JPH10296268A - Water purification device - Google Patents

Water purification device

Info

Publication number
JPH10296268A
JPH10296268A JP9110758A JP11075897A JPH10296268A JP H10296268 A JPH10296268 A JP H10296268A JP 9110758 A JP9110758 A JP 9110758A JP 11075897 A JP11075897 A JP 11075897A JP H10296268 A JPH10296268 A JP H10296268A
Authority
JP
Japan
Prior art keywords
chlorine
water
ammonium
chlorine compound
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9110758A
Other languages
Japanese (ja)
Other versions
JP3870479B2 (en
Inventor
Yuko Fujii
優子 藤井
Tomohide Matsumoto
朋秀 松本
Yu Kawai
祐 河合
Takemi Oketa
岳見 桶田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11075897A priority Critical patent/JP3870479B2/en
Publication of JPH10296268A publication Critical patent/JPH10296268A/en
Application granted granted Critical
Publication of JP3870479B2 publication Critical patent/JP3870479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep the sterilization effect by flocculating the foul of suspended solids and the like underwater by a metallic hydrate formed by a flocculating means, increasing particle diameters, filtration moving flocculating lumps, feeding ammonium and reacting ammonium with a chlorine compound formed by a chlorine compound feed means. SOLUTION: Aluminum ions are eluted underwater by electrolysis by using a flocculating means 13. Eluted aluminum ions are turned into aluminum hydroxide of metallic hydrate underwater immediately, and aluminum hydroxide is chemically reacted with suspended solids underwater to form flocculating lumps and increase the particle diameter of the suspended solids. The suspended lumps are filtrated by a filtration means 14 to purify bathtub water. Then ammonium is introduced by an ammonium feed means 17. Also residual chlorine is formed in the bathtub water by a chlorine compound feed means 18. Ammonium ions are reacted with chlorine by the arrangement to form chloramines provided with the sterilization effect and keep the sterilization effect for a long time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は浴槽内の入浴水を浄
化殺菌することで入浴水の長期使用を可能とする水浄化
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water purifier which purifies and sterilizes bath water in a bath tub so that the bath water can be used for a long time.

【0002】[0002]

【従来の技術】従来のこの種の水浄化装置は特開平8−
281280号公報に記載されているようなものがあっ
た。図7に従来の水浄化装置の構成図を示した。この装
置は、循環路1にポンプ2とヒーター3と内部に微生物
を繁殖させた浄化手段4を備え、浄化手段4の上流と下
流を結ぶバイパス路5を備え、このバイパス路5に残留
塩素を発生させる殺菌手段6を備えていた。ポンプ2の
働きにより、水7を循環路1からヒーター3を通して浄
化手段4及びバイパス路5の殺菌手段6に水を送り込
み、浄化手段5内に繁殖した微生物の働きにより水中の
懸濁態及び溶存態有機物質の除去を行っていた。また、
浄化手段4内に繁殖した微生物を死滅させないためにバ
イパス路5をもうけ、バイパス路5上に殺菌手段6をも
うけ、ここで残留塩素を発生させ、浄化手段4の下流側
で循環流路の水に混合することで、浄化手段4内に存在
する微生物を死滅させることなく水の浄化及び殺菌を行
っていた。そして、殺菌手段6で生成する残留塩素の水
中の濃度を0.5〜1.0ppmにしていた。
2. Description of the Related Art A conventional water purification apparatus of this kind is disclosed in
There is one as described in Japanese Patent No. 281280. FIG. 7 shows a configuration diagram of a conventional water purification device. This device includes a pump 2, a heater 3, and a purifying means 4 in which microorganisms are propagated in a circulation path 1, a bypass path 5 connecting an upstream and a downstream of the purifying means 4, and a residual chlorine in the bypass path 5. A sterilizing means 6 for generating the light was provided. By the operation of the pump 2, the water 7 is sent from the circulation path 1 through the heater 3 to the purification means 4 and the sterilization means 6 of the bypass path 5, and suspended and dissolved in the water by the action of microorganisms propagated in the purification means 5. Organic substances were removed. Also,
A bypass 5 is provided to prevent the microorganisms propagated in the purifying means 4 from being killed. A sterilizing means 6 is provided on the bypass 5 to generate residual chlorine. , Water was purified and sterilized without killing the microorganisms present in the purification means 4. Then, the concentration of residual chlorine generated in the sterilizing means 6 in water was set to 0.5 to 1.0 ppm.

【0003】また、ここで使用する殺菌手段6としては
特開昭56−31489号公報に記されるような電気分
解器が用いられており、さらに、殺菌用電気分解器とし
ては無隔膜タイプ(特開昭61−283391号公報に
記載された様なもの)がある。
As the sterilizing means 6 used here, an electrolyzer as disclosed in Japanese Patent Application Laid-Open No. 56-31489 is used, and a non-diaphragm type electrolyzer for sterilization is used. JP-A-61-283391).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図7に
示した従来の水浄化装置では以下の課題があった。
However, the conventional water purifier shown in FIG. 7 has the following problems.

【0005】つまり、浄化手段内で微生物を繁殖させる
ことで、水の浄化を行っているので、殺菌手段によって
発生させる残留塩素濃度を浄化手段内の微生物に影響の
ない0.5ppm〜1.0ppm以下の濃度にする必要があ
り、水中の細菌の殺菌能力に限りがあった。
That is, since water is purified by propagating microorganisms in the purifying means, the concentration of residual chlorine generated by the sterilizing means is reduced to 0.5 ppm to 1.0 ppm which does not affect the microorganisms in the purifying means. The following concentrations were required and the bactericidal capacity of bacteria in water was limited.

