressure casting method using an aluminum alloy having a specific composition that suppresses casting defects caused by the composition of the aluminum alloy by applying a predetermined pressure to the storage container in which the mold is stored, thereby solving the above-described problems. The purpose is to provide.

本発明は、溶湯を保持する保持容器(3)と、該保持容器(3)の上方に配置され、鋳型(S)が収納される収納容器(5)と、前記保持容器(3)と前記鋳型(S)とを連通するストーク(6)と、を備えた差圧鋳造装置(1)を用いた差圧鋳造方法において、
前記溶湯が、Si:0.8〜2.0質量%、Mg:0.3〜0.45質量%、Ti:0.1〜0.2質量%、及びFe:0.1質量%以下を含有するアルミニウム合金からなり、
前記保持容器(3)と前記収納容器(5)とを、所定圧力(P)まで昇圧させる昇圧工程(S2)と、
前記保持容器(3)内と前記収納容器(5)内との差圧を第1の差圧(ΔPx)に設定し、前記ストーク(6)の上端位置に溶湯を上昇させる上昇工程(S3,S4)と、
前記保持容器(3)内と前記収納容器(5)内との差圧を第2の差圧(ΔPy)に設定し、前記鋳型(S)内に溶湯を充填させる充填工程(S5,S6)と、
前記保持容器(3)内と前記収納容器(5)内との差圧を第3の差圧(ΔPz)に設定し、前記鋳型(S)内の溶湯を凝固させる凝固工程(S7,S8)と、
前記保持容器(3)内と前記収納容器(5)内の圧力を、大気圧まで除圧させる除圧工程(S9)と、を備えてなる、
ことを特徴とする。
The present invention includes a holding container (3) for holding a molten metal, a storage container (5) disposed above the holding container (3) and storing a mold (S), the holding container (3), and the In the differential pressure casting method using the differential pressure casting apparatus (1) including the stalk (6) communicating with the mold (S),
The molten metal contains Si: 0.8 to 2.0 mass%, Mg: 0.3 to 0.45 mass%, Ti: 0.1 to 0.2 mass%, and Fe: 0.1 mass% or less. Made of aluminum alloy containing,
A pressurizing step (S2) for increasing the pressure of the holding container (3) and the storage container (5) to a predetermined pressure (P);
An ascending step (S3) for setting the differential pressure between the holding container (3) and the storage container (5) to a first differential pressure (ΔPx) and raising the molten metal to the upper end position of the stalk (6). S4)
A filling step (S5, S6) in which the pressure difference between the holding container (3) and the storage container (5) is set to a second differential pressure (ΔPy), and the mold (S) is filled with molten metal. When,
Solidification step (S7, S8) for setting the differential pressure between the holding container (3) and the storage container (5) to a third differential pressure (ΔPz) and solidifying the molten metal in the mold (S). When,
A depressurization step (S9) for depressurizing the pressure in the holding container (3) and the storage container (5) to atmospheric pressure,
It is characterized by that.

前述した差圧鋳造方法によって鋳造され、アルマイト処理が施された、
ことを特徴とする鋳造品にある。
Cast by the above-described differential pressure casting method and anodized,
It is in the casting characterized by this.

特に、前記鋳造品が、真空チャンバ(29)であると好適である。   In particular, the casting is preferably a vacuum chamber (29).

前記差圧鋳造方法に用いられるアルミニウム合金材は、Si:0.8〜2.0質量%、Mg:0.3〜0.45質量%、Ti:0.1〜0.2質量%、及びFe:0.1質量%以下を含有してなる。   The aluminum alloy material used for the differential pressure casting method is Si: 0.8 to 2.0 mass%, Mg: 0.3 to 0.45 mass%, Ti: 0.1 to 0.2 mass%, and Fe: 0.1 mass% or less is contained.

なお、上述カッコ内の符号は、図面と対照するものであるが、何ら本発明の構成を限定するものではない。   In addition, although the code | symbol in the said parenthesis contrasts with drawing, it does not limit the structure of this invention at all.

請求項1に係る本発明によると、溶湯のアルミニウム合金にSi:0.8〜2.0質量%、Mg:0.3〜0.45質量%、Ti:0.1〜0.2質量%、Fe:0.1質量%以下を含有させたので、Si含有量の多い従来のアルミニウム合金に比べ、非常に高いアルマイト処理性を保持しつつ、かつ微細なMgSiを析出することで、強度を向上することできる。また、溶湯を保持する保持容器と共に鋳型を収納する収納容器を加圧し、かつ凝固工程に押し湯をすることで、Si含有量が少ないことに起因するガスポロシティや引け巣等の鋳造欠陥を抑制して、仕上がりを良好にし、高い信頼度で高真空度を維持することができる。 According to the first aspect of the present invention, the aluminum alloy of the molten metal is Si: 0.8 to 2.0 mass%, Mg: 0.3 to 0.45 mass%, Ti: 0.1 to 0.2 mass%. , Fe: 0.1% by mass or less, compared with the conventional aluminum alloy having a large Si content, while maintaining a very high alumite processability, and by depositing fine Mg 2 Si, Strength can be improved. In addition, pressurizing the storage container that holds the mold together with the holding container that holds the molten metal and pushing the molten metal during the solidification process suppresses casting defects such as gas porosity and shrinkage cavities caused by low Si content. Thus, the finish can be improved and a high degree of vacuum can be maintained with high reliability.

請求項2に係る本発明によると、従来の鋳造品に比して、鋳造欠陥を抑制し、かつアルマイト処理性を向上することができるので、高真空度の鋳造品を製造することができる。   According to the second aspect of the present invention, casting defects can be suppressed and alumite processability can be improved as compared with conventional castings, and thus a casting with a high degree of vacuum can be produced.

請求項3に係る本発明によると、従来の真空チャンバに比して、鋳造欠陥を抑制し、かつアルマイト処理性を向上することができるので、高真空度の真空チャンバを製造することができる。   According to the third aspect of the present invention, casting defects can be suppressed and alumite processability can be improved as compared with the conventional vacuum chamber, so that a vacuum chamber with a high degree of vacuum can be manufactured.

