JPH0596365A - Method for deciding shrinkage property of molten metal - Google Patents
Method for deciding shrinkage property of molten metalInfo
- Publication number
- JPH0596365A JPH0596365A JP3257935A JP25793591A JPH0596365A JP H0596365 A JPH0596365 A JP H0596365A JP 3257935 A JP3257935 A JP 3257935A JP 25793591 A JP25793591 A JP 25793591A JP H0596365 A JPH0596365 A JP H0596365A
- Authority
- JP
- Japan
- Prior art keywords
- solidification
- molten metal
- diagram
- casting
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、引け巣等の内部欠陥の
ない健全な鋳物を製造するための金属の溶湯性状の判定
方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining the properties of molten metal for producing a sound casting having no internal defects such as shrinkage cavities.
【0002】[0002]
【従来の技術】鋳型内に熱電対を設置して金属溶湯を注
湯後の温度測定を行い、その測定結果から溶湯に関する
情報を得る方法がいくつかある。例えば、図10に示す
ような円筒状鋳型22の中心に一本の熱電対23を設置
し、これに金属溶湯を注湯して注湯後の温度を測定装置
24に入力して測定し、その結果得られた冷却線図の初
晶温度などから鋳鉄のCE値(炭素当量:C%+1/3
Si%)や特定の元素に関する成分濃度を判定する方法
が実用に供されている。また、図11に示すような、鋳
型22の中心と表面に熱電対23を設置して金属溶湯を
注湯して温度測定を行い、その冷却線図の差を比較する
ことにより凝固形態を判定する方法がある。2. Description of the Related Art There are several methods of installing a thermocouple in a mold, measuring the temperature after pouring a molten metal, and obtaining information on the molten metal from the measurement result. For example, one thermocouple 23 is installed in the center of a cylindrical mold 22 as shown in FIG. 10, a molten metal is poured into this, and the temperature after pouring is input to a measuring device 24 for measurement, The CE value of the cast iron (carbon equivalent: C% + 1/3) was obtained from the primary crystal temperature of the cooling diagram obtained as a result.
A method for determining the component concentration of Si%) or a specific element has been put to practical use. Further, as shown in FIG. 11, a thermocouple 23 is installed at the center and the surface of the mold 22, the molten metal is poured, the temperature is measured, and the solidification morphology is determined by comparing the differences in the cooling diagrams. There is a way to do it.
【0003】[0003]
【発明が解決しようとする課題】しかし、前者はCE値
や特定の元素の成分濃度を判定することはできるが、金
属溶湯の凝固形態までは判定することはできない。However, the former can determine the CE value and the component concentration of a specific element, but cannot determine the solidified form of the molten metal.
【0004】一方、後者は鋳物表面と中心の冷却線図か
らそれぞれの共晶凝固時間をもとめ、表面と中心の共晶
凝固開始時間の差に対する中心での共晶凝固時間の比か
ら凝固形態を判定する方法であり、この方法では単に鋳
物表面部の2点間の比較であり、肉厚の差が凝固形態の
判定に考慮されておらず、溶湯成分について凝固形態を
比較する場合、同じ鋳型の同一箇所の温度測定結果を用
いなければならないという問題点がある。このような鋳
物表面での温度測定は、鋳型や鋳型表面に塗布した塗型
などの影響を受けるため正確でない。また、表面を含む
2点での温度測定では、2点の凝固開始時間の差と中心
部の共晶凝固時間しか考慮しておらず、この結果から凝
固形態を判定すると大きな誤差を生じるおそれがあり、
わずかに成分の異なる溶湯の凝固形態の比較をすること
はできない。即ち、その他にも凝固が鋳物内部でどのよ
うに進行して完了するか考慮し、凝固開始と凝固終了の
時間の差は、鋳造品の肉厚が変われば違う値になるの
で、肉厚の差と結び付けて判定の基準にすることが必要
である。On the other hand, in the latter case, the eutectic solidification times of the casting surface and the center are determined from the cooling diagrams, and the solidification morphology is determined from the ratio of the eutectic solidification time at the center to the difference in the eutectic solidification start time between the surface and the center. This is a judgment method, and this method is simply a comparison between two points on the surface of the casting, and the difference in wall thickness is not taken into consideration in the judgment of solidification morphology. There is a problem in that the temperature measurement result of the same place must be used. Such temperature measurement on the casting surface is not accurate because it is affected by the mold and the coating mold applied to the mold surface. Further, in the temperature measurement at two points including the surface, only the difference between the solidification start times at the two points and the eutectic solidification time at the central portion are taken into consideration, and a large error may occur if the solidification morphology is determined from this result. Yes,
It is not possible to compare the solidification morphologies of melts with slightly different components. That is, in addition to this, considering how solidification proceeds and completes inside the casting, the difference between the time of solidification start and the end of solidification will be different if the thickness of the cast product changes, so It is necessary to link it with the difference and use it as a criterion for judgment.