【0006】さらに、殺菌能力が不十分となる要因の一
つに、入浴水の状態によって要求塩素量が異なる点があ
げられる。つまり、残留塩素濃度を0.5ppm〜1.0p
pm以下の濃度にするには、入浴水の状態によって数ppm
〜数十ppmもの塩素が必要ととなり、殺菌に必要な塩素
量が異なっていた。さらに、塩素の持続時間も入浴水の
状態によって大きく異なり、残留塩素濃度を一定に保こ
とが困難であった。このため、入浴水の状態によっては
塩素によって殺菌された後に再度菌が増殖してしまう場
合があった。つまり、殺菌性能が入浴日数に大きく左右
され、十分な殺菌がなされていなかった。
[0006] Further, one of the causes of insufficient sterilization ability is that the required chlorine amount varies depending on the state of bathing water. That is, the residual chlorine concentration is 0.5 ppm to 1.0 p.
To make the concentration below pm, several ppm depending on the condition of bathing water
Chlorine as much as ~ several tens of ppm was required, and the amount of chlorine required for sterilization was different. Furthermore, the duration of chlorine greatly varies depending on the state of bathing water, and it has been difficult to keep the residual chlorine concentration constant. For this reason, depending on the condition of the bathing water, there is a case where the bacteria grow again after being sterilized by chlorine. That is, the sterilization performance greatly depends on the number of bathing days, and sufficient sterilization has not been performed.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために循環流路に水を循環する循環手段と、水の
懸濁物質をろ過するろ過手段と、電気分解により金属水
和物を生成することで水中の懸濁物質を凝集する凝集手
段と、水中にアンモニウムを投入するアンモニウム供給
手段と、水中に塩素または塩素化合物を供給する塩素化
合物供給手段とを備えている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a circulating means for circulating water in a circulating flow path, a filtering means for filtering suspended substances in water, and a metal hydration by electrolysis. A coagulation means for coagulating a suspended substance in water by generating a substance; an ammonium supply means for charging ammonium into water; and a chlorine compound supply means for supplying chlorine or a chlorine compound to water.

【0008】上記発明によれば、水中の懸濁物質等の汚
れを凝集手段で生成した金属水和物で凝集し、粒子径を
増大させ、この凝集塊を濾過手段でろ過除去すること
で、水の浄化を行う。さらに、アンモニウムを供給し、
塩素化合物供給手段で生成された塩素化合物と反応さ
せ、持続時間の長い殺菌効果のあるNH2Cl(以下クロ
ラミンという)を生成させる。この結果、殺菌持続時間
を長時間に渡って保持し、殺菌効果を持続する。また、
還元性物質による塩素の消費を抑制することができるの
で要求塩素量も入浴水の状態にかかわらずほぼ一定値に
抑えることができる。さらに、残留塩素は浴槽及び循環
流路などに存在するバイオフィルムの形成を抑制する。
[0008] According to the above invention, dirt such as suspended substances in water is aggregated by the metal hydrate generated by the aggregation means to increase the particle diameter, and the aggregates are removed by filtration by the filtration means. Perform water purification. In addition, supply ammonium,
It reacts with the chlorine compound generated by the chlorine compound supply means to produce NH 2 Cl (hereinafter referred to as chloramine) having a long-lasting bactericidal effect. As a result, the sterilization duration is maintained for a long time, and the sterilization effect is maintained. Also,
Since the consumption of chlorine by the reducing substance can be suppressed, the required chlorine amount can be suppressed to a substantially constant value regardless of the state of the bathing water. Furthermore, residual chlorine suppresses the formation of biofilms present in bathtubs and circulation channels.

【0009】[0009]

【発明の実施の形態】本発明は、循環流路に水を循環す
る循環手段と、水の懸濁物質をろ過するろ過手段と、電
気分解により金属水和物を生成することで水中の懸濁物
質を凝集する凝集手段と、水中にアンモニウムを投入す
るアンモニウム供給手段と、水中に塩素または塩素化合
物を供給する塩素化合物供給手段とを備えたものであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides a circulation means for circulating water in a circulation flow path, a filtration means for filtering suspended substances in water, and a suspension in water by generating metal hydrate by electrolysis. The apparatus includes an aggregating means for aggregating suspended substances, an ammonium supplying means for introducing ammonium into water, and a chlorine compound supplying means for supplying chlorine or a chlorine compound into water.

【0010】そして、循環手段で凝集手段に送り込まれ
た水は、電気分解で生成した金属水和物と混合され、水
中の懸濁物質が凝集し、粒子経が増大する。この粒子を
濾材でろ過除去すると同時に、アンモニウム供給手段に
よってアンモニウムイオンを投入し、この水を循環手段
によって塩素化合物供給手段に送り込むことで、塩素化
合物を水に溶解し、持続時間の長い残留塩素を生成させ
て循環流路、ろ過手段及び浴槽に供給する。この結果、
これらの壁面に繁殖した細菌を効果的に死滅させること
ができる。
[0010] The water sent to the aggregating means by the circulating means is mixed with the metal hydrate generated by the electrolysis, and the suspended matter in the water is agglomerated, and the particle size increases. At the same time that the particles are removed by filtration with a filter medium, ammonium ions are supplied by an ammonium supply means, and the water is sent to a chlorine compound supply means by a circulation means, thereby dissolving the chlorine compound in the water and removing residual chlorine having a long duration. It is produced and supplied to the circulation channel, filtration means and bathtub. As a result,
Bacteria that propagated on these walls can be effectively killed.

【0011】また、水中のアンモニウムイオン濃度を検
出するアンモニウム検出手段を設け、アンモニウムイオ
ン濃度が1ppm未満の場合には、アンモニウム供給手段
によって、水中に1ppm以上供給するよう制御する制御
手段を備えている。
An ammonium detecting means for detecting the concentration of ammonium ions in the water is provided, and a control means for controlling the supply of 1 ppm or more into the water by the ammonium supplying means when the ammonium ion concentration is less than 1 ppm. .

【0012】そして、アンモニウムイオンが1ppm以上
存在することで、FeやMn等の還元性物質による塩素
消費を防止するとともに、殺菌効果を有し、反応速度が
緩やかなクロラミンを生成して殺菌の持続時間を長時間
にわたって保持する。このため、塩素投入間隔を長くで
きるとともに、要求塩素量を一定にたもつことができる
ため、過剰な塩素を投入する必要がない。
The presence of 1 ppm or more of ammonium ions prevents the consumption of chlorine by reducing substances such as Fe and Mn, and has a bactericidal effect, and produces chloramine having a slow reaction rate to maintain sterilization. Hold time for a long time. For this reason, the chlorine supply interval can be lengthened and the required chlorine amount can be kept constant, so that there is no need to supply excessive chlorine.

【0013】また、塩素化合物供給手段は、水と化学反
応して次亜塩素酸及び次亜塩素酸イオンを生成する物質
あるいは溶液を供給する手段とした。
Further, the chlorine compound supply means is a means for supplying a substance or a solution which chemically reacts with water to produce hypochlorous acid and hypochlorite ions.

【0014】そして、水と化学反応して次亜塩素酸及び
次亜塩素酸イオンを生成する溶液、例えば次亜塩素酸ナ
トリウム溶液などを塩素化合物供給手段によって供給す
るという簡単な構成で殺菌効果を得ることができる。
[0014] The sterilizing effect can be reduced by a simple structure in which a solution which chemically reacts with water to generate hypochlorous acid and hypochlorite ions, such as a sodium hypochlorite solution, is supplied by a chlorine compound supply means. Obtainable.