請求項4に係る本発明によると、従来のアルミニウム合金材に比して、アルマイト処理性及び強度を向上することができる。   According to the fourth aspect of the present invention, it is possible to improve the alumite processability and strength as compared with the conventional aluminum alloy material.

本発明の実施の形態に係る差圧鋳造装置及びその配管構成を示す模式図。The schematic diagram which shows the differential pressure casting apparatus which concerns on embodiment of this invention, and its piping structure. 本発明に係る差圧鋳造方法により製造されて好適な真空チャンバを示す模式図。The schematic diagram which shows the suitable vacuum chamber manufactured by the differential pressure casting method which concerns on this invention. 本発明の実施の形態に係る鋳造方法を示すフローチャート。The flowchart which shows the casting method which concerns on embodiment of this invention. 本発明の実施の形態に係る保持容器及び収納容器の圧力変化を示す図。The figure which shows the pressure change of the holding | maintenance container and storage container which concern on embodiment of this invention.

以下、本発明の実施の形態について説明するが、まず、図1に沿って、差圧鋳造装置及びその配管構成について説明する。   Hereinafter, embodiments of the present invention will be described. First, a differential pressure casting apparatus and a piping configuration thereof will be described with reference to FIG.

差圧鋳造装置1は、溶湯を保持する保持容器3と、該保持容器3の上方に配置され、砂型Sが収納される収納容器5と、上記保持容器3と上記砂型Sとを連通する上下方向に延びるストーク6と、を備えている。上記溶湯は、後述する特定組成のアルミニウム合金からなり、例えば上記収納容器5に配置される不図示の距離センサによって、上記ストーク6の上端6aと、上記溶湯の液面Mとの距離h1が測定できるようになっている。   The differential pressure casting apparatus 1 includes a holding container 3 that holds a molten metal, a storage container 5 that is disposed above the holding container 3 and stores a sand mold S, and an upper and lower that communicates the holding container 3 and the sand mold S. Stalk 6 extending in the direction. The molten metal is made of an aluminum alloy having a specific composition to be described later. For example, a distance h1 between the upper end 6a of the stalk 6 and the liquid level M of the molten metal is measured by a distance sensor (not shown) disposed in the storage container 5. It can be done.

上記差圧鋳造装置1は、例えば空気、希ガス又は窒素ガス等の鋳造に適した高圧ガスを供給するガス供給装置7を備え、該ガス供給装置7には、加圧弁9を介して、上記収納容器5に接続される第1の給気管10及び上記保持容器3に接続される第2の給気管11が接続されている。そして、第1の給気管10には、第1の圧力調整手段として第1の圧力調整弁12と、第1の給気弁13とが配設され、上記第2の給気管11には、第2の圧力調整手段としての第2の圧力調整弁15と、第2の給気弁16とが配設されている。   The differential pressure casting apparatus 1 includes a gas supply device 7 that supplies a high-pressure gas suitable for casting, such as air, rare gas, or nitrogen gas. A first air supply pipe 10 connected to the storage container 5 and a second air supply pipe 11 connected to the holding container 3 are connected. The first air supply pipe 10 is provided with a first pressure adjusting valve 12 and a first air supply valve 13 as first pressure adjusting means, and the second air supply pipe 11 includes A second pressure adjusting valve 15 as a second pressure adjusting means and a second air supply valve 16 are provided.

また、第1の給気管10における第1の給気弁13の二次側と、第2の給気管11における第2の給気弁16の二次側とが、連結管17で連結されており、該連結管17には、連結弁19が配設されている。また、第1の給気管10における第1の給気弁13の二次側には、終端に第1の大気開放弁20が接続された第1の大気開放管21が接続されており、第2の給気管11における第2の給気弁16の二次側には、終端に第2の大気開放弁22が接続された第2の大気開放管23が接続されている。   The secondary side of the first air supply valve 13 in the first air supply pipe 10 and the secondary side of the second air supply valve 16 in the second air supply pipe 11 are connected by a connecting pipe 17. A connecting valve 19 is disposed in the connecting pipe 17. In addition, a first atmosphere release pipe 21 having a first atmosphere release valve 20 connected to the end is connected to the secondary side of the first supply valve 13 in the first supply pipe 10. A second atmosphere release pipe 23 having a second atmosphere release valve 22 connected to the end is connected to the secondary side of the second supply valve 16 in the second supply pipe 11.

上記差圧鋳造装置1は、収納容器5内の圧力を検知する第1の圧力センサ25と、保持容器3内の圧力を検知する第2の圧力センサ26と、を備えている。   The differential pressure casting apparatus 1 includes a first pressure sensor 25 that detects the pressure in the storage container 5 and a second pressure sensor 26 that detects the pressure in the holding container 3.

上記各弁9,12,13,15,16,19,20,22及び上記第1の圧力センサ25,第2の圧力センサ26は、制御装置27に接続されて、該制御装置27によって、上記収納容器5内の圧力P1及び上記保持容器3内の圧力P2を制御している。   The valves 9, 12, 13, 15, 16, 19, 20, 22 and the first pressure sensor 25 and the second pressure sensor 26 are connected to a control device 27, and the control device 27 performs the above operation. The pressure P1 in the storage container 5 and the pressure P2 in the holding container 3 are controlled.

次に、上記差圧鋳造装置1を用いた本実施の形態による差圧鋳造方法は、Si:0.8〜2.0質量%、Mg:0.3〜0.45質量%、Ti:0.1〜0.2質量%、及びFe:0.1質量%以下(その他微量な金属)を含有する特殊な組成からなるアルミニウム合金が用いられ、上記差圧鋳造装置1の前記砂型Sは、図2に示す真空部品である半導体製造装置用の真空チャンバ29の鋳型に適用される。   Next, the differential pressure casting method according to the present embodiment using the differential pressure casting apparatus 1 is as follows: Si: 0.8 to 2.0 mass%, Mg: 0.3 to 0.45 mass%, Ti: 0 0.1 to 0.2% by mass, and Fe: 0.1% by mass or less (other trace metals) is used, and an aluminum alloy having a special composition is used. The sand mold S of the differential pressure casting apparatus 1 is It is applied to a mold of a vacuum chamber 29 for a semiconductor manufacturing apparatus which is a vacuum component shown in FIG.