【0005】上記説明の通り、従来の方法は、殆どが単
にCE値や特定の成分濃度を調べるだけである。2点間
の温度測定結果から凝固形態を判定する方法があるが、
これにはまだ考慮していない因子があり、また2点間の
比較しかできないことから正確な判定ができない。As described above, most of the conventional methods simply check the CE value and the concentration of a specific component. There is a method to determine the solidification morphology from the temperature measurement results between two points,
There are some factors that have not been taken into consideration in this, and since only two points can be compared, an accurate judgment cannot be made.
【0006】本発明は、複数点の異なる肉厚内での金属
溶湯の凝固開始と凝固完了の時間より、その金属の凝固
形態を知り、引け巣等の内部欠陥を予測して健全な鋳物
を製造すための溶湯性状の判定方法を提供することを目
的とする。According to the present invention, the solidified morphology of the metal is known from the times of solidification and completion of solidification of the molten metal within a plurality of different wall thicknesses, and internal defects such as shrinkage cavities are predicted to produce a sound casting. It is an object of the present invention to provide a method for determining a molten metal property for manufacturing.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
本発明は、鋳型キャビテイ内複数点の異なる肉厚に温度
検知手段を設け、該鋳型内に金属溶湯を注湯し、前記温
度検知手段により金属溶湯の凝固開始と凝固完了の温度
および時間を測定し、前記複数点の異なる肉厚の凝固開
始線図の勾配の比、凝固終了線図の勾配の比および凝固
開始線図と凝固終了線図の勾配の差より金属溶湯の凝固
形態を判定することを特徴とする。In order to achieve the above object, the present invention provides a temperature detecting means at a plurality of different wall thicknesses in a mold cavity, and pours a molten metal into the mold to obtain the temperature detecting means. By measuring the temperature and time of solidification start and solidification completion of the molten metal, the ratio of the gradient of the solidification start diagram with different wall thicknesses of the multiple points, the ratio of the gradient of the solidification end diagram and the solidification start diagram and the completion of solidification It is characterized in that the solidification morphology of the molten metal is determined from the difference in the gradients of the diagrams.
【0008】本発明においては、鋳物表面の温度測定は
行わず、肉厚の異なる複数の鋳物内部について温度測定
を行う。判定因子は肉厚も含んでいるので、いかなる形
状の鋳物を用いても、複数の熱電対を設置した鋳型を用
いて金属溶湯の温度測定を行い、得られた冷却線図と肉
厚から凝固形態を知ることが可能である。In the present invention, the temperature of the casting surface is not measured, but the temperature is measured inside a plurality of castings having different wall thicknesses. Since the judgment factor also includes the wall thickness, no matter what shape the casting is used in, the temperature of the molten metal is measured using a mold equipped with multiple thermocouples, and solidification is performed from the obtained cooling diagram and wall thickness. It is possible to know the form.
【0009】以下、本発明を詳細に説明する。図1は、
鋳型5の肉厚の異なる部位に温度測定用熱電対を設け、
その熱電対より温度測定装置に連結した凝固温度−時間
測定の方法を示す平面図である。図1において、1〜3
は熱電対であり、4は押湯兼用の湯道、5は鋳型、6は
凝固温度測定装置である。図1に示した鋳造品の形状
は、鋳物の各部の肉厚が異なればどのような形状でもよ
い。例えば、図2のような階段状鋳物を用いることもで
きる。熱電対はすべて鋳物の中心に設置し、測定誤差の
大きい表面付近は測定しない。図1で、鋳型5に押湯兼
用の湯道4から金属溶湯を注湯し、熱電対1、2、3、
および温度測定装置6により金属溶湯の温度変化の測定
と記録を行う。The present invention will be described in detail below. Figure 1
A thermocouple for temperature measurement is provided in the mold 5 at different thicknesses,
It is a top view showing the method of solidification temperature-time measurement connected to the temperature measuring device from the thermocouple. In FIG. 1, 1-3
Is a thermocouple, 4 is a runner that also serves as a feeder, 5 is a mold, and 6 is a solidification temperature measuring device. The shape of the casting shown in FIG. 1 may be any shape as long as the thickness of each part of the casting is different. For example, a stepped casting as shown in FIG. 2 may be used. Install all thermocouples in the center of the casting, and do not measure near the surface where measurement error is large. In FIG. 1, molten metal is poured into the mold 5 from the runner 4 which also serves as a feeder, and the thermocouples 1, 2, 3,
The temperature change of the molten metal is measured and recorded by the temperature measuring device 6.