【0015】また、塩素化合物供給手段は、水を電気分
解し、水中の塩素イオンから残留塩素を生成可能な電気
分解手段とした。
The chlorine compound supply means is an electrolysis means capable of electrolyzing water and generating residual chlorine from chlorine ions in the water.

【0016】そして、水中の塩素イオンから電気分解に
より、残留塩素を生成するので塩素化合物供給手段への
塩素化合物の補給が必要なくなり、長期間メンテナンス
の手間がいらなくなる。この結果、塩素化合物の補給忘
れなどによる人為的な性能低下をなくすことができる。
Further, since residual chlorine is generated by electrolysis from chlorine ions in water, it is not necessary to supply the chlorine compound to the chlorine compound supply means, and maintenance work is not required for a long period of time. As a result, it is possible to eliminate an artificial decrease in performance caused by forgetting to supply the chlorine compound.

【0017】また、塩素化合物濃度を3ppm以上、望ま
しくは3ppm〜5ppmとした。そして、凝集・ろ過方式を
用いているため塩素の濃度を抑制する因子がなく、殺菌
に必要な3ppm以上の塩素化合物を供給することが可能
となる。さらに人体への影響や塩素臭の発生を考慮した
場合、3ppm〜5ppmの濃度範囲で殺菌効果を得ることが
できる。
Further, the chlorine compound concentration is set to 3 ppm or more, preferably 3 ppm to 5 ppm. Since the coagulation / filtration method is used, there is no factor for suppressing the concentration of chlorine, and it is possible to supply a chlorine compound of 3 ppm or more necessary for sterilization. Further, in consideration of the effect on the human body and the generation of chlorine odor, a bactericidal effect can be obtained in a concentration range of 3 ppm to 5 ppm.

【0018】また、塩素化合物供給手段から得られる塩
素化合物を入浴時間後に投入するよう制御する塩素供給
制御手段を備えたものである。
Further, the apparatus is provided with a chlorine supply control means for controlling the chlorine compound obtained from the chlorine compound supply means to be supplied after the bathing time.

【0019】そして、入浴後に塩素を投入することで、
塩素とアンモニアが反応して生成されたクロラミンが殺
菌効果を長時間持続し、翌日の入浴時間までに入浴水中
の菌を100CFU/ml未満に抑制する。さらにクロラ
ミンは反応が終了すると窒素となって揮発するため、翌
日の入浴水は塩素臭がなく、快適な入浴が可能となる。
Then, by adding chlorine after bathing,
Chloramine produced by the reaction of chlorine and ammonia keeps the bactericidal effect for a long time and suppresses bacteria in bathing water to less than 100 CFU / ml by bathing time the next day. Further, chloramine is converted into nitrogen and volatilized when the reaction is completed, so that the bathing water on the next day has no chlorine odor, and a comfortable bathing is possible.

【0020】また、塩素供給制御手段は塩素化合物を数
回投入し、1日の全投入量を3ppm以上、望ましくは3p
pm〜5ppmになるよう塩素化合物供給手段を制御する構
成とした。
Further, the chlorine supply control means supplies the chlorine compound several times, and adjusts the total supply amount per day to 3 ppm or more, preferably 3 ppm.
The chlorine compound supply means was controlled so as to be pm to 5 ppm.

【0021】そして、少量の塩素を複数回投入すること
で、各々投入時に塩素が即座に消費されるため余剰な塩
素が存在することなく、人体への影響を少なくできると
ともに塩素臭を低減できる。また、少量の塩素では持続
時間が短いという課題が生じるが複数回投入することに
よって、塩素殺菌の持続時間を長くすることができる。
By injecting a small amount of chlorine a plurality of times, chlorine is immediately consumed at the time of each injection, so that there is no excess chlorine, the influence on the human body can be reduced, and the chlorine odor can be reduced. In addition, although a problem arises in that the duration is short with a small amount of chlorine, the duration of chlorine sterilization can be lengthened by injecting a plurality of times.

【0022】また、塩素殺菌された水を臭いセンサで検
出しある一定値以上を示すと、加熱することによって塩
素を除去する構成とした。
Further, when chlorine-sterilized water is detected by an odor sensor and shows a certain value or more, chlorine is removed by heating.

【0023】そして、加熱することで過剰な塩素を揮発
させ、塩素を除去することにより塩素臭を抑制し人体へ
の影響も抑制できる。
By heating, excess chlorine is volatilized, and by removing the chlorine, the chlorine odor is suppressed and the influence on the human body can be suppressed.

【0024】以下、本発明の実施例について図面を用い
て説明する。 (実施例1)図1は本発明の実施例1の水浄化装置の構
成図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. (Embodiment 1) FIG. 1 is a configuration diagram of a water purification apparatus according to Embodiment 1 of the present invention.

【0025】8は浴槽、9は吸い込み口10から吐き出
し口11に到る循環流路で、浴槽水を循環流路に循環す
る循環手段となるポンプ12が設けられている。13は
凝集手段で、金属水和物を水に溶出可能なアルミニウム
製の電極及びステンレス製の本体で構成され、電極を陽
極、本体を陰極として電気分解により水中にアルミニウ
ムイオンを溶出させる。そして溶出したアルミニウムイ
オンは水中で直ちに金属水和物の水酸化アルミニウムと
なり、この水酸化アルミニウムと水中の懸濁物質が化学
反応し、凝集塊を生成するため、懸濁物質の粒子径を増
大することができる。つまり、浴槽8内には入浴により
人体由来の角質などの垢や、水中に溶存する有機物質を
栄養として増殖した細菌が存在する。この粒子径は1μ
m前後から100μm程度であるので、生成した水酸化ア
ルミニウムと反応し、粒子径を増大させて、懸濁物質を
除去する濾材と濾材の流出を抑える濾床を内部に備えた
ろ過手段14により浴槽水を浄化する。そして、この浄
化された浴槽水のアンモニウムイオンをアンモニウム検
出手段15により検出し、制御手段16により、アンモ
ニウム検出手段15の検出結果が規定値以下の場合には
アンモニウムを供給するアンモニウム供給手段17を動
作させて、アンモニウムが規定値になるよう投入する。
さらに、塩素化合物供給手段18は水と反応して次亜塩
素酸を生じる次亜塩素酸ナトリウム溶液を備え、塩素供
給制御手段19によって投入量及び投入間隔を制御さ
れ、浴槽水中に残留塩素を生成する事ができる。また、
循環流路9の塩素化合物供給手段18下流方向には浴槽
8内の水の保温を行う加熱手段となるヒーター20を設
けている。
Reference numeral 8 denotes a bathtub, and 9 denotes a circulation flow path extending from the suction port 10 to the discharge port 11, and a pump 12 serving as a circulating means for circulating bath water in the circulation flow path is provided. Reference numeral 13 denotes an aggregating means, which is composed of an aluminum electrode capable of dissolving a metal hydrate in water and a stainless steel main body, and elutes aluminum ions into water by electrolysis using the electrode as an anode and the main body as a cathode. The eluted aluminum ions immediately become aluminum hydroxide, a metal hydrate, in water, and the aluminum hydroxide and the suspended substance in the water chemically react to form aggregates, thereby increasing the particle diameter of the suspended substance. be able to. In other words, in the bathtub 8 there are dirt such as keratin derived from the human body due to bathing, and bacteria that have grown as nutrients using organic substances dissolved in water. This particle size is 1μ
m and about 100 μm, so that it reacts with the produced aluminum hydroxide to increase the particle diameter, thereby removing the suspended solids. Purify water. Then, the ammonium ions in the purified bathtub water are detected by the ammonium detecting means 15, and the control means 16 operates the ammonium supplying means 17 for supplying ammonium when the detection result of the ammonium detecting means 15 is equal to or less than a specified value. Then, ammonium is supplied so as to reach a specified value.
Further, the chlorine compound supply means 18 is provided with a sodium hypochlorite solution which reacts with water to produce hypochlorous acid, and the amount and interval of the supply are controlled by the chlorine supply control means 19 to generate residual chlorine in the bath water. You can do it. Also,
Downstream of the chlorine compound supply means 18 in the circulation flow path 9, a heater 20 serving as a heating means for keeping the water in the bathtub 8 warm is provided.