図3において、まず制御装置27は、上記不図示の距離センサによって測定した上記ストーク6の上端位置と上記溶湯の液面Mとの距離h1に基づいて、上記収納容器5内の圧力P1と保持容器3内の圧力P2との差圧であって、上記ストーク6の上端6aまで溶湯が上昇するのに必要な第1の差圧ΔPx、上記砂型Sに溶湯を充填する(溶湯の液面Mに対する砂型SのキャビティSc内の上端の高さh2に溶湯が上昇する)のに必要な第2の差圧ΔPy、及び第2の差圧ΔPyよりも大きい第3の差圧ΔPzを演算する(ステップS1)。   In FIG. 3, first, the control device 27 holds the pressure P <b> 1 in the storage container 5 based on the distance h <b> 1 between the upper end position of the stalk 6 measured by the distance sensor (not shown) and the liquid level M of the molten metal. The first differential pressure ΔPx required for the molten metal to rise up to the upper end 6a of the stalk 6 is filled with the molten metal in the sand mold S (the liquid level M of the molten metal). The second differential pressure ΔPy required for the molten metal to rise to the height h2 of the upper end in the cavity Sc of the sand mold S and the third differential pressure ΔPz larger than the second differential pressure ΔPy is calculated ( Step S1).

本実施の形態の差圧鋳造方法は、演算された第1,第2,第3の差圧ΔPx,ΔPy,ΔPzに基づいて行われ、収納容器5内の圧力P1及び保持容器3内の圧力P2を昇圧する昇圧工程と、上記ストーク6の上端位置に溶湯を上昇させる上昇工程と、上記砂型S内に溶湯を充填させる充填工程と、上記砂型S内の溶湯を凝固させる凝固工程と、収納容器5内の圧力P1及び保持容器3内の圧力P2を大気圧まで除圧させる除圧工程と、からなり、それらを工程毎に順に説明する。   The differential pressure casting method of the present embodiment is performed based on the calculated first, second, and third differential pressures ΔPx, ΔPy, ΔPz, and the pressure P1 in the storage container 5 and the pressure in the holding container 3 A step of boosting P2; a step of raising the molten metal at the upper end position of the stalk 6; a filling step of filling the molten metal in the sand mold S; a solidifying process of solidifying the molten metal in the sand mold S; And a pressure-removing process for depressurizing the pressure P1 in the container 5 and the pressure P2 in the holding container 3 to atmospheric pressure, and these will be described in order for each process.

(昇圧工程)
制御装置27は、収納容器5内の圧力P1及び保持容器3内の圧力P2が大気圧よりも高い所定圧力P(例えば、650kPa)にする制御を行う(ステップS2:図4中、昇圧期間T1)。
(Pressure increase process)
The control device 27 performs control to set the pressure P1 in the storage container 5 and the pressure P2 in the holding container 3 to a predetermined pressure P (for example, 650 kPa) higher than the atmospheric pressure (step S2: pressure increase period T1 in FIG. 4). ).

具体的に説明すると、制御装置27が、初めに開弁状態である第1及び第2の大気開放弁20,22を閉弁し、次いで、加圧弁9並びに第2の給気弁13,16を開弁すると共に、第1及び第2の圧力調整弁12,15を、収納容器5及び保持容器3の圧力が所定圧力Pとなるように調整する。このとき、連結弁19は、開弁状態であるので、上記収納容器5及び保持容器3は、同一の速度で所定圧力Pに昇圧する。   More specifically, the control device 27 first closes the first and second atmospheric release valves 20 and 22 that are open, and then the pressurization valve 9 and the second air supply valves 13 and 16. Is opened, and the first and second pressure regulating valves 12 and 15 are adjusted so that the pressures of the storage container 5 and the holding container 3 become a predetermined pressure P. At this time, since the connecting valve 19 is in an open state, the storage container 5 and the holding container 3 are increased to a predetermined pressure P at the same speed.

ところで、本実施の形態に用いられる溶湯は、Si:0.8質量%未満であると、固溶したSi及びMgの溶体化処理及び時効処理の際のMgSiの析出量が少なく、十分な強度が出ない。また、Si:2.0質量%以上の場合は、超高真空度を達成するために高いアルマイト処理性が求められる真空チャンバには、アルマイト処理性が不十分である。そのため、Si:0.8〜2.0質量%に設定される。 By the way, when the molten metal used in the present embodiment is Si: less than 0.8% by mass, the precipitation amount of Mg 2 Si during the solution treatment and aging treatment of the solid solution Si and Mg is small and sufficient. There is not enough strength. Further, when Si: 2.0% by mass or more, an alumite processability is insufficient for a vacuum chamber that requires a high anodize processability in order to achieve an ultrahigh vacuum. Therefore, Si: It sets to 0.8-2.0 mass%.

本昇圧工程によって、上記収納容器5及び保持容器3を大気圧よりも高い所定圧力Pに昇圧することで、Si含有量をSi:0.8〜2.0質量%と少量にしたことに起因して増加する溶湯凝固時の水素ガス気泡の生成を防止し、ガスポロシティ,ピンホール等の鋳造欠陥を抑制することができる。   Due to the pressurizing step, the storage container 5 and the holding container 3 are boosted to a predetermined pressure P higher than the atmospheric pressure, thereby reducing the Si content to a small amount of Si: 0.8 to 2.0 mass%. Thus, the generation of hydrogen gas bubbles during solidification of the molten metal can be prevented, and casting defects such as gas porosity and pinholes can be suppressed.