【0010】図4は測定した温度変化線図の一例であ
る。14は鋳造品のうちの薄肉部の温度変化線図であ
り、16は鋳造品のうちの厚肉部の温度変化線図であ
る。FIG. 4 is an example of a measured temperature change diagram. 14 is a temperature change diagram of a thin portion of the cast product, and 16 is a temperature change diagram of a thick portion of the cast product.
【0011】温度変化線図のうち、12は初晶温度、1
3は過冷最下点、15は凝固完了温度を示す。また、1
7は共晶凝固開始時間であり18〜20は、14から1
6厚部それぞれの共晶凝固完了時間である。この図4か
ら各肉厚点の初晶時間、共晶凝固開始時間と共晶凝固完
了時間を読みとり、横軸に時間、縦軸に肉厚をとって表
したのが図5である。この図5を凝固進行図と呼ぶこと
にする。In the temperature change diagram, 12 is the primary crystal temperature, 1
3 is the lowest point of supercooling, and 15 is the solidification completion temperature. Also, 1
7 is the eutectic solidification start time, and 18 to 20 is 14 to 1
It is the eutectic solidification completion time for each of the 6 thick parts. FIG. 5 shows the primary crystal time, the eutectic solidification start time, and the eutectic solidification completion time at each thickness point read from FIG. 4, with the horizontal axis representing time and the vertical axis representing wall thickness. This FIG. 5 is called a coagulation progress diagram.
【0012】図7は、図5の凝固進行図から、時間tに
おける鋳物内部の凝固の様子を表したものである。図7
の固液共存部の間隔が狭いほど、スキンフォ−メ−ショ
ン凝固(平滑凝固)に近く、凝固は鋳物薄肉部から厚肉
部にかけて順に進行し、引け巣のない健全な鋳物ができ
やすい。一方、固液共存部が広いほどマッシ−凝固(か
ゆ状凝固)に近い。つまり、図5における共晶凝固開始
時間と共晶凝固完了時間の線図が離れているほどマッシ
−凝固的である。このマッシー凝固の形態は、鋳物が方
向性凝固せず、同時に凝固が進行する傾向が強いので、
最終凝固部が鋳物内部に残って引け巣が発生しやすい。
また、共晶凝固開始時間の線図の勾配が大きいほど、鋳
物全体が同時に凝固する傾向が強いことを表しており、
共晶凝固完了時間の線図の勾配が大きいほど鋳物全体の
凝固が同時に完了する傾向が強いことを示す。つまり、
凝固開始の温度−時間線図と凝固終了の温度−時間線図
の勾配の差が大きいほどマッシ−凝固に近いといえる。FIG. 7 shows the solidification state inside the casting at the time t from the solidification progress diagram of FIG. Figure 7
The closer the solid-liquid coexisting portion is, the closer it is to the skin formation solidification (smooth solidification), and the solidification progresses sequentially from the thin-walled portion to the thick-walled portion of the casting, and a sound casting without shrinkage cavities is likely to be formed. On the other hand, the larger the solid-liquid coexisting part, the closer it is to Massy solidification (itchy solidification). That is, the more the diagram of the eutectic solidification start time and the eutectic solidification completion time in FIG. In this form of massy solidification, the casting does not directionally solidify, and at the same time the solidification tends to progress,
The final solidified portion remains inside the casting, and shrinkage cavities are likely to occur.
Also, the larger the gradient of the eutectic solidification start time diagram, the stronger the tendency of the entire casting to simultaneously solidify,
The larger the gradient of the eutectic solidification completion time diagram, the stronger the tendency that the solidification of the entire casting is completed at the same time. That is,
It can be said that the larger the difference in gradient between the temperature-time diagram at the start of solidification and the temperature-time diagram at the end of solidification, the closer it is to massy-solidification.