【0026】なお、生成した水酸化アルミニウムによる
凝集を用いた浄化は、水中の水素イオン濃度に影響を受
け、中性領域(約PH6〜約PH8)で最適な条件である。
塩素化合物供給手段18によって水中に残留塩素を生成
した場合、PHは変化するが、残留塩素濃度が5ppm以下
であれば浄化性能に影響はない程度の変化に抑えること
ができる図2に上記の水浄化装置を用いた時の塩素化合
物供給手段18により供給された次亜塩素酸ナトリウム
と水との接触時間とその時の細菌数を示す。横軸は接触
時間(分)、縦軸は1ml中に存在する一般細菌数(CF
U)を対数で示した。(Log CFU/ml)また、塩
素供給制御手段19によって次亜塩素酸ナトリウムの投
入量を浴槽8の水170Lに対してそれぞれ1、3、5
ppmになるよう制御した。
The purification using coagulation with the produced aluminum hydroxide is affected by the hydrogen ion concentration in water, and is an optimum condition in a neutral region (about PH6 to about PH8).
When residual chlorine is generated in water by the chlorine compound supply means 18, the pH changes. However, if the residual chlorine concentration is 5 ppm or less, the change can be suppressed to such an extent that the purification performance is not affected. The contact time between the sodium hypochlorite supplied by the chlorine compound supply means 18 and water when the purifier is used and the number of bacteria at that time are shown. The horizontal axis is the contact time (minutes), and the vertical axis is the number of general bacteria (CF) present in 1 ml.
U) is shown in logarithm. (Log CFU / ml) Further, the supply amount of sodium hypochlorite was set to 1, 3, 5, and 5 with respect to 170 L of water in the bathtub 8 by the chlorine supply control means 19.
Controlled to be ppm.

【0027】この結果から、殺菌の指標としている10
0CFU/ml未満にするためには塩素が約3ppmで約3
0分の接触時間が必要であることが解る。
Based on the results, 10
In order to make it less than 0 CFU / ml, chlorine is about 3 ppm and about 3 ppm.
It turns out that a contact time of 0 minutes is necessary.

【0028】また、5ppmの塩素を投入すれば約15分
程度で100CFU/ml以下となり、高度の殺菌効果を
確認できた。しかし、1ppmの低濃度の塩素では15分
経過後からは若干の変化しかなく、接触時間を60分に
しても細菌数は300CFU/mlもあり殺菌効果に課題
がある事が判明した。つまり、従来の微生物を用いた水
浄化装置では残留塩素を0.5ppm〜1.0ppm以内に抑
える必要があったため、十分な殺菌が行われていなかっ
たが、本発明では塩素量を抑制する因子がないため、図
2に示した3ppm〜5ppmもしくはそれ以上の塩素を投入
することができることから十分な殺菌効果が得られ、殺
菌性能を向上させることができた。
Further, when 5 ppm of chlorine was introduced, the concentration was reduced to 100 CFU / ml or less in about 15 minutes, and a high sterilization effect was confirmed. However, with chlorine at a low concentration of 1 ppm, there was only a slight change after 15 minutes, and even if the contact time was 60 minutes, the number of bacteria was 300 CFU / ml, and it was found that there was a problem in the bactericidal effect. In other words, in the conventional water purification apparatus using microorganisms, it was necessary to suppress the residual chlorine to within 0.5 ppm to 1.0 ppm, and thus, sufficient sterilization was not performed. Since there is no chlorine, 3 ppm to 5 ppm or more of chlorine shown in FIG. 2 can be added, so that a sufficient bactericidal effect can be obtained and the bactericidal performance can be improved.

【0029】さらに、本発明においてはアンモニウム検
出手段15により検出した結果を制御手段16により規
定値以下である場合には、アンモニウム供給手段17に
よりアンモニウムイオンを供給する。これは図2に示し
たように殺菌効果が得られる有効塩素濃度を塩素化合物
供給手段18によって供給しても浴槽8内の水の状態に
よって、塩素要求量が異なるためである。
Further, in the present invention, when the result detected by the ammonium detecting means 15 is equal to or less than a specified value by the control means 16, ammonium ions are supplied by the ammonium supplying means 17. This is because the required amount of chlorine varies depending on the state of water in the bathtub 8 even when the effective chlorine concentration at which a sterilizing effect is obtained is supplied by the chlorine compound supply means 18 as shown in FIG.

【0030】その一例として図3及び図4に約4ppmの
塩素と水を接触させたときの残留塩素(遊離残留塩素・
全残留塩素)と接触時間の関係を示した。
As an example, FIG. 3 and FIG. 4 show residual chlorine (free residual chlorine and chlorine) when approximately 4 ppm of chlorine is brought into contact with water.
The relationship between the total residual chlorine) and the contact time was shown.

【0031】横軸には接触時間(分)を対数で表示し
た。縦軸には殺菌の指標となる残留塩素濃度を示した。
また図3と図4の違いは入浴日数にあり、図3は入浴2
日後の水、図4は入浴直後の水であり、入浴者及び入浴
日数、入浴時間は同じである。
On the horizontal axis, the contact time (minute) is displayed in logarithm. The vertical axis indicates the residual chlorine concentration which is an indicator of sterilization.
The difference between FIG. 3 and FIG. 4 lies in the number of bath days, and FIG.
4 shows water immediately after bathing, and FIG. 4 shows water immediately after bathing. The bather, the number of bathing days, and the bathing time are the same.