また、図2に示すように、本発明が適用される半導体製造装置用の真空チャンバ29は、上方が開放された箱型からなり、孔30を有する底面部31と、側面部32を有する。これら底面部31及び側面部32は、薄肉部を持たず、Si:0.8〜2.0質量%においても、砂型Sに充填するための流動性は確保される。なお、溶湯を加熱することでより良好な流動性を付与することができる。   As shown in FIG. 2, a vacuum chamber 29 for a semiconductor manufacturing apparatus to which the present invention is applied has a box shape with an open top, and includes a bottom surface portion 31 having a hole 30 and a side surface portion 32. These bottom surface portion 31 and side surface portion 32 do not have a thin-walled portion, and fluidity for filling the sand mold S is ensured even in Si: 0.8 to 2.0 mass%. In addition, better fluidity can be imparted by heating the molten metal.

(上昇工程)
上記制御装置27は、第1及び第2の圧力センサ25,26により収納容器5及び保持容器3の圧力P1,P2を検知し、各圧力P1,P2が所定圧力Pに達した場合、所定期間T2を経過させて圧力を落ち着かせた後、上記収納容器5内と上記保持容器3内との差圧が、ΔPxとなるように、各圧力P1,P2を設定する(ステップS3:図4中、上昇期間T3)。
(Rising process)
The control device 27 detects the pressures P1 and P2 of the storage container 5 and the holding container 3 by the first and second pressure sensors 25 and 26, and when each of the pressures P1 and P2 reaches a predetermined pressure P, a predetermined period of time is detected. After T2 has elapsed and the pressure has settled, the pressures P1 and P2 are set so that the differential pressure between the storage container 5 and the holding container 3 becomes ΔPx (step S3: in FIG. 4). , Rising period T3).

具体的に説明すると、制御装置27は、各圧力P1,P2が所定圧力Pに達した場合、連結弁19を閉弁し、第1の差圧ΔPxとなるように、上記保持容器3内の圧力P2を所定圧力Pよりも昇圧するよう、第2の圧力調整弁15を設定する。そして、このように第2の圧力調整弁15を調整することにより、上記保持容器3内の圧力P2は、徐々に昇圧し、上記収納容器5内と保持容器3内との差圧が、第1の差圧ΔPxとなる。このように差圧を第1の差圧ΔPxに設定することで、溶湯が砂型Sの寸前で減速又は一時停止し、溶湯が勢い良く砂型Sに注入されることはない。   More specifically, the control device 27 closes the connecting valve 19 when the pressures P1 and P2 reach the predetermined pressure P, so that the first differential pressure ΔPx is reached. The second pressure regulating valve 15 is set so that the pressure P2 is raised above the predetermined pressure P. Then, by adjusting the second pressure regulating valve 15 in this way, the pressure P2 in the holding container 3 is gradually increased, and the differential pressure between the storage container 5 and the holding container 3 becomes the first pressure. 1 differential pressure ΔPx. By setting the differential pressure to the first differential pressure ΔPx in this way, the molten metal is decelerated or temporarily stopped immediately before the sand mold S, and the molten metal is not injected into the sand mold S vigorously.

次に、制御装置27は、上記ストーク6の上端6aに溶湯が達したか否かを判断する(ステップS4)。具体的に説明すると、保持容器3内の圧力P2は、徐々に昇圧するので、保持容器3内の溶湯は、保持容器3内の圧力P2の上昇と共にストーク6を上昇する。そして、収納容器5内と保持容器3内との差圧が、第1の差圧ΔPxに達した場合は、ストーク6の上端6aに溶湯が達する。   Next, the control device 27 determines whether or not the molten metal has reached the upper end 6a of the stalk 6 (step S4). More specifically, since the pressure P2 in the holding container 3 gradually increases, the molten metal in the holding container 3 increases the stalk 6 as the pressure P2 in the holding container 3 increases. When the differential pressure between the storage container 5 and the holding container 3 reaches the first differential pressure ΔPx, the molten metal reaches the upper end 6 a of the stalk 6.

(充填工程)
制御装置27は、ストーク6の上端6aに溶湯が達した場合(ステップ4:Yes)、収納容器5内と保持容器3内との差圧が第2の差圧ΔPyとなるように設定し、砂型SのキャビティScに溶湯を充填する(ステップS5:図4中、充填期間T4)。
(Filling process)
When the molten metal reaches the upper end 6a of the stalk 6 (step 4: Yes), the control device 27 sets the differential pressure between the storage container 5 and the holding container 3 to be the second differential pressure ΔPy, The molten metal is filled into the cavity Sc of the sand mold S (step S5: filling period T4 in FIG. 4).

具体的に説明すると、制御装置27は、差圧が第2の差圧ΔPyとなるように、収納容器5内の圧力P1を所定圧力Pから減圧するよう、第1の圧力調整弁12を設定する。そして、このように第1の圧力調整弁12を設定することにより、収納容器5内の圧力P1は、徐々に減圧し、収納容器5内と保持容器3内との差圧が、第2の差圧ΔPyとなる。   More specifically, the control device 27 sets the first pressure regulating valve 12 so as to reduce the pressure P1 in the storage container 5 from the predetermined pressure P so that the differential pressure becomes the second differential pressure ΔPy. To do. Then, by setting the first pressure regulating valve 12 in this way, the pressure P1 in the storage container 5 is gradually reduced, and the differential pressure between the storage container 5 and the holding container 3 becomes the second pressure. It becomes the differential pressure ΔPy.

このように、直接第2の差圧ΔPyに設定するのではなく、予め第1の差圧ΔPxに設定してから、第2の差圧ΔPyに設定するようにしたので、砂型SのキャビティScに溶湯が勢いよく噴き上がるのを抑制することができ、砂型Sが損傷するのを抑制することができ、仕上がりの良好な鋳物を製作することができる。   Thus, instead of setting directly to the second differential pressure ΔPy, the first differential pressure ΔPx is set in advance and then set to the second differential pressure ΔPy. It is possible to suppress the molten metal from being ejected vigorously, to suppress the sand mold S from being damaged, and to produce a casting having a good finish.