【0013】図6は鋳物の肉厚の異なる3点、a、b、
cでの共晶凝固開始時間と共晶凝固完了時間を測定し、
それら3点を縦軸として直線で結んだものである。ここ
で図6の共晶凝固開始時間の線図についての、(b〜
c)間の区間1における勾配に対する(a〜b)間の区
間2における勾配の比を数1で表す。また、共晶凝固完
了時間の線図についての、区間1における勾配に対する
区間2における勾配の比を数2で表す。また、薄肉部で
あるa点の共晶凝固開始時間から共晶凝固終了時間差の
Δt1と、厚肉部であるc点のの共晶凝固開始時間から
共晶凝固終了時間差のΔt3との比を数3で表す。FIG. 6 shows three points, a, b, and
The eutectic solidification start time and the eutectic solidification completion time in c were measured,
These three points are connected by a straight line with the vertical axis. Here, regarding the diagram of the eutectic solidification start time of FIG.
The ratio of the gradient in the section 2 between (a and b) to the gradient in the section 1 between c) is represented by the equation 1. Further, the ratio of the gradient in the section 2 to the gradient in the section 1 in the diagram of the completion time of the eutectic solidification is represented by Formula 2. In addition, the ratio of the eutectic solidification end time difference Δt1 from the eutectic solidification start time at point a, which is the thin portion, to the eutectic solidification end time difference Δt3 from the eutectic solidification start time at point c, which is the thick portion, It is expressed by Equation 3.
【0014】[0014]
【数1】α=(d2/Δs2)/(d1/Δs1) ここで、 d1:a,b点の肉厚の差 d2:b,c点の肉厚の差 Δs1:a,b点の共晶凝固開始時間の差 Δs2:b,c点の共晶凝固開始時間の差 である。## EQU1 ## α = (d2 / Δs2) / (d1 / Δs1) where, d1: difference in thickness between points a and b d2: difference in thickness between points b and c Δs1: difference between points a and b Difference in eutectic solidification start time Δs2: Difference in eutectic solidification start time at points b and c.
【0015】[0015]
【数2】β=(d2/Δe2)/(d1/Δe1) ここで、 d1:a,b点の肉厚の差 d2:b,c点の肉厚の差 Δe1:a,b点の共晶凝固終了時間の差 Δe2:b,c点の共晶凝固終了時間の差 である。[Formula 2] β = (d2 / Δe2) / (d1 / Δe1) where, d1: difference in thickness between points a and b d2: difference in thickness between points b and c Δe1: difference between points a and b Difference in end time of eutectic solidification Δe2: Difference in end time of eutectic solidification at points b and c.
【0016】[0016]
【数3】γ=Δt1/Δt3 ここで、 d1:a,b点の肉厚の差 d2:b,c点の肉厚の差 Δt1:a点での共晶凝固時間 Δt3:c点での共晶凝固時間 である。[Mathematical formula-see original document] γ = Δt1 / Δt3 where, d1: difference in wall thickness at points a and b d2: difference in wall thickness at points b and c Δt1: eutectic solidification time at point a Att3: at point c Eutectic solidification time.
【0017】数1、数2のパラメ−タ−(α、β)の値
が大きいほど、凝固開始温度と凝固終了温度の線図の勾
配の差が大きいことを表しており、よりマッシ−凝固に
近い。また、数3のパラメ−タ−(γ)が大きいほど、
肉厚による凝固時間の差が小さいことを表しており、よ
りマッシ−凝固に近い。The larger the values of the parameters (α, β) of the equations 1 and 2, the larger the difference in the gradient between the solidification start temperature and the solidification end temperature diagram, and the larger the massy solidification. Close to. Moreover, the larger the parameter (γ) of the equation 3 is,
This shows that the difference in the solidification time due to the wall thickness is small, and is closer to the massy solidification.
【0018】以上から、数1、数2および数3を掛けた
ものを、マッシ−凝固の程度を判定するパラメ−タ−と
し、マッシ−凝固度判定パラメ−タ−(P)と名付け
た。これを数4で表す。From the above, a product obtained by multiplying the equations 1, 2, and 3 was used as a parameter for determining the degree of Massy coagulation and named as Massy coagulation degree determination parameter (P). This is expressed by Equation 4.
【0019】[0019]
【数4】 P=α・β・γ =(Δt1・Δs1・Δe1・d22)/(Δt3・Δs2・Δe2・d12) 以上説明したように、本発明の鋳物の肉厚の異なる複数
の点での金属溶湯の共晶凝固開始および共晶凝固終了の
温度と時間を測定した結果を用いて、溶湯成分のわずか
な変化によるマッシ−凝固度の差が具体的な数値として
わかる。マッシ−凝固度が増すほど引け巣の発生する可
能性が高くなるので、引け巣の判定に用いることができ
る。[Formula 4] P = α · β · γ = (Δt1 · Δs1 · Δe1 · d22) / (Δt3 · Δs2 · Δe2 · d12) As described above, the castings of the present invention have different thicknesses. Using the results of measuring the temperature and time of the start of eutectic solidification and the end of eutectic solidification of the metal melt, the difference in the Massie-solidification degree due to slight changes in the melt components can be found as a specific numerical value. Since the possibility of shrinkage cavities increases as the Massy-coagulation degree increases, it can be used for the determination of shrinkage cavities.