【0032】図3の結果から遊離残留塩素は1.2ppm
から時間経過とともに減少しているが全残留塩素濃度は
投入後、約2時間は4ppmを保持しており、その後は、
0.3ppm/hの割合で減少していく。この時の一般細菌
数については図2に示したように約15分で45000
/mlあったものが死滅し、さらに殺菌性能は持続しつづ
け18時間経過後も細菌数は検出限界以下であった。
From the results in FIG. 3, free residual chlorine was 1.2 ppm.
Although it has decreased with the passage of time, the total residual chlorine concentration has been maintained at 4 ppm for about 2 hours after being added.
It decreases at a rate of 0.3 ppm / h. At this time, the number of general bacteria was 45,000 in about 15 minutes as shown in FIG.
/ Ml was killed, and the bactericidal performance continued, and even after 18 hours, the bacterial count was below the detection limit.

【0033】しかし、図4に示した1日入浴後の場合に
おいては全残留塩素まで接触時間とともに急激に減少し
ており、塩素接触後の15分では一般細菌は死滅したも
のの、5時間経過後には約100CFU/ml、6時間後
には1200/ml、18時間後の翌日には2000CF
U/mlにまで増殖した。つまり、全残留塩素の減少にと
もない、殺菌の持続時間が減少する事が解る。このた
め、同じ塩素量を添加しても水の状態によって殺菌性能
は異なる結果となる。つまり24時間風呂などに応用す
る場合において殺菌は入浴日数及び入浴人数などによっ
て、投入する塩素量を変化させる必要があり、残留塩素
を一定に保ことが非常に困難であった。そのため、十分
な殺菌効果が得られないという課題が生じる。しかし、
この課題を解決するため本発明では、アンモニウムイオ
ンを供給した。
However, in the case of bathing for one day shown in FIG. 4, the total residual chlorine rapidly decreased with the contact time, and the general bacteria were killed 15 minutes after the chlorine contact, but after 5 hours, Is about 100 CFU / ml, 1200 hours after 6 hours, 2000 days after 18 hours
It grew to U / ml. In other words, it can be seen that the duration of sterilization decreases with a decrease in the total residual chlorine. Therefore, even if the same amount of chlorine is added, the sterilization performance varies depending on the state of water. In other words, when applied to a 24-hour bath or the like, sterilization requires changing the amount of chlorine to be supplied depending on the number of days of bathing and the number of bathers, and it is very difficult to keep the residual chlorine constant. Therefore, there arises a problem that a sufficient sterilizing effect cannot be obtained. But,
In order to solve this problem, the present invention supplies ammonium ions.

【0034】図5に同じ水にアンモニウムイオンを投入
し各々0.55(アンモニウムイオン投入せず)、1、
1.5、2、4ppmの濃度になるよう5種類のサンプル
を用意し、各々に約4ppmの次亜塩素酸ナトリウムを投
入し、約60分接触させた後の全残留塩素を示した。横
軸にアンモニウムイオン濃度(ppm)、縦軸には全残留
塩素濃度(ppm)を示す。
In FIG. 5, ammonium ions were added to the same water, and 0.55 (without ammonium ions) were added.
Five kinds of samples were prepared so as to have a concentration of 1.5, 2, and 4 ppm, and about 4 ppm of sodium hypochlorite was added to each sample, and the total residual chlorine after contacting for about 60 minutes was shown. The horizontal axis shows the ammonium ion concentration (ppm), and the vertical axis shows the total residual chlorine concentration (ppm).

【0035】この結果から、アンモニウムイオンが所定
値、すなわち1.0ppm以上存在する事によって、残留
塩素の持続時間が長時間継続されることが解る。
From these results, it can be seen that the presence of the ammonium ion at a predetermined value, that is, 1.0 ppm or more, allows the residual chlorine to continue for a long time.

【0036】これは、アンモニウムイオンが水中に存在
することによって、塩素がFeやMnやH2S等の還元
性物質と反応して消費される前に、殺菌効果のあるアン
モニアと塩素の化合物クロラミンを生成するためであ
る。さらにクロラミンは反応速度が緩やかであるため、
殺菌効果が長持ちする。このため、塩素投入間隔を長く
できるとともに、還元性物質との反応を抑制することが
できるため、要求塩素量を一定にたもつことができ過剰
な塩素を投入する必要がなく、十分な殺菌性能を得るこ
とができた。
This is because, due to the presence of ammonium ions in the water, chlorine is reacted with a reducing substance such as Fe, Mn or H 2 S before it is consumed. Is to be generated. In addition, chloramine has a slow reaction rate,
Long lasting bactericidal effect. For this reason, the chlorine injection interval can be lengthened and the reaction with the reducing substance can be suppressed, so that the required chlorine amount can be kept constant, and there is no need to input excessive chlorine, and sufficient sterilization performance is obtained. Could be obtained.

【0037】(実施例2)この実施例2では、塩素化合
物供給手段18を、電気分解により、水中の塩素イオン
から残留塩素を生成可能な電気分解槽とし、電極に直流
電流を流し、水中の塩素イオンから電気分解により、次
亜塩素酸や次亜塩素酸イオンなどの残留塩素を生成させ
る構成とした。このため、残留塩素濃度を維持するため
に塩素化合物供給手段へ塩素化合物の補給する必要がな
くなる。さらに、アンモニウム供給手段17でアンモニ
ウムイオンを投入しているため、入浴水の状態に応じて
残留塩素の発生量を変更させる必要がないので、直流電
流値や電圧を変化させるという手間も省け、殺菌性能も
入浴日数に左右されることなく安定した実施例1と同様
の効果が得られた。
(Embodiment 2) In this embodiment 2, the chlorine compound supply means 18 is an electrolysis tank capable of producing residual chlorine from chlorine ions in water by electrolysis. Electrolysis of chlorine ions produces residual chlorine such as hypochlorous acid and hypochlorite ions. Therefore, it is not necessary to supply the chlorine compound to the chlorine compound supply means in order to maintain the residual chlorine concentration. Further, since ammonium ions are supplied by the ammonium supply means 17, it is not necessary to change the generation amount of residual chlorine in accordance with the state of bathing water. The same effect as in Example 1 was obtained, in which the performance was stable without being affected by the number of bathing days.