一般に、流動長は、湯温が高いほど長くなり、かつ溶湯充填時間が長いほど、即ち充填速度が遅いほど、短くなるが、充填時間が所定時間(例えば10秒)以上においては、充填時間に影響されずに略々一定となる。また、Si含有量は、7.5質量%等のSi含有量が多い場合、流動長の長短に影響を及ぼすが、2.0質量%以下の低Si量では、いずれの充填時間にあっても、流動長に影響を及ぼすことがないことを流動長比較実験により確認した。したがって、上記第2の差圧ΔPyの設定により、充填期間T4をきめ細かく適正な値に設定し、Si:2.0%質量%以下のアルミニウム合金からなる溶湯では、スムースに砂型Sに充填され、特に薄肉部を持たない真空チャンバにおいては、十分な湯流れ性により正確に充填される。   In general, the flow length becomes longer as the hot water temperature is higher, and as the molten metal filling time is longer, that is, as the filling speed is slower, the flow length becomes shorter. However, when the filling time is longer than a predetermined time (for example, 10 seconds), It is almost constant without being affected. In addition, the Si content has an influence on the flow length when the Si content is high, such as 7.5% by mass. However, at a low Si content of 2.0% by mass or less, any filling time is required. In addition, it was confirmed by a flow length comparison experiment that the flow length was not affected. Therefore, by setting the second differential pressure ΔPy, the filling period T4 is set to a fine and appropriate value, and in a molten metal made of an aluminum alloy having Si: 2.0% by mass or less, the sand mold S is smoothly filled. In particular, in a vacuum chamber having no thin portion, it is accurately filled with sufficient hot water flow.

また、収納容器5内の圧力P1を減圧するようにしたので、砂型Sに溶湯を充填する際に、溶湯を押し出す側の保持容器3内の圧力P2が変動しないので、溶湯の流れがスムースであり、仕上がりの良好な鋳物を製作することができる。   Further, since the pressure P1 in the storage container 5 is reduced, when the molten metal is filled in the sand mold S, the pressure P2 in the holding container 3 on the side of pushing out the molten metal does not fluctuate, so that the flow of the molten metal is smooth. Yes, it is possible to produce castings with good finish.

次に、制御装置27は、砂型SのキャビティScに溶湯を充填するのが完了したか否かを判断する(ステップS6)。本実施の形態では、収納容器5内と保持容器3内との差圧が第2の差圧ΔPyとなってから充填に必要な時間が経過したか否かを判断する。   Next, the control device 27 determines whether or not the filling of the molten metal into the cavity Sc of the sand mold S is completed (step S6). In the present embodiment, it is determined whether or not the time required for filling has elapsed since the differential pressure between the storage container 5 and the holding container 3 becomes the second differential pressure ΔPy.

(凝固工程)
制御装置27は、砂型SのキャビティScに溶湯を充填するのが完了した場合(ステップS6:Yes)、収納容器5内と保持容器3内との差圧が第3の差圧ΔPzとなるように設定する(ステップS7:図4中、凝固期間T5,T6,T7)。具体的に説明すると、制御装置27は、差圧が第3の差圧ΔPzとなるように、まず、所定期間T5において収納容器5内の圧力P1を所定圧力Pに設定し、その後、所定期間T6において保持容器3内の圧力P2を昇圧するよう、各圧力調整弁12,15を設定する。
(Coagulation process)
When the controller 27 completes filling the cavity Sc of the sand mold S with the molten metal (step S6: Yes), the differential pressure between the storage container 5 and the holding container 3 becomes the third differential pressure ΔPz. (Step S7: Coagulation periods T5, T6, T7 in FIG. 4). More specifically, the control device 27 first sets the pressure P1 in the storage container 5 to the predetermined pressure P in the predetermined period T5 so that the differential pressure becomes the third differential pressure ΔPz, and then the predetermined period. The pressure regulating valves 12 and 15 are set so as to increase the pressure P2 in the holding container 3 at T6.

一般に、Si含有量を少量にすると、準液相範囲が狭くなり、引け等の鋳造欠陥が発生しやすくなるが、このように保持容器3内の圧力P2をきめ細かく適正な値に昇圧して砂型Sに通じる溶湯に追い打ちの圧力をかけることにより、押し湯効果が高まって鋳造欠陥が少なくなり、本実施の形態のように溶湯のSi含有量をSi:0.8〜2.0質量%に設定しても、仕上がりの良好な鋳物を製作することができる。これにより、凝固収縮による厚さ方向の凹みを生ずることがなく、鋳型形状が正確に転写され、適正な鋳造品、例えば真空チャンバが得られる。なお、鋳造品によっては、第3の差圧ΔPzによって砂型表面に溶湯が差し込み、鋳物表面が粗くなるのを防止するために、上記凝固工程における押し湯を行わない場合がある。この場合には、充填期間T4において第2の差圧ΔPyに設定した後、保持容器3内の圧力P2は維持した状態で収納容器5内の圧力P1を上記圧力P2まで昇圧し、収納容器5及び保持容器3内の圧力を大気圧まで除圧する(後述するステップS9参照)。   In general, when the Si content is small, the quasi-liquid phase range is narrowed and casting defects such as shrinkage are likely to occur. In this way, the pressure P2 in the holding container 3 is finely increased to an appropriate value to increase the sand mold. By applying a follow-up pressure to the molten metal leading to S, the molten metal effect is enhanced and casting defects are reduced, and the Si content of the molten metal is set to Si: 0.8 to 2.0 mass% as in the present embodiment. Even if it is set, it is possible to produce a casting with a good finish. Thereby, the mold shape is accurately transferred without causing a dent in the thickness direction due to solidification shrinkage, and an appropriate cast product, for example, a vacuum chamber is obtained. Depending on the cast product, there is a case where the molten metal is not inserted into the sand mold surface by the third differential pressure ΔPz and the casting surface is not roughened in order to prevent the cast surface from becoming rough. In this case, after setting to the second differential pressure ΔPy in the filling period T4, the pressure P1 in the storage container 5 is increased to the pressure P2 while the pressure P2 in the holding container 3 is maintained, and the storage container 5 And the pressure in the holding container 3 is depressurized to atmospheric pressure (see step S9 described later).