【0020】[0020]
【実施例】以下本発明の一実施例を詳細に説明する。図
1は実施例に用いた段付円筒状鋳物と測定装置の平面
図、図2は階段状鋳物の正面図である。この図1および
図2に示す鋳型に、球状黒鉛鋳鉄の化学成分を変化させ
て鋳造し、鋳造後の共晶凝固開始と共晶凝固終了の時間
および測定点の肉厚の測定を行った。炭素(C)、珪素
(Si)などの主要元素は一定に保ち、引け巣の発生を
促進するといわれているモリブデン(Mo)、ビスマス
(Bi)を添加したり、引け巣の発生が減少するといわ
れる硫黄(S)の添加量を増やして実験を行った。得ら
れた結果からマッシ−凝固度判定パラメ−タ−の値を求
めた。球状黒鉛鋳鉄の標準の成分値を表1に示す。ま
た、成分を変化させて測定したマッシ−凝固度判定パラ
メ−タ−の値を表2に示す。EXAMPLE An example of the present invention will be described in detail below. FIG. 1 is a plan view of a stepped cylindrical casting used in an example and a measuring device, and FIG. 2 is a front view of a stepped casting. The spheroidal graphite cast iron was cast in the molds shown in FIGS. 1 and 2 by changing the chemical composition, and the eutectic solidification start time and the eutectic solidification end time after casting and the wall thickness at the measurement points were measured. Main elements such as carbon (C) and silicon (Si) are kept constant, molybdenum (Mo) and bismuth (Bi), which are said to promote shrinkage cavity generation, are added, and shrinkage cavity generation is reduced. The experiment was conducted by increasing the amount of sulfur (S) added. The value of the Massey-coagulation degree determination parameter was determined from the obtained results. Table 1 shows the standard component values of spheroidal graphite cast iron. Table 2 shows the values of the Massey-coagulation degree determination parameters measured by changing the components.
【0021】[0021]
【表1】 球状黒鉛鋳鉄の標準の化学成分(重量%) C Si Mn P Cr Cu Mg S Mo Bi 3.60 2.10 0.30 0.020 0.03 0.03 0.035 0.004 - - [Table 1] Standard chemical composition of spheroidal graphite cast iron (% by weight) C Si Mn P Cr Cu Mg Mg S Mo Bi 3.60 2.10 0.30 0.020 0.03 0.03 0.035 0.004--
【0022】[0022]
【表2】 変化させた 段付円筒状鋳物の 階段状鋳物の 化学成分 重量% パラメーター値 パラメーター値 標準成分 0.287 0.152 Mo 0.50 0.410 0.180 S 0.015 0.174 0.012 Bi 0.01 1.500 0.574[Table 2] Chemical composition weight% parameter value of stepped cast material with varied stepped cylindrical casting Parameter value Standard value 0.287 0.152 Mo 0.50 0.410 0.180 S 0.015 0.174 0.012 Bi 0.01 1.500 0.574
【0023】表2から段付円筒状鋳物、階段状鋳物とも
ビスマス(Bi)を増加させたときのパラメ−タ−の値
が特に大きいことがわかる。また硫黄(S)を増加した
ときのパラメ−タ−の値が一番小さい。It can be seen from Table 2 that the value of the parameter is particularly large when the bismuth (Bi) is increased in both the stepped cylindrical casting and the stepped casting. Moreover, the value of the parameter when the sulfur (S) is increased is the smallest.
【0024】このように、どのような元素が変化しても
引け巣発生の判定ができる。成分を少しずつ変化させた
ときのマッシ−凝固度パラメ−タ−と引け巣の発生状況
を調べることにより、パラメ−タ−の臨界値を決定する
ことができる。In this way, it is possible to determine the occurrence of shrinkage cavities regardless of what element changes. The critical value of the parameter can be determined by examining the massiness-coagulation degree parameter and the occurrence of shrinkage cavities when the components are changed little by little.