【0038】(実施例3)この実施例3では、塩素供給
制御手段19へ入浴終了時間を設定してあり、これによ
り、塩素供給制御手段19は入浴終了後に自動的に塩素
化合物供給手段18から入浴水が3ppm〜5ppmになるよ
う塩素化合物を毎日1回投入するよう制御する。
(Third Embodiment) In the third embodiment, the bathing end time is set in the chlorine supply control means 19, whereby the chlorine supply control means 19 automatically switches from the chlorine compound supply means 18 after the bathing is completed. Control is performed so that the chlorine compound is injected once a day so that the bath water becomes 3 ppm to 5 ppm.

【0039】実施例1で述べたように、アンモニウムイ
オンの存在により殺菌効果が長持ちするため、1日経過
後も細菌数は100CFU/ml未満を満たし殺菌効果が
認められる。さらに入浴後に投入するため、塩素投入に
よる塩素臭も消え、さらに、残留塩素濃度も5ppm投入
した場合では翌日には約1ppmに減少しているため肌へ
の害も生じない。つまり、入浴後に塩素を投入する事に
より殺菌され、塩素臭及び肌に害のない浴槽水を実現で
きた。
As described in Example 1, the bactericidal effect is prolonged due to the presence of ammonium ions. Therefore, even after one day, the number of bacteria is less than 100 CFU / ml, and the bactericidal effect is recognized. Furthermore, since it is added after bathing, the chlorine odor due to chlorine injection disappears, and when the residual chlorine concentration is also 5 ppm, it is reduced to about 1 ppm the next day, so that no harm to the skin occurs. In other words, bath water was sterilized by adding chlorine after bathing, and harmless to chlorine odor and skin.

【0040】さらに、過剰な塩素投入は殺菌性能には効
果的だが、塩素臭や人体への影響を考慮すると、塩素投
入は実施例1で述べた3ppm〜5ppmが望ましいことが解
る。
Further, although excessive chlorine input is effective for sterilization performance, it is understood that chlorine input is desirably 3 ppm to 5 ppm as described in Example 1 in consideration of chlorine odor and the effect on the human body.

【0041】また、入浴後に3ppm以上の塩素を1度に
投入せずとも、塩素を数回投入し、全投入量が3ppm以
上になるよう塩素供給制御手段19で制御しても、同様
の結果が得られた。また、少量の塩素を数回投入するこ
とにより、塩素を投入した時点で全ての塩素が即座に殺
菌に用いられ、殺菌に必要以上の過剰な塩素による塩素
臭の発生を抑制する事ができた。さらに、数回投入する
事で殺菌の持続時間も長くできる。
Even if chlorine of 3 ppm or more is not supplied at once after bathing, chlorine is supplied several times and the chlorine supply control means 19 controls the total supplied amount to 3 ppm or more. was gotten. Also, by injecting a small amount of chlorine several times, all chlorine was immediately used for sterilization at the time of chlorine injection, and it was possible to suppress the generation of chlorine odor due to excessive chlorine more than necessary for sterilization. . Furthermore, the duration of sterilization can be extended by adding several times.

【0042】(実施例4)図6に実施例4の水浄化装置
の構成図を示す。
(Embodiment 4) FIG. 6 shows a configuration diagram of a water purification apparatus of Embodiment 4.

【0043】これは、実施例1で述べた水浄化装置の塩
素化合物供給手段18の下流側に臭いセンサ21を設
け、この塩素化合物供給手段18により塩素を供給され
た水の塩素臭を検出して、人間が塩素臭と検知できる値
以上を検出した場合はヒータ20で加熱して過剰の塩素
を揮発させる構成とした。その他は図1の実施例と同じ
であり、同一番号を付して説明を省略する。この構成に
することで塩素供給手段18により塩素殺菌された浴槽
水は、臭いセンサ21により塩素臭を検出され、ヒータ
20により保温されて、吐き出し口11から浴槽8に送
り込まれる。この時、臭いセンサ21は殺菌に必要以上
の余剰な塩素の有無を検出し、過剰な塩素が検出された
場合にはヒータ20に検出信号を送信する。ヒータ20
は、この検出信号がある規定値以下になるまで加熱し塩
素を揮発させる。加熱することによって過剰な塩素が除
去された入浴水は吐き出し口11により浴槽に送り込ま
れる。この結果、過剰な塩素の存在により発生する塩素
臭の不快感を取り除き、さらに肌への害を抑制すること
が可能となった。
The odor sensor 21 is provided on the downstream side of the chlorine compound supply means 18 of the water purification apparatus described in the first embodiment, and detects the chlorine odor of water supplied with chlorine by the chlorine compound supply means 18. Then, when a value detected by a human is equal to or greater than a value that can be detected as chlorine odor, the heater 20 is used to heat and evaporate excess chlorine. The other parts are the same as those in the embodiment of FIG. With this configuration, bath tub water sterilized by chlorine by the chlorine supply means 18 detects chlorine odor by the odor sensor 21, is kept warm by the heater 20, and is sent from the discharge port 11 to the bath tub 8. At this time, the odor sensor 21 detects the presence or absence of excess chlorine more than necessary for sterilization, and transmits a detection signal to the heater 20 when excess chlorine is detected. Heater 20
Heats and volatilizes chlorine until the detection signal falls below a certain specified value. Bathing water from which excess chlorine has been removed by heating is sent into the bathtub through the outlet 11. As a result, it was possible to remove the discomfort of the chlorine odor generated by the presence of excessive chlorine, and to further suppress harm to the skin.

【0044】[0044]

【発明の効果】以上の説明から明らかなように、本発明
の水浄化装置によれば、次の効果が得られる。
As apparent from the above description, the water purifying apparatus of the present invention has the following effects.

【0045】(1)アンモニウムイオンを投入すること
で、入浴水の状態にかかわらず塩素要求量が一定値とな
り、塩素化合物供給手段の供給量を変化させる必要がな
い。
(1) By supplying ammonium ions, the required amount of chlorine becomes a constant value irrespective of the state of bathing water, and there is no need to change the supply amount of the chlorine compound supply means.

【0046】さらに、アンモニウムイオンと塩素が反応
して殺菌効果のあるクロラミンを生成するので、殺菌効
果が持続し過剰の塩素を投入する必要なく殺菌可能とな
る。
Furthermore, since the ammonium ion and chlorine react with each other to produce chloramine having a bactericidal effect, the bactericidal effect is maintained and sterilization can be performed without the need to add excessive chlorine.