次に、制御装置27は、砂型S内の溶湯が凝固したか否かを判断する(ステップS8)。具体的に説明すると、制御装置27は、溶湯が凝固に必要な時間が経過したか否かを判断する。   Next, the control device 27 determines whether or not the molten metal in the sand mold S has solidified (step S8). More specifically, the control device 27 determines whether or not the time required for the molten metal to solidify has elapsed.

(除圧工程)
制御装置27は、砂型S内の溶湯が凝固したと判断した場合(ステップS8:Yes)、まず第1の圧力調整弁12を、収納容器5内の圧力P2が保持容器3内の圧力P1と同じになるように第1の圧力調整弁12を調整し、その後収納容器5及び保持容器3内の圧力を大気圧まで除圧する(ステップS9:図4中、除圧期間T8)。具体的に説明すると、加圧弁9並びに第1及び第2の給気弁13,16を閉弁し、その後、第1及び第2の大気開放弁20,22を開弁する。
(Decompression process)
When the control device 27 determines that the molten metal in the sand mold S has solidified (step S8: Yes), the control device 27 first sets the first pressure regulating valve 12 so that the pressure P2 in the storage container 5 is equal to the pressure P1 in the holding container 3. The first pressure regulating valve 12 is adjusted so as to be the same, and then the pressure in the storage container 5 and the holding container 3 is decompressed to atmospheric pressure (step S9: decompression period T8 in FIG. 4). More specifically, the pressurizing valve 9 and the first and second air supply valves 13 and 16 are closed, and then the first and second atmospheric release valves 20 and 22 are opened.

次に、本発明に適用されるアルミニウム合金のMg,Ti,Feの含有量について詳しく説明する。Mg含有量は、Mg:0.3〜0.45質量%の範囲内であり、Siとの混在でMgSiを析出させて強度を向上するために添加される。Mg:0.3質量%未満であると、MgSiの析出量が少なくなり、強度が損なわれる。Mg:0.45質量%以上であると、粒界にMgSiが偏析してしまい、逆に強度が出ない。Ti含有量は、Ti:0.1〜0.2質量%の範囲内であり、結晶粒の微細化のために添加される。すなわち、Tiの添加により析出するMgSiが微細化され、より強度が出ることとなる。Ti:0.1質量%未満であると結晶粒の微細化効果は小さく、0.2質量%以上であると、粗大なAl−Ti化合物を形成し、アルマイト皮膜の阻害要因となることがある。Fe含有量は、Fe:〜0.1質量%の範囲内であり、アルマイト皮膜の阻害要因であるため少ないほど望ましいが、精錬工程において少量含有してしまうものである。 Next, the contents of Mg, Ti, Fe in the aluminum alloy applied to the present invention will be described in detail. The Mg content is in the range of Mg: 0.3 to 0.45 mass%, and is added to improve the strength by precipitating Mg 2 Si in a mixture with Si. Mg: If it is less than 0.3% by mass, the amount of Mg 2 Si deposited decreases, and the strength is impaired. Mg: When it is 0.45 mass% or more, Mg 2 Si is segregated at the grain boundary, and conversely, strength does not appear. The Ti content is within a range of Ti: 0.1 to 0.2% by mass, and is added for refinement of crystal grains. That is, Mg 2 Si precipitated by the addition of Ti is refined, resulting in higher strength. When Ti is less than 0.1% by mass, the effect of refining crystal grains is small, and when it is 0.2% by mass or more, a coarse Al—Ti compound is formed, which may be an inhibiting factor for an alumite film. . Fe content is in the range of Fe: ˜0.1 mass%, and since it is an inhibitory factor for an alumite film, the smaller the content, the better. However, a small amount is contained in the refining process.

以上、本実施の形態によれば、Si含有量がSi:0.8〜2.0質量%と、少量のSiを含有させることにより、アルマイト処理性を高め超高真空度を達成するとともに、Mg:0.3〜0.45質量%、Ti:0.1〜0.2質量%をそれぞれ含有することにより、微細なMgSiを析出させて強度の向上を図っている。 As described above, according to the present embodiment, the Si content is Si: 0.8 to 2.0% by mass, and by containing a small amount of Si, the alumite processability is improved and an ultra-high vacuum is achieved. By containing Mg: 0.3 to 0.45 mass% and Ti: 0.1 to 0.2 mass%, fine Mg 2 Si is precipitated to improve the strength.

また、Si含有量を少量にしたことに起因するガスポロシティ,ピンホール等の鋳造欠陥、及び砂型Sにおける溶湯の凝固時に発生する引け巣等の鋳造欠陥を、大気圧以上の圧力下で鋳造を行い、凝固時に押し湯することにより抑制して、高精度で仕上がりの良い真空チャンバ又は他の鋳造品を製作することができる。   In addition, casting defects such as gas porosity and pinholes due to a small Si content and casting defects such as shrinkage cavities that occur when the molten metal in the sand mold S is solidified can be cast at a pressure higher than atmospheric pressure. It is possible to produce a vacuum chamber or other cast product with high accuracy and good finish by suppressing by pushing hot water during solidification.

なお、上記実施の形態では、真空チャンバの鋳造に基づいて本発明を説明したが、上記差圧鋳造方法は、鋳造品が真空チャンバに限定されるものではない。例えば真空装置に使用されて、真空チャンバの天板等がプラズマエッチング処理によって侵食されるのを防止するデポシールド、及び配管継手、フランジなどの真空部品でもよく、更に真空部品以外のものにも適用可能である。Si:0.8〜2.0質量%、Mg:0.3〜0.45質量%、Ti:0.1〜0.2質量%、及びFe:0.1質量%以下の範囲内で含有するアルミニウム合金を、精錬し、鋳塊(インゴット、アルミニウム合金材)としてもよく、これを溶湯として差圧鋳造による鋳造品、特にアルマイト処理される製品に適用すると好適である。   In the above embodiment, the present invention has been described based on the casting of the vacuum chamber. However, in the differential pressure casting method, the cast product is not limited to the vacuum chamber. For example, a vacuum shield such as a deposition shield that is used in a vacuum apparatus to prevent the top plate of a vacuum chamber from being eroded by a plasma etching process, and a pipe joint, a flange, etc. may be used. Is possible. Si: 0.8 to 2.0% by mass, Mg: 0.3 to 0.45% by mass, Ti: 0.1 to 0.2% by mass, and Fe: 0.1% by mass or less The aluminum alloy to be refined may be refined to form an ingot (ingot, aluminum alloy material), and this is suitably used as a molten metal for castings by differential pressure casting, particularly for products to be anodized.

本実施の形態では、図3中、ステップS5において、収納容器5内と保持容器3内との差圧を第2の差圧ΔPyに設定する際に、収納容器5内の圧力を減圧するようにしたが、これに限るものではなく、保持容器3内の圧力P2を昇圧して差圧を第2の差圧ΔPyに設定してもよい。   In the present embodiment, in step S5 in FIG. 3, the pressure in the storage container 5 is reduced when the differential pressure between the storage container 5 and the holding container 3 is set to the second differential pressure ΔPy. However, the present invention is not limited to this, and the pressure P2 in the holding container 3 may be increased to set the differential pressure to the second differential pressure ΔPy.

また、本実施の形態では、鋳型として砂型を用いた場合について説明したが、これに限定するものではなく、鋳型として金型を用いて生産する場合であってもよい。   In the present embodiment, the case where a sand mold is used as a mold has been described. However, the present invention is not limited to this, and the mold may be used as a mold.

1 差圧鋳造装置
3 保持容器
5 収納容器
29 真空チャンバ
P 所定圧力
ΔPx 第1の差圧
ΔPy 第2の差圧
ΔPz 第3の差圧
S 砂型(鋳型)
S2 昇圧工程
S3,S4 上昇工程
S5,S6 充填工程
S7,S8 凝固工程
S9 除圧工程

DESCRIPTION OF SYMBOLS 1 Differential pressure casting apparatus 3 Holding container 5 Storage container 29 Vacuum chamber P Predetermined pressure (DELTA) Px 1st differential pressure (DELTA) Py 2nd differential pressure (DELTA) Pz 3rd differential pressure S Sand mold (mold)
S2 Boosting step S3, S4 Ascending step S5, S6 Filling step S7, S8 Solidification step S9 Depressurization step

Claims (4)

溶湯を保持する保持容器と、該保持容器の上方に配置され、鋳型が収納される収納容器と、前記保持容器と前記鋳型とを連通するストークと、を備えた差圧鋳造装置を用いた差圧鋳造方法において、
前記溶湯が、Si:0.8〜2.0質量%、Mg:0.3〜0.45質量%、Ti:0.1〜0.2質量%、及びFe:0.1質量%以下を含有するアルミニウム合金からなり、
前記保持容器と前記収納容器とを、所定圧力まで昇圧させる昇圧工程と、
前記保持容器内と前記収納容器内との差圧を第1の差圧に設定し、前記ストークの上端位置に溶湯を上昇させる上昇工程と、
前記保持容器内と前記収納容器内との差圧を第2の差圧に設定し、前記鋳型内に溶湯を充填させる充填工程と、
前記保持容器内と前記収納容器内との差圧を第3の差圧に設定し、前記鋳型内の溶湯を凝固させる凝固工程と、
前記保持容器内と前記収納容器内の圧力を、大気圧まで除圧させる除圧工程と、を備えてなる、
ことを特徴とする差圧鋳造方法。
A difference using a differential pressure casting apparatus comprising a holding container for holding a molten metal, a storage container disposed above the holding container and storing a mold, and a stalk for communicating the holding container and the mold. In the pressure casting method,
The molten metal contains Si: 0.8 to 2.0 mass%, Mg: 0.3 to 0.45 mass%, Ti: 0.1 to 0.2 mass%, and Fe: 0.1 mass% or less. Made of aluminum alloy containing,
A pressurizing step of boosting the holding container and the storage container to a predetermined pressure;
An ascending step of setting the differential pressure between the holding container and the storage container to a first differential pressure, and raising the molten metal to the upper end position of the stalk;
A filling step of setting a differential pressure between the inside of the holding container and the inside of the storage container to a second differential pressure, and filling the mold with molten metal;
A solidification step of setting a differential pressure between the holding container and the storage container to a third differential pressure, and solidifying the molten metal in the mold;
A depressurization step of depressurizing the pressure in the holding container and the storage container to atmospheric pressure,
A differential pressure casting method characterized by that.
前記請求項1記載の差圧鋳造方法によって鋳造され、アルマイト処理が施された、
ことを特徴とする鋳造品。
Cast by the differential pressure casting method according to claim 1 and anodized.
Cast product characterized by that.
前記鋳造品が、真空チャンバである、
請求項2記載の鋳造品。
The casting is a vacuum chamber;
The casting according to claim 2.
Si:0.8〜2.0質量%、Mg:0.3〜0.45質量%、Ti:0.1〜0.2質量%、及びFe:0.1質量%以下を含有してなる、
請求項1記載の差圧鋳造方法に用いられるアルミニウム合金材。

Si: 0.8 to 2.0% by mass, Mg: 0.3 to 0.45% by mass, Ti: 0.1 to 0.2% by mass, and Fe: 0.1% by mass or less ,
2. An aluminum alloy material used for the differential pressure casting method according to claim 1.

JP2012179056A 2012-08-10 2012-08-10 Differential pressure casting method, casting thereby and aluminum alloy material used therefor Pending JP2014036964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012179056A JP2014036964A (en) 2012-08-10 2012-08-10 Differential pressure casting method, casting thereby and aluminum alloy material used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012179056A JP2014036964A (en) 2012-08-10 2012-08-10 Differential pressure casting method, casting thereby and aluminum alloy material used therefor

Publications (1)

Publication Number Publication Date
JP2014036964A true JP2014036964A (en) 2014-02-27

Family

ID=50285488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012179056A Pending JP2014036964A (en) 2012-08-10 2012-08-10 Differential pressure casting method, casting thereby and aluminum alloy material used therefor

Country Status (1)

Country Link
JP (1) JP2014036964A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106563786A (en) * 2016-10-30 2017-04-19 山西汾西重工有限责任公司 Differential pressure pouring casting method of particle reinforced aluminum-based composite material
WO2019010513A1 (en) * 2017-07-13 2019-01-17 Fill Gesellschaft M.B.H. Casting device for pressure casting
CN109926565A (en) * 2018-03-01 2019-06-25 北京航大新材科技有限公司 A kind of counter-pressure casting machine
CN113634735A (en) * 2021-08-12 2021-11-12 盛旺汽车零部件(昆山)有限公司 Manufacturing process of aluminum alloy hub

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306537A (en) * 1988-06-01 1989-12-11 Kobe Steel Ltd Aluminum alloy for casting having excellent plastic workability
JPH06179067A (en) * 1992-03-26 1994-06-28 Hitachi Metals Ltd Differential pressure casting method and apparatus therefor
JP2003311371A (en) * 2002-04-26 2003-11-05 Hiroshima Aluminum Industry Co Ltd Method for casting vacuum chamber into sand mold
JP2008255372A (en) * 2007-03-30 2008-10-23 Kobe Steel Ltd Method for producing aluminum alloy thick plate, and aluminum alloy thick plate
JP2009255133A (en) * 2008-04-17 2009-11-05 Tanida Gokin Kk Differential pressure casting apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306537A (en) * 1988-06-01 1989-12-11 Kobe Steel Ltd Aluminum alloy for casting having excellent plastic workability
JPH06179067A (en) * 1992-03-26 1994-06-28 Hitachi Metals Ltd Differential pressure casting method and apparatus therefor
JP2003311371A (en) * 2002-04-26 2003-11-05 Hiroshima Aluminum Industry Co Ltd Method for casting vacuum chamber into sand mold
JP2008255372A (en) * 2007-03-30 2008-10-23 Kobe Steel Ltd Method for producing aluminum alloy thick plate, and aluminum alloy thick plate
JP2009255133A (en) * 2008-04-17 2009-11-05 Tanida Gokin Kk Differential pressure casting apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106563786A (en) * 2016-10-30 2017-04-19 山西汾西重工有限责任公司 Differential pressure pouring casting method of particle reinforced aluminum-based composite material
WO2019010513A1 (en) * 2017-07-13 2019-01-17 Fill Gesellschaft M.B.H. Casting device for pressure casting
CN111032249A (en) * 2017-07-13 2020-04-17 费尔有限公司 Casting device for casting under pressure
CN109926565A (en) * 2018-03-01 2019-06-25 北京航大新材科技有限公司 A kind of counter-pressure casting machine
CN113634735A (en) * 2021-08-12 2021-11-12 盛旺汽车零部件(昆山)有限公司 Manufacturing process of aluminum alloy hub

Similar Documents

Publication Publication Date Title
JP4150764B2 (en) Casting method
Fu et al. Low-pressure die casting of magnesium alloy AM50: response to process parameters
JP2014036964A (en) Differential pressure casting method, casting thereby and aluminum alloy material used therefor
JP2007075862A5 (en)
JP2791529B2 (en) Differential pressure casting method and differential pressure casting device
JP6439999B2 (en) Casting apparatus and casting method
Jiang et al. Investigation of microstructures and mechanical properties of A356 aluminum alloy produced by expendable pattern shell casting process with vacuum and low pressure
CN105598418B (en) A kind of Quick-pressurizing method after aluminium alloy automobile chassis casting metal-mold low-pressure casting shaping pressurize
AU2021100090A4 (en) ICS- Counter Gravity Casting: Intelligent Centrifugal Counter Gravity Low- cost Casting System
CN110421144B (en) Pressure-regulating precision casting method for high-temperature alloy floating wall tile under action of external electromagnetic field
CN108543932A (en) A kind of casting method of aluminium alloy castings
CN105583395B (en) A kind of aluminium alloy automobile chassis casting metal-mold low-pressure casting shaping crystallization boosting method
RU2488460C2 (en) Device relates to equipment for continuous or semi-continuous metal casting
US11654478B2 (en) Casting equipment
CN108097925B (en) A kind of aluminium alloy castings compound outfield intervention solidified structure control method
CN105834401B (en) One pipe multimode vacuum adjustable pressure casting new method of supercharger impeller and special purpose device
JPH06264157A (en) Method for casting aluminum alloy and aluminum alloy parts
CN109023122A (en) For manufacturing the method and ingot mould of super critical boiler pipe wrought alloy steel ingot
JPH1015656A (en) Pressing casting method and device thereof
JPH11192541A (en) Casting device for aluminum alloy
CN108746552A (en) A kind of casting method of thin-wall case aluminium alloy castings
WO2023238113A1 (en) An apparatus for lost foam casting of a metal using vacuum during solidification and an improved method for lost foam casting of a metal using the apparatus
Zoltán Porozitás mennyiség csökkentése lap alakú nyomásos öntvény esetén: Reduction of porosity in the case of plate like pressure die casting
JP4705651B2 (en) Low pressure casting apparatus and low pressure casting method
US20220250141A1 (en) METHOD FOR CASTING Ti-Al BASED ALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150721