【0025】表2に示すように、同一の成分であっても
試験用鋳物の形状が異なればパラメ−タ−の値が異な
る。実際の鋳造工場でのマッシ−度の判定にはあらかじ
め引け巣発生の臨界値がわかっている特定の試験用鋳物
を用いる必要がある。例えば、図8に示すような試験用
鋳物の臨界値がP=0.7であるとする。そして、例え
ばAという鋳物は引け巣が発生し易い形状をしている
か、または製品の合格基準が厳しいものとする。一方、
Bという鋳物は引け巣の発生が少ない形状をしている
か、または合格基準が高くないものとする。このような
ときは、鋳物Aを鋳造するときの溶湯のパラメ−タ−値
を臨界値よりも十分低くし、例えばP=0.5以下とす
る。鋳物Bについてはパラメ−タ−値が臨界値に近い
か、あるいはそれを少し越えてもかまわないのでP=
0.7〜0.8以下とすればよい。As shown in Table 2, the values of the parameters differ if the shapes of the test castings differ even if they have the same composition. It is necessary to use a specific casting for which the critical value of shrinkage cavity generation is known in advance in order to judge the massiness degree in an actual foundry. For example, it is assumed that the critical value of the test casting as shown in FIG. 8 is P = 0.7. Then, for example, the casting "A" has a shape in which shrinkage cavities easily occur, or the acceptance criteria of the product is strict. on the other hand,
It is assumed that the casting B has a shape with few shrinkage cavities or has a high acceptance criterion. In such a case, the parameter value of the molten metal when casting the casting A is made sufficiently lower than the critical value, for example, P = 0.5 or less. For casting B, the parameter value is close to the critical value, or may exceed the critical value a little, so P =
It may be 0.7 to 0.8 or less.
【0026】図9は、図2に示す階段状鋳物を用いて硫
黄(S)の量を変えたときの球状黒鉛鋳鉄のマッシ−凝
固度判定パラメ−タ−と引け巣の発生状況を示したもの
である。硫黄(S)を変えた両者を比較すると、硫黄
(S)の少ない場合は引け巣が発生しており、マッシ−
凝固度判定パラメ−タ−(P)の値も大きい。一方、硫
黄(S)が多い場合は引け巣は発生しておらず、マッシ
−凝固度判定パラメ−タ−(P)の値も小さい。この試
験用鋳物のパラメ−タ−臨界値は、両者のパラメ−タ−
値の間にあることがわかる。本発明の金属溶湯の引け性
の判定方法のブロック図を図3に示す。FIG. 9 shows the massiness / solidification degree determining parameters and shrinkage cavities of spheroidal graphite cast iron when the amount of sulfur (S) was changed using the stepped casting shown in FIG. It is a thing. Comparing the two with different sulfur (S), when the amount of sulfur (S) is small, shrinkage cavities have occurred and the mass-
The value of the coagulation degree determination parameter (P) is also large. On the other hand, when the amount of sulfur (S) is large, shrinkage cavities do not occur, and the value of the Massey-coagulation degree determination parameter (P) is small. The parameter critical value of this test casting is the parameter of both.
You can see that it lies between the values. FIG. 3 shows a block diagram of the method for determining the shrinkability of the molten metal of the present invention.
【0027】[0027]
【発明の効果】以上説明の通り本発明は、複数点の異な
る肉厚につき、凝固開始と凝固完了の温度および時間を
測定し、肉厚の変化の対する凝固開始と凝固終了の温度
−時間線図の勾配の比や差より金属溶湯の凝固形態を求
めることができ、ある特定の溶湯成分についての引け性
を具体的な数値として判定することが可能になり、引け
巣のない健全な鋳物を製造するための溶湯管理と方案設
計に大いに有用である。As described above, according to the present invention, the temperature and time of solidification start and solidification completion are measured for a plurality of different wall thicknesses, and the temperature-time line of solidification start and solidification end with respect to the change in wall thickness. It is possible to determine the solidification morphology of the molten metal from the ratio or difference of the gradients in the figure, and it becomes possible to determine the shrinkage of a certain molten metal component as a specific numerical value, and to obtain a sound casting without shrinkage cavities. It is very useful for molten metal management and plan design for manufacturing.
【図1】本発明の一実施例の段付円筒状鋳物と測定装置
を設けた平面図である。FIG. 1 is a plan view in which a stepped cylindrical casting according to an embodiment of the present invention and a measuring device are provided.
【図2】本発明の別の実施例の階段状鋳物の正面図であ
る。FIG. 2 is a front view of a stepped casting according to another embodiment of the present invention.
【図3】本発明の引け性の判定方法を用いた溶湯管理の
ブロック図である。FIG. 3 is a block diagram of molten metal management using the shrinkability determination method of the present invention.
【図4】測定した温度変化線図の一例である。FIG. 4 is an example of a measured temperature change diagram.
【図5】横軸に時間、縦軸に肉厚をとって表した、凝固
進行図である。FIG. 5 is a coagulation progress chart in which the horizontal axis represents time and the vertical axis represents wall thickness.
【図6】鋳物の肉厚の異なる点での共晶凝固開始時間と
共晶凝固終了時間の線図である。FIG. 6 is a diagram of a eutectic solidification start time and a eutectic solidification end time at different points in the thickness of the casting.
【図7】図5の凝固進行図から、時間tにおける鋳物内
部の凝固の様子を示す図である。FIG. 7 is a diagram showing the solidification state in the casting at time t from the solidification progress diagram of FIG.
【図8】本発明を用いて、鋳造方案と、その引け性の判
定をマッシ−凝固度判定パラメーターとして示す図であ
る。FIG. 8 is a diagram showing a casting method and determination of shrinkability thereof as a Massy-solidification degree determination parameter using the present invention.
【図9】本発明を用いて、階段状鋳物につき硫黄(S)
の量を変えたときの引け巣の発生状況とマッシ−凝固度
判定パラメ−タ−値を変え、溶湯性状を改善した一実施
例を示す図である。FIG. 9: Sulfur (S) per step cast using the present invention.
It is a figure which shows one Example which improved the molten metal property by changing the generation | occurrence | production state of the shrinkage cavity and the parameter value of a Massey-coagulation degree judgment when changing the amount of.
【図10】従来の成分濃度や特定元素の濃度を判定する
試験装置を示す図である。FIG. 10 is a diagram showing a conventional test apparatus for determining the concentration of a component or the concentration of a specific element.
【図11】従来の鋳型の表面2点に熱電対を設けた凝固
形態判定の試験装置を示す図である。FIG. 11 is a diagram showing a conventional test apparatus for determining solidification morphology in which thermocouples are provided at two points on the surface of a mold.
1、2、3 熱電対 4 湯道 5 鋳型 6 温度測定装置 7 鋳物製品部 8 押し湯 9 湯道 10 湯口 11 鋳型 12 初晶温度 13 過冷最下点 14 薄肉部の温度線図 15 凝固完了温度 16 厚部の温度線図 17 共晶凝固開始時間 18〜20 各肉厚部の共晶凝固完了時間 21 引け巣 22 鋳型 23 熱電対 24 測定装置 1, 2 and 3 Thermocouple 4 Runway 5 Mold 6 Temperature measuring device 7 Casting product part 8 Hot water 9 Hot water route 10 Gate 9 Mold 12 Initial crystal temperature 13 Supercooling lowest point 14 Temperature diagram of thin part 15 Solidification completed Temperature 16 Temperature diagram of thick part 17 Eutectic solidification start time 18-20 Eutectic solidification completion time of each thick part 21 Shrinkage cavity 22 Mold 23 Thermocouple 24 Measuring device
Claims (1)
温度検知手段を設け、該鋳型内に金属溶湯を注湯し、前
記温度検知手段により金属溶湯の凝固開始と凝固完了の
温度および時間を測定し、前記複数点の異なる肉厚の凝
固開始線図の勾配の比、凝固終了線図の勾配の比および
凝固開始線図と凝固終了線図の勾配の差より金属溶湯の
凝固形態を判定することを特徴とする金属溶湯の引け性
の判定方法1. A temperature detecting means is provided at a plurality of different wall thicknesses in a mold cavity, molten metal is poured into the mold, and the temperature and time for solidification start and completion of solidification of the molten metal are measured by the temperature detecting means. Measure and determine the solidification morphology of the molten metal from the ratio of the gradients of the solidification start diagram with different thicknesses at the above-mentioned multiple points, the ratio of the gradients of the solidification end diagram and the difference of the gradients of the solidification start diagram and the solidification end diagram Method for determining shrinkage of molten metal characterized by
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3257935A JPH0596365A (en) | 1991-10-04 | 1991-10-04 | Method for deciding shrinkage property of molten metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3257935A JPH0596365A (en) | 1991-10-04 | 1991-10-04 | Method for deciding shrinkage property of molten metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0596365A true JPH0596365A (en) | 1993-04-20 |
Family
ID=17313247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3257935A Pending JPH0596365A (en) | 1991-10-04 | 1991-10-04 | Method for deciding shrinkage property of molten metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0596365A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006117837A1 (en) * | 2005-04-26 | 2006-11-09 | Kimura Chuzosho Co., Ltd. | Method for predicting and preventing shrinkage cavity of iron casting |
JP2010510510A (en) * | 2006-11-24 | 2010-04-02 | シンターキャスト・アーべー | New thermal analyzer |