【0047】(2)アンモニウム検出手段により、アン
モニウムイオンが所定値以下の場合には制御手段によ
り、アンモニウム供給手段で少なくとも所定値になるよ
うアンモニウムイオンを投入することで、塩素要求量を
一定に保ちかつ長時間の殺菌効果を持続させることがで
きる。つまり、所定値以上のアンモニウムイオンの存在
により、アンモニウムが殺菌に関係のない還元性物質と
の反応を抑制するので、入浴水の状態にかかわらず少な
い塩素量で殺菌可能となる。
(2) When the ammonium ion is below a predetermined value by the ammonium detecting means, the control means feeds the ammonium ion to at least the predetermined value by the ammonium supply means to keep the required amount of chlorine constant. In addition, a long-term sterilizing effect can be maintained. In other words, the presence of ammonium ions of a predetermined value or more suppresses the reaction of ammonium with a reducing substance not related to sterilization, so that sterilization can be performed with a small amount of chlorine regardless of the state of bath water.

【0048】(3)塩素化合物供給手段を例えば次亜塩
素酸ナトリウムのような水と反応して次亜塩素酸を生成
するような溶液又は物体を供給することによって、容易
に水中に塩素を投入する事が可能となり、簡単な構成で
殺菌することができる。
(3) The chlorine compound supply means supplies a solution or an object which produces hypochlorous acid by reacting with water such as sodium hypochlorite, so that chlorine is easily introduced into water. It is possible to sterilize with a simple configuration.

【0049】(4)塩素化合物供給手段を水中の塩素イ
オンから電気分解により生成可能な電気分解手段とする
ことにより、水中の塩素イオンから残留塩素を生成する
ので塩素化合物供給手段への塩素化合物の補給が必要な
くなり、よって長期間メンテナンスの手間がいらなくな
るので、塩素化合物の補給忘れなどによる人為的な性能
低下をなくすことができる。
(4) Since the chlorine compound supply means is an electrolysis means capable of being generated by electrolysis from chlorine ions in water, residual chlorine is generated from chlorine ions in water. Since replenishment is not required and maintenance work is not required for a long period of time, artificial performance degradation due to forgetting to supply a chlorine compound can be eliminated.

【0050】(5)塩素化合物を3ppm以上投入するこ
とが可能となって必要な殺菌効果が得らた。さらに、3
ppm〜5ppmの塩素濃度を投入することで、浴槽や入浴者
に害をあたえることなく水を殺菌浄化することが可能と
なった。
(5) The chlorine compound can be added in an amount of 3 ppm or more, and a necessary bactericidal effect is obtained. In addition, 3
By injecting a chlorine concentration of ppm to 5 ppm, water can be sterilized and purified without harm to bathtubs and bathers.

【0051】(6)塩素供給制御手段により、入浴終了
後に塩素を投入する事で、翌日入浴時には殺菌されか
つ、塩素臭や残留塩素による肌へ害がない水を提供する
ことができる。
(6) By supplying chlorine after the bathing is completed by the chlorine supply control means, it is possible to provide water which is sterilized at the time of bathing the next day and which has no harm to the skin due to chlorine odor or residual chlorine.

【0052】(7)塩素供給制御手段により全投入量が
3ppm以上、望ましくは塩素臭や残留塩素による肌への
影響を考慮した3〜5ppmになるよう、複数回投入する
ことで余剰の塩素を抑制し、塩素臭の発生を抑えること
ができる。
(7) Excess chlorine is added multiple times by the chlorine supply control means so that the total amount is 3 ppm or more, preferably 3 to 5 ppm considering the effect of chlorine odor and residual chlorine on the skin. And the generation of chlorine odor can be suppressed.

【0053】(8)臭いセンサを設けることにより、あ
る規定値を越えると過剰な塩素投入とみなし、加熱する
ことで塩素を揮発させる。この結果、塩素臭および、人
体への塩素による害を抑制することが可能となった。
(8) By providing an odor sensor, if a certain specified value is exceeded, it is considered that excessive chlorine is charged, and the chlorine is volatilized by heating. As a result, it has become possible to suppress chlorine odor and harm to the human body due to chlorine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における水浄化装置の構成図FIG. 1 is a configuration diagram of a water purification device according to a first embodiment of the present invention.

【図2】同実施例1における塩素の接触時間と一般細菌
数の関係を示す特性図
FIG. 2 is a characteristic diagram showing a relationship between chlorine contact time and the number of common bacteria in Example 1.

【図3】同実施例1における入浴1日後の塩素の接触時
間と残留塩素濃度の関係を示す特性図
FIG. 3 is a characteristic diagram showing a relationship between a chlorine contact time and a residual chlorine concentration one day after bathing in Example 1.

【図4】同実施例1における入浴2日後の塩素の接触時
間と残留塩素濃度の関係を示す特性図
FIG. 4 is a characteristic diagram showing a relationship between a chlorine contact time and a residual chlorine concentration two days after bathing in Example 1.

【図5】同実施例1におけるアンモニウムイオン濃度と
残留塩素濃度の関係を示す特性図
FIG. 5 is a characteristic diagram showing a relationship between an ammonium ion concentration and a residual chlorine concentration in Example 1;

【図6】本発明の実施例4における水浄化装置の構成図FIG. 6 is a configuration diagram of a water purification device according to a fourth embodiment of the present invention.

【図7】従来の水浄化装置の構成図FIG. 7 is a configuration diagram of a conventional water purification device.

【符号の説明】[Explanation of symbols]

8 浴槽 10 吸い込み口 11 吐き出し口 12 ポンプ(循環手段) 13 凝集手段 14 ろ過手段 15 アンモニウム検出手段 16 制御手段 17 塩素化合物供給手段 18 塩素供給制御手段 19 ヒータ 20 臭いセンサ Reference Signs List 8 bathtub 10 suction port 11 discharge port 12 pump (circulation means) 13 coagulation means 14 filtration means 15 ammonium detection means 16 control means 17 chlorine compound supply means 18 chlorine supply control means 19 heater 20 odor sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/50 550 C02F 1/50 550H 550L 560 560A 560F 560Z A47K 3/00 A47K 3/00 K B01D 35/027 C02F 1/46 Z C02F 1/46 1/76 A 1/463 B01D 35/02 J 1/465 C02F 1/46 102 1/76 (72)発明者 桶田 岳見 大阪府門真市大字門真1006番地 松下電器 産業株式会社内────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 identifications FI C02F 1/50 550 C02F 1/50 550H 550L 560 560A 560F 560Z A47K 3/00 A47K 3/00 K B01D 35/027 C02F 1/46 Z C02F 1/46 1/76 A 1/463 B01D 35/02 J 1/465 C02F 1/46 102 1/76 (72) Inventor Takemi Oketa 1006 Kazuma, Kazuma, Kadoma, Osaka Prefecture