JP2010158685A (en) * | 2009-01-06 | 2010-07-22 | Toyota Motor Corp | Method for verifying precision of solidification defect prediction analysis |
KR101354075B1 (en) * | 2011-12-05 | 2014-01-29 | 한국생산기술연구원 | Specimen Molds for Analysis of Casting Thickness-Dependent Solidification Characteristics |
CN114888247A (en) * | 2022-04-20 | 2022-08-12 | 河南农业大学 | Method for testing corresponding relation between temperature at temperature measuring hole in sand casting and actual temperature |
-
1991
- 1991-10-04 JP JP3257935A patent/JPH0596365A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006117837A1 (en) * | 2005-04-26 | 2006-11-09 | Kimura Chuzosho Co., Ltd. | Method for predicting and preventing shrinkage cavity of iron casting |
JPWO2006117837A1 (en) * | 2005-04-26 | 2008-12-18 | 株式会社木村鋳造所 | Method for predicting and preventing shrinkage cavity of cast iron castings |
JP4516987B2 (en) * | 2005-04-26 | 2010-08-04 | 株式会社木村鋳造所 | Method for predicting and preventing shrinkage cavity of cast iron castings |
JP2010510510A (en) * | 2006-11-24 | 2010-04-02 | シンターキャスト・アーべー | New thermal analyzer |
JP2010158685A (en) * | 2009-01-06 | 2010-07-22 | Toyota Motor Corp | Method for verifying precision of solidification defect prediction analysis |
KR101354075B1 (en) * | 2011-12-05 | 2014-01-29 | 한국생산기술연구원 | Specimen Molds for Analysis of Casting Thickness-Dependent Solidification Characteristics |
CN114888247A (en) * | 2022-04-20 | 2022-08-12 | 河南农业大学 | Method for testing corresponding relation between temperature at temperature measuring hole in sand casting and actual temperature |
CN114888247B (en) * | 2022-04-20 | 2023-01-06 | 河南农业大学 | Method for testing corresponding relation between temperature at temperature measuring hole in sand casting and actual temperature |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0192764B1 (en) | A method for producing cast-iron, and in particular cast-iron which contains vermicular graphite | |
US4358948A (en) | Method and apparatus for predicting metallographic structure | |
CN110851997B (en) | System and method for measuring and predicting thickness of real initial solidified blank shell in crystallizer | |
CN108171008A (en) | A kind of Forecasting Methodology in continuous casting billet dendritic growth direction | |
JPH08257741A (en) | Method for predicting casting defect utilizing numerical analysis | |
JPH0596365A (en) | Method for deciding shrinkage property of molten metal | |
JP2002505417A (en) | Apparatus and method for thermal analysis of molten metal | |
JP2001523764A (en) | Manufacturing process of CV graphite cast iron or spheroidal graphite cast iron and apparatus therefor | |
RU2153004C2 (en) | Method for making cast products in the form of one part | |
JP2003033864A (en) | Simulator for casting process and judging method therefor | |
CN105081283B (en) | A kind of apparatus and method detected for low pressure casting alloy critical solidification coefficient | |
JPH0596343A (en) | Method for designing casting plan for iron casting utilizing solidification analysis | |
Žbontar et al. | A modified test for determining the fluidity of ductile cast iron | |
JPH10296385A (en) | Production of spherical graphite cast iron casting | |
GB1600876A (en) | Method and apparatus for prediciting metallographic structure | |
JP2001121242A (en) | Optimizing means for casting plan utilizing cae | |
Bernat | Analysis of the Application of Gypsum Moulds for Casting Strength Samples of Aluminium Alloys | |
JPH05228580A (en) | Continuous casting method | |
JPH0780596A (en) | Formation of casting plan by utilizing solidification analysis | |
JP2637004B2 (en) | Evaluation method of powder for continuous casting of low carbon steel | |
CN113096743B (en) | Alloy hot cracking sensitivity prediction method based on characteristic parameters of solidification path | |
JP4265268B2 (en) | Solidification analysis method for castings | |
JP3525840B2 (en) | Slab measuring method in continuous casting | |
Fraś et al. | Eutectic cell and nodule count in grey and nodular cast irons | |
CA1115553A (en) | Method and apparatus for predicting metallographic structure |