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】循環流路に水を循環する循環手段と、水の
懸濁物質をろ過するろ過手段と、電気分解により金属水
和物を生成することで水中の懸濁物質を凝集する凝集手
段と、水中にアンモニウムを投入するアンモニウム供給
手段と、水中に塩素または塩素化合物を供給する塩素化
合物供給手段とを備えた水浄化装置。
1. A circulating means for circulating water in a circulation channel, a filtering means for filtering suspended matter in water, and an agglomeration for aggregating suspended matter in water by generating metal hydrate by electrolysis. A water purification apparatus comprising: a means for supplying ammonium to water; an ammonium supply means for supplying ammonium into water; and a chlorine compound supply means for supplying chlorine or a chlorine compound to water.
【請求項2】水中のアンモニウムイオン濃度を検出する
アンモニウム検出手段と、アンモニウム検出手段からの
検出信号が所定値未満の場合にはアンモニウムイオンを
所定値以上投入するようアンモニウム供給手段を制御す
る制御手段とを備えた請求項1記載の水浄化装置。
2. An ammonium detecting means for detecting the concentration of ammonium ions in water, and a control means for controlling the ammonium supply means so as to input ammonium ions at a predetermined value or more when a detection signal from the ammonium detecting means is less than a predetermined value. The water purification device according to claim 1, comprising:
【請求項3】塩素化合物供給手段は、水と化学反応して
次亜塩素酸及び次亜塩素酸イオンを生成する物質あるい
は溶液を供給する請求項1または2記載の水浄化装置。
3. The water purifying apparatus according to claim 1, wherein the chlorine compound supply means supplies a substance or a solution which chemically reacts with water to generate hypochlorous acid and hypochlorite ions.
【請求項4】塩素化合物供給手段は、水を電気分解し、
水中の塩素イオンから水中に塩素化合物を生成する請求
項1ないし3のいずれか1項記載の水浄化装置。
4. The chlorine compound supply means electrolyzes water,
The water purification device according to any one of claims 1 to 3, wherein a chlorine compound is generated in water from chlorine ions in the water.
【請求項5】塩素化合物濃度を少なくとも3ppm以上と
した請求項1ないし4のいずれか1項記載の水浄化装
置。
5. The water purification apparatus according to claim 1, wherein the chlorine compound concentration is at least 3 ppm or more.
【請求項6】塩素化合物を入浴後に投入するよう制御す
る塩素投入制御手段を設けた請求項1ないし5のいずれ
か1項記載の水浄化装置。
6. The water purifying apparatus according to claim 1, further comprising a chlorine charging control means for controlling a chlorine compound to be charged after bathing.
【請求項7】塩素投入制御手段は、1日の全投入量が3
ppm以上になるよう塩素化合物供給手段を複数回駆動制
御する請求項1ないし6のいずれか1項記載の水浄化装
置。
7. The chlorine injection control means is configured to adjust the total amount of daily injection to 3
The water purification apparatus according to any one of claims 1 to 6, wherein the chlorine compound supply means is drive-controlled a plurality of times so as to be at least ppm.
【請求項8】臭いセンサと加熱手段を備え、塩素臭があ
る規定値以上の場合は塩素化合物供給手段により殺菌さ
れた水を加熱し、規定値以下になるまで加熱を行うこと
により塩素臭を除去する請求項1ないし7のいずれか1
項記載の水浄化装置。
8. An odor sensor and a heating means, wherein when the chlorine odor is higher than a specified value, the water sterilized by the chlorine compound supply means is heated and heated until the chlorine odor becomes lower than the specified value. 8. Any one of claims 1 to 7 for removing.
The water purification device according to any one of the preceding claims.
JP11075897A 1997-04-28 1997-04-28 Water purification equipment Expired - Fee Related JP3870479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11075897A JP3870479B2 (en) 1997-04-28 1997-04-28 Water purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11075897A JP3870479B2 (en) 1997-04-28 1997-04-28 Water purification equipment

Publications (2)

Publication Number Publication Date
JPH10296268A true JPH10296268A (en) 1998-11-10
JP3870479B2 JP3870479B2 (en) 2007-01-17

Family

ID=14543827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11075897A Expired - Fee Related JP3870479B2 (en) 1997-04-28 1997-04-28 Water purification equipment

Country Status (1)

Country Link
JP (1) JP3870479B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537412A (en) * 2001-08-06 2004-12-16 エー.ワイ.ラボラトリーズ リミテッド Control of biofilm formation in industrial process water.

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537412A (en) * 2001-08-06 2004-12-16 エー.ワイ.ラボラトリーズ リミテッド Control of biofilm formation in industrial process water.
US7628929B2 (en) 2001-08-06 2009-12-08 A.Y. Laboratories Ltd. Control of development of biofilms in industrial process water
US7927496B2 (en) 2001-08-06 2011-04-19 A.Y. Laboratories Ltd. Control of development of biofilms in industrial process water
US8168072B2 (en) 2001-08-06 2012-05-01 A.Y. Laboratories Ltd. Control of development of biofilms in industrial process water
US8444858B2 (en) 2001-08-06 2013-05-21 A.Y. Laboratories Ltd. Control of development of biofilms in industrial process water

Also Published As

Publication number Publication date
JP3870479B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
TWI568683B (en) Water treatment method and method for producing ultrapure water
WO2020244353A1 (en) Non-electrolytic slightly acidic hypochlorous water generation apparatus, and generation method
JP4906572B2 (en) Method of inactivating Legionella spp. In circulating water tank
JP3870482B2 (en) Water purification equipment
JP3870479B2 (en) Water purification equipment
JP2003052275A (en) Method for culturing fish and shellfish and closed circulating culture system
JP4267755B2 (en) Water treatment equipment
JP3906527B2 (en) Water purification equipment
JPH11123383A (en) Water cleaning device
RU2326054C1 (en) Device for obtaining water solution of oxidising agents
JP2000042544A (en) Pretreatment for desalination by reverse osmosis membrane method
JPH11128942A (en) Water purification and mechanism thereof
JPH10225692A (en) Treatment of waste water containing phosphoric acid ion and treatment device
JP3887969B2 (en) Water purification equipment
JPH11179379A (en) Water clarification apparatus
JPH1190451A (en) Apparatus for purifying water
JPH11192487A (en) Circulating water purifying and sterilizing device and method therefor
JP2007000118A (en) Sterilizing device of fish-rearing water
JP2924667B2 (en) Water purification device
JPH08281280A (en) Method for purifying and sterilizing bath water and electrolytic device for sterilization
JP2005052775A (en) Water circulation equipment
JPH04277081A (en) Method for sterilizing water
JPH11128625A (en) Water purifying device
JPH10314748A (en) Sterilization apparatus
JP2000140859A (en) Water cleaning device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees