JPH10294135A - Hybrid device consisting of electrical double layer capacitor and battery - Google Patents

Hybrid device consisting of electrical double layer capacitor and battery

Info

Publication number
JPH10294135A
JPH10294135A JP9116147A JP11614797A JPH10294135A JP H10294135 A JPH10294135 A JP H10294135A JP 9116147 A JP9116147 A JP 9116147A JP 11614797 A JP11614797 A JP 11614797A JP H10294135 A JPH10294135 A JP H10294135A
Authority
JP
Japan
Prior art keywords
battery
double layer
layer capacitor
electric double
hybrid device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9116147A
Other languages
Japanese (ja)
Other versions
JP4003845B2 (en
Inventor
Tatsu Nagai
龍 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP11614797A priority Critical patent/JP4003845B2/en
Publication of JPH10294135A publication Critical patent/JPH10294135A/en
Application granted granted Critical
Publication of JP4003845B2 publication Critical patent/JP4003845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric source in which a pulse discharge characteristic is excellent, especially at a low temperature. SOLUTION: A hybrid device, in which an electrical double layer capacitor 1 and a battery 2 are combined and used as an electric source, is provided. A lithium secondary battery like a lithium ion secondary battery or a lithium polymer secondary battery is preferably used as the battery 2, and it is preferable that the electrical double layer capacitor 1 has a sheet shape and its thickness is in a range of 0.0025 X-0.15 X to an outer diameter (X) of a cylindrical battery, and within a range of 0.07 Y-0.3 Y to a thickness of a square shaped battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気二重層キャパ
シタと電池とからなるハイブリッド素子に関し、さらに
詳しくは、パルス放電特性、特に低温でのパルス放電特
性が良好な電源として使用できるハイブリッド素子に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid device comprising an electric double layer capacitor and a battery, and more particularly, to a hybrid device which can be used as a power supply having good pulse discharge characteristics, particularly low temperature pulse discharge characteristics.

【0002】[0002]

【従来の技術】近年の携帯電子機器の進歩にしたがっ
て、電池に要求される特性が厳しくなりつつある。例え
ば、電池を使用する機器が小型化し、それに伴って電池
も小型化が求められる。一方、機器の多機能化、デジタ
ル化に伴い、電流値の上昇や大電流パルス的な使われ方
が多くなりつつある。
2. Description of the Related Art With the recent development of portable electronic devices, the characteristics required for batteries are becoming stricter. For example, devices using batteries have been downsized, and accordingly, batteries have also been required to be downsized. On the other hand, with the multifunctionalization and digitalization of devices, current values are increasing and the use of large current pulses is increasing.

【0003】これまでは、マンガン乾電池やアルカリ乾
電池などの一次電池の高容量化、負荷特性の改良などで
対処してきたり、ニッケル−カドミウム電池、ニッケル
−水素吸蔵合金電池、リチウムイオン二次電池、リチウ
ムポリマー二次電池などの高性能二次電池を開発するこ
とによって対処してきた。
Heretofore, measures have been taken to increase the capacity of primary batteries such as manganese dry batteries and alkaline dry batteries, and to improve load characteristics, etc., and to use nickel-cadmium batteries, nickel-hydrogen storage alloy batteries, lithium ion secondary batteries, lithium This has been addressed by developing high performance secondary batteries such as polymer secondary batteries.

【0004】一方、主電源とは別にメモリーをバックア
ップする目的で使用されるキャパシタの高容量化も検討
されており、電気二重層キャパシタがセラミックコンデ
ンサー、アルミ電解コンデンサー、タンタル電解コンデ
ンサーなどに比べて高容量であることから、電気二重層
キャパシタをバックアップ電源として用いたものが実用
化されつつある。さらに、この電気二重層キャパシタを
大型化してパワーキャパシタとして電気自動車の瞬間的
な出力の補助電源として用いる試みもなされている。
On the other hand, increasing the capacity of a capacitor used for the purpose of backing up a memory separately from the main power supply has been studied, and the electric double layer capacitor has a higher capacity than a ceramic capacitor, an aluminum electrolytic capacitor, a tantalum electrolytic capacitor, or the like. Because of its capacity, those using an electric double layer capacitor as a backup power supply are being put into practical use. Further, attempts have been made to increase the size of this electric double layer capacitor and use it as a power capacitor as an auxiliary power source for instantaneous output of an electric vehicle.

【0005】[0005]

【発明が解決しようとする課題】電池の小型化、高性能
化が要求されているが、高容量と高出力とは一般に相反
する性能であり、両立させることはむつかしい。例え
ば、ニッケル−水素吸蔵合金電池、ニッケル−カドミウ
ム電池などのアルカリ水溶液を電解液とするアルカリ二
次電池は、電解液の抵抗が低いため、高出力は容易に得
られるが、高エネルギー密度は得られにくく、高容量と
はいいがたい。
Although there is a demand for miniaturization and high performance of batteries, high capacity and high output are generally contradictory performances, and it is difficult to achieve both. For example, an alkaline secondary battery using an alkaline aqueous solution as an electrolyte, such as a nickel-hydrogen storage alloy battery or a nickel-cadmium battery, can easily obtain a high output because of the low resistance of the electrolyte, but cannot obtain a high energy density. It is hard to say, and it is hard to say high capacity.

【0006】一方、最近のリチウム二次電池、例えば、
リチウムイオン二次電池やポリマー電解質を用いたリチ
ウムポリマー二次電池などは、エネルギーを多く蓄積で
きるので、高エネルギー密度にすることができるが、電
解液の抵抗が高いために瞬間的に高出力を出すのが困難
である。特に−10℃や−20℃の低温でも充分な特性
が要求される携帯電話などでは充分な特性を発揮できな
い。そこで、この特性を改善するため、低沸点の有機溶
媒を添加して電解液の粘度を低下させることが行われて
いるが、低沸点溶媒の添加により高温時に電池内圧が上
昇して、安全性に欠けることになる。
On the other hand, recent lithium secondary batteries, for example,
Lithium ion secondary batteries and lithium polymer secondary batteries that use polymer electrolytes can store a large amount of energy and can have a high energy density. Difficult to get out. In particular, a mobile phone that requires sufficient characteristics even at a low temperature of -10 ° C or -20 ° C cannot exhibit sufficient characteristics. Therefore, in order to improve this characteristic, a low-boiling point organic solvent is added to lower the viscosity of the electrolytic solution. Will lack.

【0007】本発明は、上記のような従来技術の問題点
を解消し、二次電池、特にリチウムイオン二次電池、リ
チウムポリマー二次電池などのリチウム二次電池のパル
ス放電特性、特に低温でのパルス放電特性を向上させる
ことを目的とする。
[0007] The present invention solves the above-mentioned problems of the prior art, and provides pulse discharge characteristics of a secondary battery, particularly a lithium secondary battery such as a lithium ion secondary battery or a lithium polymer secondary battery, especially at a low temperature. The purpose of the present invention is to improve the pulse discharge characteristics of the above.

【0008】[0008]

【課題を解決するための手段】本発明は、電気二重層キ
ャパシタと電池をハイブリッド素子として一体化し、パ
ルス放電特性、特に低温でのパルス放電特性を向上させ
ることにより、上記課題を解決した。
The present invention has solved the above-mentioned problems by integrating the electric double layer capacitor and the battery as a hybrid element and improving the pulse discharge characteristics, particularly, the pulse discharge characteristics at a low temperature.

【0009】すなわち、リチウム二次電池のような内部
抵抗の高い電池では、パルス放電時間を考慮して電気二
重層キャパシタの容量を設定することにより、負荷の平
準化が容易になるものと考えられる。
That is, in a battery having a high internal resistance such as a lithium secondary battery, it is considered that load leveling is facilitated by setting the capacity of the electric double layer capacitor in consideration of the pulse discharge time. .

【0010】[0010]

【発明の実施の形態】上記のように電池と組み合わせる
ことによってハイブリッド素子を構成する電気二重層キ
ャパシタは、電池と一体化するため、シート状であるこ
とが好ましく、円筒形電池に対しては、その外周部に密
着して貼り付けられるように、フレキシブルなものが好
ましい。また、電池が円筒形電池の場合、効果的な負荷
特性の向上を得るためには、電気二重層キャパシタの厚
みは電池の外径(X)に対して0.0025X〜0.1
5Xの範囲内にあることが好ましい。すなわち、電気二
重層キャパシタの厚みが電池の外径(X)に対して0.
0025X〜0.15Xの範囲内にあるときは、電池の
外径を大幅に変更することなく、同一形状を保ちなが
ら、適切な容量の電気二重層キャパシタを取り付けるこ
とができるので効果的なパルス放電特性の向上が得られ
るが、電気二重層キャパシタの厚みが上記範囲より薄く
なると、電気二重層キャパシタの容量が不充分になった
り、封止構造の信頼性が低下するおそれがあり、また、
電気二重層キャパシタの厚みが上記範囲より厚くなる
と、全体の体積が大きくなりすぎ、パルス放電特性は向
上するものの、体積の割りには電気容量が小さくなって
しまうおそれがある。さらに、電気二重層キャパシタの
集電体が金属板であって、片方の封止用構造体を兼ねて
いる場合は、電池の外壁と直接接触することによって構
造が簡略化でき、体積の有効利用もできるので好まし
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The electric double layer capacitor constituting a hybrid element by combining with a battery as described above is preferably in the form of a sheet in order to be integrated with the battery. A flexible material is preferable so that it can be stuck to the outer peripheral portion. When the battery is a cylindrical battery, the thickness of the electric double layer capacitor is 0.0025X to 0.1 with respect to the outer diameter (X) of the battery in order to obtain an effective improvement in load characteristics.
It is preferably in the range of 5X. That is, the thickness of the electric double layer capacitor is set to be 0.
When it is in the range of 0025X to 0.15X, an electric double layer capacitor having an appropriate capacity can be attached while maintaining the same shape without greatly changing the outer diameter of the battery, so that effective pulse discharge is achieved. Although improvement in characteristics is obtained, when the thickness of the electric double layer capacitor is smaller than the above range, the capacity of the electric double layer capacitor may be insufficient, or the reliability of the sealing structure may be reduced,
When the thickness of the electric double layer capacitor is larger than the above range, the whole volume becomes too large, and although the pulse discharge characteristics are improved, the electric capacity may be reduced in proportion to the volume. Furthermore, when the current collector of the electric double layer capacitor is a metal plate and also serves as one of the sealing structures, the structure can be simplified by directly contacting the outer wall of the battery, and the volume can be effectively used. It is preferable because it can also be performed.

【0011】電池が角形電池の場合は、フレキシブル特
性は特に要求されないが、薄く広い面積となる方が好ま
しく、上記と同様にシート状であることが好ましい。ま
た、適切なパルス放電特性の向上を得るためには、電気
二重層キャパシタの厚みは電池の厚み(Y)に対して
0.07Y〜0.3Yの範囲にあることが好ましい。す
なわち、電気二重層キャパシタの厚みが電池の厚み
(Y)に対して0.07Y〜0.3Yの範囲内にあると
きは、電池の厚みを大幅に変更することなく、同一形状
を保ちながら、適切な容量の電気二重層キャパシタを取
り付けることができるので効果的なパルス放電特性の向
上が得られるが、電気二重層キャパシタの厚みが上記範
囲より薄くなると、電気二重層キャパシタの容量が不充
分になったり、封止構造の信頼性が低下するおそれがあ
り、また、電気二重層キャパシタの厚みが上記範囲より
厚くなると、全体の体積が大きくなりすぎ、パルス放電
特性は向上するものの、体積の割りには電気容量が小さ
くなってしまうおそれがある。
When the battery is a prismatic battery, flexibility is not particularly required, but it is preferable that the battery be thin and have a large area, and it is preferable that the battery is in the form of a sheet as described above. Further, in order to obtain an appropriate improvement in pulse discharge characteristics, the thickness of the electric double layer capacitor is preferably in the range of 0.07Y to 0.3Y with respect to the thickness (Y) of the battery. That is, when the thickness of the electric double layer capacitor is in the range of 0.07Y to 0.3Y with respect to the thickness (Y) of the battery, the same shape is maintained without greatly changing the thickness of the battery. Since an electric double layer capacitor having an appropriate capacity can be attached, effective pulse discharge characteristics can be improved, but when the thickness of the electric double layer capacitor is smaller than the above range, the capacity of the electric double layer capacitor becomes insufficient. If the thickness of the electric double layer capacitor is larger than the above range, the overall volume becomes too large and the pulse discharge characteristics are improved, but the volume of the electric double layer capacitor is increased. May have a reduced electrical capacity.

【0012】[0012]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例に限定さ
れるものではない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

【0013】実施例1 厚さ0.25mmで外形寸法が32mm×46mmの長
方形状のアルミニウム板を2枚用い、それらを外装材と
して、図1に示す電気二重層キャパシタを作製した。
Example 1 An electric double layer capacitor shown in FIG. 1 was prepared by using two rectangular aluminum plates having a thickness of 0.25 mm and external dimensions of 32 mm × 46 mm and using them as exterior materials.

【0014】正極11は、厚みが0.3mmで、外形寸
法が28mm×42mmの長方形状の活性炭繊維で構成
され、負極12も、厚みが0.3mmで、外形寸法が2
8mm×42mmの長方形状の活性炭繊維で構成されて
いる。セパレータ13は、ポリプロピレン不織布からな
り、上記正極1と負極2との間に配置されている。
The positive electrode 11 has a thickness of 0.3 mm and is made of a rectangular activated carbon fiber having an outer dimension of 28 mm × 42 mm. The negative electrode 12 also has a thickness of 0.3 mm and an outer dimension of 2 mm.
It is composed of a rectangular activated carbon fiber of 8 mm × 42 mm. The separator 13 is made of a polypropylene nonwoven fabric, and is disposed between the positive electrode 1 and the negative electrode 2.

【0015】電解液はプロピレンカーボネートに4−エ
チルアンモニウム・トリフルオロボレート(Et4 N・
BF4 )を1mol/l溶解させたものからなり、この
電解液も含め、前記正極11、負極12、セパレータ1
3などは正極用集電板14、負極用集電板15およびフ
レーム16で囲まれた空間内に収容され、それらの接合
面は接着剤で密閉され、電解液が外部に漏出しないよう
にされている。
The electrolyte is propylene carbonate in 4-ethylammonium trifluoroborate (Et 4 N.
BF 4 ) was dissolved at 1 mol / l.
3 and the like are accommodated in a space surrounded by the positive electrode current collector 14, the negative electrode current collector 15 and the frame 16, and their joint surfaces are sealed with an adhesive so that the electrolyte does not leak out. ing.

【0016】正極用集電板14、負極用集電板15と
も、前記のように厚さ0.25mmのアルミニウム板か
らなり、フレーム16はポリエチレンテレフタレート製
で、この電気二重層キャパシタの全体の厚みは1.4m
mである。
Both the current collector plate 14 for the positive electrode and the current collector plate 15 for the negative electrode are made of an aluminum plate having a thickness of 0.25 mm as described above, and the frame 16 is made of polyethylene terephthalate. Is 1.4m
m.

【0017】一方、電池としては、厚みが8mmで外形
寸法が34mm×48mmの角形リチウムイオン二次電
池を用い、電気二重層キャパシタ1の正極用集電板14
と電池2の正極端子とをニッケル製のリード体3で接続
し、端子部分を除いて、ポリ塩化ビニル製の外装材4で
被覆して、図2に示すハイブリッド素子を作製した。
On the other hand, as the battery, a rectangular lithium ion secondary battery having a thickness of 8 mm and an outer dimension of 34 mm × 48 mm was used, and the positive current collector plate 14 of the electric double layer capacitor 1 was used.
The battery and the positive electrode terminal of the battery 2 were connected by a lead body 3 made of nickel, and except for the terminal portion, covered with an exterior material 4 made of polyvinyl chloride to produce a hybrid device shown in FIG.

【0018】上記電池2は、開路電圧が3.6Vで、理
論電気容量が850mAhであり、正極にはリチウムコ
バルト酸化物を活物質として用い、負極には人造黒鉛を
活物質として用いた公知構成の角形リチウムイオン二次
電池であり、この電池2の厚み(Y)は8mmであるこ
とから、上記電気二重層キャパシタ1の厚み(1.4m
m)は電池2の厚み(Y=8mm)に対して0.07Y
〜0.3Y(0.56mm〜2.4mm)の範囲内にあ
る。また、この図2には示していないが、電気二重層キ
ャパシタ1の負極用集電板15と電池2の負極端子を構
成する電池ケースとはニッケル製のリード体で接続され
ている。このハイブリッド素子を完全に充電してから電
源とし、後記の比較例1に示す電池を比較用電源とし
て、その後に示すように、携帯電話モードでのパルス放
電特性を調べた。
The battery 2 has a known configuration in which an open circuit voltage is 3.6 V, a theoretical electric capacity is 850 mAh, a lithium cobalt oxide is used as an active material for a positive electrode, and artificial graphite is used as an active material for a negative electrode. Since the thickness (Y) of the battery 2 is 8 mm, the thickness of the electric double layer capacitor 1 (1.4 m) is obtained.
m) is 0.07Y with respect to the thickness of the battery 2 (Y = 8 mm).
0.30.3 Y (0.56 mm to 2.4 mm). Although not shown in FIG. 2, the negative electrode current collector plate 15 of the electric double layer capacitor 1 and the battery case constituting the negative electrode terminal of the battery 2 are connected by a nickel lead. The hybrid device was fully charged before being used as a power source, and the battery shown in Comparative Example 1 described below was used as a comparative power source, and the pulse discharge characteristics in the mobile phone mode were examined as described later.

【0019】比較例1 実施例1で用いた角形リチウムイオン二次電池と同様の
開路電圧が3.6Vで、理論電気容量が850mAhの
角形リチウムイオン二次電池のみを用いて、上記実施例
1のハイブリッド素子に対する比較用電源として、携帯
電話モードでのパルス放電特性を調べた。
Comparative Example 1 Similar to the prismatic lithium-ion secondary battery used in Example 1, the open-circuit voltage was 3.6 V and the theoretical electric capacity was 850 mAh. As a comparative power source for the hybrid device of the above, pulse discharge characteristics in a mobile phone mode were examined.

【0020】すなわち、上記実施例1のハイブリッド素
子および比較例1の電池をそれぞれ電源として用い、−
10℃で携帯電話モード(1.5Aで0.5msecと
0.1Aで4.0msecの繰り返し)の負荷で放電し
て、図3に示すパルス放電特性を得た。
That is, the hybrid device of Example 1 and the battery of Comparative Example 1 were used as power sources, respectively.
The cell was discharged at a load of 10 ° C. in a mobile phone mode (repeated of 0.5 msec at 1.5 A and 4.0 msec at 0.1 A) to obtain the pulse discharge characteristics shown in FIG.

【0021】図3に示すように、パルス負荷の最低電圧
が2.75Vになったところを放電終止とすると、実施
例1のハイブリッド素子を電源とする場合は放電時間が
75分であって、携帯電話に使用した時に75分間作動
できるのに対し、比較例1の電池のみを電源とする場合
は、放電時間が58分であって、携帯電話に使用した時
に58分しか作動できないことがわかる。
As shown in FIG. 3, when the discharge is terminated when the minimum voltage of the pulse load becomes 2.75 V, when the hybrid device of the first embodiment is used as a power source, the discharge time is 75 minutes. It can be operated for 75 minutes when used in a mobile phone, whereas when only the battery of Comparative Example 1 is used as a power source, the discharge time is 58 minutes, and it can be seen that only 58 minutes can be operated when used in a mobile phone. .

【0022】実施例2 厚さ0.1mmで外形寸法が50mm×55mmのアル
ミニウム板の一方の面にホットメルト接着剤を部分的に
ラミネートした外装材を用い、正極、負極などの内容物
部分の寸法が40mm×45mmの電気二重層キャパシ
タを作製した。この電気二重層キャパシタの正極、負
極、セパレータ、電解液などの材質面での構成は前記実
施例1の場合と同様であり、上記ホットメルト接着剤は
変性ポリオレフィン系で薄いシート状に形成されたもの
を枠状に打ち抜いて使用した。
Example 2 An exterior plate in which a hot melt adhesive was partially laminated on one surface of an aluminum plate having a thickness of 0.1 mm and an outer dimension of 50 mm × 55 mm was used to form a positive electrode, a negative electrode and other contents. An electric double layer capacitor having dimensions of 40 mm × 45 mm was produced. The structure of the electric double layer capacitor in terms of materials such as the positive electrode, the negative electrode, the separator, and the electrolytic solution was the same as that in Example 1, and the hot melt adhesive was a modified polyolefin-based thin sheet. The thing was punched out in a frame shape and used.

【0023】電気二重層キャパシタは、図4に示す通り
であり、正極11と負極12との間にはセパレータ13
が配置し、前記の基板となったアルミニウム板が負極用
集電板15となっていて、正極11の一方の端部からリ
ード体17が引き出され、内容物全体をアルミニウムと
プラスチックとのラミネートフィルムからなる外装材1
8が覆っている。
The electric double layer capacitor is as shown in FIG. 4, and a separator 13 is provided between the positive electrode 11 and the negative electrode 12.
Is disposed, the aluminum plate serving as the substrate serves as a negative electrode current collector plate 15, a lead body 17 is pulled out from one end of the positive electrode 11, and the entire content is a laminated film of aluminum and plastic. Exterior material 1 consisting of
8 covers.

【0024】この電気二重層キャパシタ1は、封止部材
として実施例1のようなフレームを用いず、ホットメル
ト接着剤を用いて封止部分を薄く形成しているので、全
体の厚みが1.2mmのシート状でフレキシブルであっ
た。
The electric double layer capacitor 1 does not use a frame as in the first embodiment as a sealing member, but uses a hot melt adhesive to form a thin sealing portion. It was a 2 mm sheet and flexible.

【0025】このシート状の電気二重層キャパシタを1
4650形(外径14mm、高さ65mmの円筒形)リ
チウムイオン二次電池の外周部に巻き付け、かつリード
体の接続を行って、図5に示すハイブリッド素子を作製
した。上記電気二重層キャパシタのリチウムイオン二次
電池の外周部への巻き付けは、電気二重層キャパシタ1
の負極用集電体15のフリーの面が電池2の外周壁に直
接接触するように行った。電池2の外径(X)は14m
mであり、上記電気二重層キャパシタ1の厚み(1.2
mm)は電池2の外径(X=14mm)に対して0.0
025X〜0.15X(0.035mm〜2.1mm)
の範囲内に入っている。
This sheet-shaped electric double layer capacitor is
A 4650 type (cylindrical shape having an outer diameter of 14 mm and a height of 65 mm) was wound around the outer periphery of a lithium ion secondary battery and connected to a lead body to produce a hybrid device shown in FIG. The electric double layer capacitor is wound around the outer periphery of the lithium ion secondary battery by the electric double layer capacitor 1.
This was performed so that the free surface of the negative electrode current collector 15 directly contacted the outer peripheral wall of the battery 2. The outer diameter (X) of the battery 2 is 14 m
m, and the thickness of the electric double layer capacitor 1 (1.2
mm) is 0.0 with respect to the outer diameter of the battery 2 (X = 14 mm).
025X-0.15X (0.035mm-2.1mm)
Is within the range.

【0026】図5に示すハイブリッド素子について説明
すると、1は電気二重層キャパシタであり、この電気二
重層キャパシタ1を電池2の外周部に巻き付けることに
よってハイブリッド素子が形成されている。このハイブ
リッド素子中、まず、電池2について詳しく説明する
と、正極21はリチウムコバルト酸化物を活物質とし、
負極22は人造黒鉛を活物質としていて、これらの正極
21と負極22は微孔性ポリプロピレンフィルムからな
るセパレータ23を介して渦巻状に巻回され、渦巻状電
極体として電池ケース25に挿入されている。ただし、
上記渦巻状電極体の挿入に先立って、電池ケース25内
には、その底部にポリテトラフルオロエチレンシートか
らなる絶縁体26が配置され、また電池ケース25の内
周面にそってもポリテトラフルオロエチレンからなる絶
縁体27が配置されている。そして、この電池ケース2
5内にはエチレンカーボネートとエチルメチルカーボネ
ートとの体積比1:1の混合溶媒にLiPF6 を1mo
l/l溶解してなる電解液24が注入されている。
Referring to the hybrid device shown in FIG. 5, reference numeral 1 denotes an electric double layer capacitor. The hybrid device is formed by winding the electric double layer capacitor 1 around the outer periphery of the battery 2. First, in the hybrid device, the battery 2 will be described in detail. The positive electrode 21 uses lithium cobalt oxide as an active material,
The negative electrode 22 is made of artificial graphite as an active material. The positive electrode 21 and the negative electrode 22 are spirally wound via a separator 23 made of a microporous polypropylene film, and inserted into the battery case 25 as a spiral electrode body. I have. However,
Prior to the insertion of the spiral electrode body, an insulator 26 made of a polytetrafluoroethylene sheet is disposed in the bottom of the battery case 25, and the polytetrafluoroethylene sheet is arranged along the inner peripheral surface of the battery case 25. An insulator 27 made of ethylene is provided. And this battery case 2
In 5, 1 mol of LiPF 6 was added to a mixed solvent of ethylene carbonate and ethyl methyl carbonate at a volume ratio of 1: 1.
1 / l dissolved electrolytic solution 24 is injected.

【0027】上記電池ケース25はステンレス鋼製で、
負極端子を兼ねていて、封口板28はステンレス鋼製
で、その中央部にはガス通気孔28aが設けられ、環状
ガスケット29はポリプロピレン製で、電池ケース25
の開口部に配置され、可撓性薄板30はチタン製で、熱
変形部材31はポリプロピレン製である。そして、圧延
鋼製の端子板32には切刃32aとガス排出孔32bと
が設けられていて、電池内部にガスが発生して電池の内
部圧力が上昇し、その内圧上昇によって可撓性薄板30
が変形したときに、上記切刃32aによって可撓性薄板
30を破壊し、電池内部のガスを上記ガス排出孔32b
から電池外部に排出して、電池の高圧下での破壊が防止
できるように設計されている。そして、電池ケース25
と封口板28との間には環状の絶縁パッキング33が配
置され、正極21と封口板28とはアルミニウム製のリ
ード体34によって電気的に接続され、負極22と電池
ケース25との間はリード体35によって電気的に接続
されている。
The battery case 25 is made of stainless steel.
The sealing plate 28 is also made of stainless steel, is provided with a gas vent hole 28a at the center thereof, the annular gasket 29 is made of polypropylene, and serves as a negative electrode terminal.
The flexible thin plate 30 is made of titanium, and the heat deformable member 31 is made of polypropylene. The rolled steel terminal plate 32 is provided with a cutting edge 32a and a gas discharge hole 32b, and gas is generated inside the battery to increase the internal pressure of the battery. 30
Is deformed by the cutting blade 32a, the flexible thin plate 30 is broken, and the gas inside the battery is discharged to the gas discharge hole 32b.
From the battery to prevent the battery from being broken under high pressure. And the battery case 25
An annular insulating packing 33 is arranged between the negative electrode 22 and the sealing plate 28, the positive electrode 21 and the sealing plate 28 are electrically connected by an aluminum lead 34, and a lead is connected between the negative electrode 22 and the battery case 25. They are electrically connected by the body 35.

【0028】電気二重層キャパシタ1は上記電池2の外
周部に巻き付けられ、それによってハイブリッド素子が
形成されているが、この図5では電気二重層キャパシタ
1の内部構成の詳細は示さず、その全体をAで示してい
る。ただし、外装部分については必要な部材を示してお
り、その負極用集電板15は電池2の電池ケース25の
外周壁に直接接触し、この負極用集電板15と外装材1
8とはその周縁部において、ホットメルト接着剤19に
よって接着され、電気二重層キャパシタ1の内部を密閉
構造にしている。そして、電気二重層キャパシタ1の正
極11にその一端を接続したリード体17(図4参照)
の他端は電池2の正極端子となる端子板32の頭部に接
続され、それと負極用集電板15が電池2の負極端子を
構成する電池ケース25の外周壁に直接接触することと
によって、電気二重層キャパシタ1と電池2とが電気的
に接続できるようになっている。上記リード体17の一
端は電気二重層キャパシタ1の内部に達して正極11と
接続しているが、この図5では電気二重層キャパシタの
内部構成を詳細に示していないこともあって、リード体
17の図示は封止用のホットメルト接着剤19のところ
までしかしていない。
The electric double layer capacitor 1 is wound around the outer periphery of the battery 2 to form a hybrid element. However, FIG. 5 does not show details of the internal structure of the electric double layer capacitor 1, Is indicated by A. However, necessary members are shown for the exterior part, and the negative electrode current collector plate 15 directly contacts the outer peripheral wall of the battery case 25 of the battery 2, and the negative electrode current collector plate 15 and the outer material 1
8 is bonded to the periphery of the electric double layer capacitor 1 with a hot melt adhesive 19 to form a closed structure inside the electric double layer capacitor 1. Then, a lead 17 having one end connected to the positive electrode 11 of the electric double layer capacitor 1 (see FIG. 4)
Is connected to the head of a terminal plate 32 serving as a positive electrode terminal of the battery 2, and the negative electrode current collector plate 15 directly contacts the outer peripheral wall of the battery case 25 constituting the negative electrode terminal of the battery 2. The electric double layer capacitor 1 and the battery 2 can be electrically connected. One end of the lead body 17 reaches the inside of the electric double layer capacitor 1 and is connected to the positive electrode 11. However, FIG. 5 does not show the internal structure of the electric double layer capacitor in detail, so 17 is shown only up to the hot melt adhesive 19 for sealing.

【0029】上記ハイブリッド素子を完全に充電してか
ら電源とし、後記の比較例2に示す電池を比較用電源と
して、その後に示すように、携帯電話モードでのパルス
放電特性を調べた。
The hybrid device was fully charged before being used as a power source, and the battery shown in Comparative Example 2 described later was used as a comparative power source, and the pulse discharge characteristics in the mobile phone mode were examined as described later.

【0030】比較例2 実施例2で用いた14650形リチウムイオン二次電池
と同様のリチウムイオン二次電池のみを用いて、上記実
施例2のハイブリッド素子に対する比較用電源として、
携帯電話モードでのパルス放電特性を調べた。
Comparative Example 2 Using only a lithium ion secondary battery similar to the 14650 type lithium ion secondary battery used in Example 2 as a comparative power source for the hybrid device of Example 2 above,
Pulse discharge characteristics in mobile phone mode were investigated.

【0031】すなわち、上記実施例2のハイブリッド素
子および比較例2の電池をそれぞれ電源として用い、実
施例1と同様に、−10℃で携帯電話モード(1.5A
で0.5msecと0.1Aで4.0msecの繰り返
し)の負荷で放電して、図6に示すパルス放電特性を得
た。
That is, the hybrid device of Example 2 and the battery of Comparative Example 2 were used as power sources, respectively, and the mobile phone mode (1.5 A
At a load of 0.5 msec and 0.1 A at a repetition of 4.0 msec) to obtain the pulse discharge characteristics shown in FIG.

【0032】図6に示すように、パルス負荷の最低電圧
が2.75Vになったところを放電終止とすると、実施
例2のハイブリッド素子を電源とする場合は放電時間が
60分であって、携帯電話に使用した時に60分間作動
できるのに対し、比較例2の電池のみを電源とする場合
は、放電時間が40分であって、携帯電話使用した時に
40分しか作動できないことがわかる。
As shown in FIG. 6, when the discharge is terminated when the minimum voltage of the pulse load becomes 2.75 V, when the hybrid device of the second embodiment is used as a power source, the discharge time is 60 minutes. While it can operate for 60 minutes when used in a mobile phone, it can be seen that when only the battery of Comparative Example 2 is used as a power source, the discharge time is 40 minutes and only 40 minutes can be used when using a mobile phone.

【0033】実施例3 実施例2で用いた図4に示す電気二重層キャパシタと同
様の電気二重層キャパシタをER17/50形(外径1
7mm、高さ50mmの円筒形)塩化チオニル−リチウ
ム電池に巻き付けて図7および図8に示すハイブリッド
素子を作製した。上記電池2の外径(X)は17mmで
あり、電気二重層キャパシタ1の厚みは前記実施例2の
場合と同様に1.2mmなので、この電気二重層キャパ
シタ1の厚み(1.2mm)は電池2の外径(X=17
mm)に対して0.0025X〜0.15X(0.04
25mm〜2.55mm)の範囲内に入っている。
Example 3 An electric double layer capacitor similar to the electric double layer capacitor shown in FIG.
7 mm and a height of 50 mm) were wound around a lithium thionyl chloride-lithium battery to produce a hybrid device shown in FIGS. Since the outer diameter (X) of the battery 2 is 17 mm and the thickness of the electric double layer capacitor 1 is 1.2 mm as in the case of the second embodiment, the thickness (1.2 mm) of the electric double layer capacitor 1 is Outer diameter of battery 2 (X = 17
mm) to 0.0025X to 0.15X (0.04
25 mm to 2.55 mm).

【0034】図7に示すハイブリッド素子について説明
すると、ハイブリッド素子は電気二重層キャパシタ1を
電池2の外周部に巻き付けることによって作製されてい
るが、電気二重層キャパシタ1の構成は実施例2の場合
と同様であるので、その説明を省略し、電池2について
詳しく説明すると、正極41は炭素多孔質成形体からな
り、負極42はリチウムで構成され、負極42の一方の
面はガラス繊維不織布からなるセパレータ43を介して
正極41と対峙し、負極42の他方の面は電池ケース4
5の内周面に密着されている。
Referring to the hybrid device shown in FIG. 7, the hybrid device is manufactured by winding the electric double layer capacitor 1 around the outer periphery of the battery 2. The structure of the electric double layer capacitor 1 is the same as that of the second embodiment. Therefore, the description thereof is omitted, and the battery 2 will be described in detail. The positive electrode 41 is formed of a porous carbon molded body, the negative electrode 42 is formed of lithium, and one surface of the negative electrode 42 is formed of a glass fiber nonwoven fabric. The other surface of the negative electrode 42 is opposed to the positive electrode 41 with the separator 43 interposed therebetween.
5 is in close contact with the inner peripheral surface.

【0035】電解液44は塩化チオニルに四塩化アルミ
ニウムリチウムを1.2mol/l溶解させたものから
なり、上記電解液溶媒を構成する塩化チオニルが正極活
物質を兼ねている。正極集電体46はステンレス鋼で、
その下端部は釘状にとがっていて、正極41内に挿入さ
れ、上端部は電池蓋47に設けられた金属パイプと溶接
されて正極端子50を構成している。
The electrolytic solution 44 is formed by dissolving 1.2 mol / l of lithium aluminum tetrachloride in thionyl chloride. Thionyl chloride constituting the electrolytic solution solvent also serves as a positive electrode active material. The positive electrode current collector 46 is made of stainless steel,
The lower end is nailed and inserted into the positive electrode 41, and the upper end is welded to a metal pipe provided on the battery lid 47 to form a positive electrode terminal 50.

【0036】電池蓋47はいわゆるハーメチックシール
構造を持つもので、環状でステンレス鋼製のボディ部4
8の内周側にガラス層49が絶縁層として形成され、そ
のガラス層49の内周側に電池組立時に電解液注入口と
して使用された金属パイプが設けられ、その金属パイプ
に正極集電体46の上端部が挿入され、その状態で金属
パイプと正極集電体46の上端部が溶接されて正極端子
50を構成し、ボディ部48の外周部は電池ケース45
の開口端部の内周部と溶接され、電池内部を密閉構造に
している。そして、電池ケース45の底部内面上には底
部絶縁材51が配設され、正極41の上部には上部絶縁
材52が配設され、電池蓋47のボディ48とガラス層
49の上部には絶縁用の樹脂層53が形成されている。
そして、電気二重層キャパシタ1の正極11にその一端
を接続したリード体17の他端が電池2の正極端子50
に接続され、それと電気二重層キャパシタ1の負極用集
電板15が電池2の負極端子を構成する電池ケース45
の外周壁に直接接触していることとによって、電気二重
層キャパシタ1と電池2とが電気的に接続されている。
上記リード体17の一端は電気二重層キャパシタ1の内
部に達して正極11と接続しているが、この図7でも電
気二重層キャパシタの内部構成を詳細に示していないこ
ともあって、図5の場合と同様に、リード体17の図示
は封止用のホットメルト接着剤19のところまでしかし
ていない。
The battery cover 47 has a so-called hermetic seal structure, and has an annular stainless steel body 4.
8, a glass layer 49 is formed as an insulating layer on the inner peripheral side, and a metal pipe used as an electrolyte injection port at the time of assembling the battery is provided on the inner peripheral side of the glass layer 49. The metal pipe has a positive electrode current collector. The upper end of the positive electrode terminal 46 is inserted and the upper end of the metal pipe and the positive electrode current collector 46 are welded in this state to form the positive electrode terminal 50.
Is welded to the inner peripheral portion of the open end of the battery to form a sealed structure inside the battery. A bottom insulating material 51 is provided on the bottom inner surface of the battery case 45, an upper insulating material 52 is provided on the positive electrode 41, and an insulating material is provided on the body 48 of the battery cover 47 and the glass layer 49. Resin layer 53 is formed.
The other end of the lead 17 having one end connected to the positive electrode 11 of the electric double layer capacitor 1 is connected to the positive terminal 50 of the battery 2.
And the negative electrode current collecting plate 15 of the electric double layer capacitor 1 is connected to the battery case 45 forming the negative terminal of the battery 2.
The electric double layer capacitor 1 and the battery 2 are electrically connected by being in direct contact with the outer peripheral wall of the electric double layer capacitor.
One end of the lead member 17 reaches the inside of the electric double layer capacitor 1 and is connected to the positive electrode 11. However, FIG. 7 does not show the internal structure of the electric double layer capacitor in detail, so that FIG. As in the case of (1), the lead member 17 is shown only up to the hot melt adhesive 19 for sealing.

【0037】上記ハイブリッド素子を電源とし、後記の
比較例3に示す電池を比較用電源として、その後に示す
ように、部分放電後に60℃で長期間貯蔵した後、定抵
抗で放電して放電特性を調べた。
Using the above-mentioned hybrid element as a power source and the battery shown in Comparative Example 3 below as a comparative power source, as shown below, after long-term storage at 60 ° C. after partial discharge, discharge at a constant resistance and discharge characteristics Was examined.

【0038】比較例3 実施例3で用いたER17/50形塩化チオニル−リチ
ウム電池と同様の塩化チオニル−リチウム電池のみを用
いて、上記実施例3のハイブリッド素子に対する比較用
電源として、上記実施例3と同様に放電して放電特性を
調べた。
COMPARATIVE EXAMPLE 3 Using only a thionyl-lithium chloride battery similar to the ER17 / 50 type thionyl-lithium chloride battery used in Example 3 as a comparative power source for the hybrid device of Example 3 above, The discharge was performed in the same manner as in Example 3, and the discharge characteristics were examined.

【0039】すなわち、上記実施例3のハイブリッド素
子および比較例3の電池をそれぞれ電源として用い、3
0%部分放電後、60℃で12日間貯蔵した後、220
Ωの定抵抗で放電して、図9に示す放電特性を得た。
That is, the hybrid device of Example 3 and the battery of Comparative Example 3 were used as power sources, respectively.
After storage at 60 ° C. for 12 days after 0% partial discharge, 220
Discharging was performed with a constant resistance of Ω to obtain the discharge characteristics shown in FIG.

【0040】図9に示すように、実施例3は、比較例3
に比べて、放電開始時の電圧降下が少なく、部分放電後
に長期間貯蔵した時の放電特性を改善することができ、
パルス負荷的な使い方に対しても効果のあることがわか
った。
As shown in FIG. 9, Example 3 is different from Comparative Example 3
In comparison with, the voltage drop at the start of discharge is small, and the discharge characteristics when stored for a long time after partial discharge can be improved,
It was also found that the method was effective for pulse load use.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
電気二重層キャパシタと電池をハイブリッド素子とする
ことにより、パルス放電特性、特に低温におけるパルス
放電特性の良好な電源とすることができた。また、それ
ぞれを一体化したことによって取扱いが容易になるとい
う利点もあった。
As described above, according to the present invention,
By using the electric double layer capacitor and the battery as a hybrid element, a power source having excellent pulse discharge characteristics, particularly, a pulse discharge characteristic at a low temperature could be obtained. In addition, there is also an advantage that handling is facilitated by integrating them.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で用いる電気二重層キャパシタを部分
的に切欠いて示す概略斜視図である。
FIG. 1 is a schematic perspective view showing an electric double layer capacitor used in Example 1 with a partial cutout.

【図2】実施例1のハイブリッド素子を部分的に切欠い
て示す概略斜視図である。
FIG. 2 is a schematic perspective view showing the hybrid device of the first embodiment with a partial cutout.

【図3】実施例1のハイブリッド素子と、その作製にあ
たって使用した角形リチウムイオン二次電池と同様の構
成からなる比較例1の角形リチウムイオン二次電池のパ
ルス放電特性を示す図である。
FIG. 3 is a diagram showing pulse discharge characteristics of the hybrid lithium ion battery of Example 1 and a prismatic lithium ion secondary battery of Comparative Example 1 having a configuration similar to that of the prismatic lithium ion secondary battery used for manufacturing the hybrid device.

【図4】実施例2で用いる電気二重層キャパシタを部分
的に切欠いて示す概略斜視図である。
FIG. 4 is a schematic perspective view showing an electric double-layer capacitor used in Example 2 with a partial cutout.

【図5】実施例2のハイブリッド素子を示す概略断面図
である。
FIG. 5 is a schematic sectional view showing a hybrid device of Example 2.

【図6】実施例2のハイブリッド素子と、その作製にあ
たって使用した14650形リチウムイオン二次電池と
同様の構成からなる比較例2の14650形リチウムイ
オン二次電池のパルス放電特性を示す図である。
FIG. 6 is a diagram showing pulse discharge characteristics of a hybrid device of Example 2 and a 14650 type lithium ion secondary battery of Comparative Example 2 having the same configuration as the 14650 type lithium ion secondary battery used for its production. .

【図7】実施例3のハイブリッド素子を示す概略断面図
である。
FIG. 7 is a schematic sectional view showing a hybrid device according to a third embodiment.

【図8】実施例3のハイブリッド素子を部分的に切欠い
て示す概略斜視図である。
FIG. 8 is a schematic perspective view showing the hybrid device of the third embodiment with a partial cutout.

【図9】実施例3のハイブリッド素子と、その作製にあ
たって使用したER17/50形塩化チオニル−リチウ
ム電池と同様の構成からなる比較例3のER17/50
形塩化チオニル−リチウム電池の放電特性を示す図であ
る。
FIG. 9 shows the hybrid device of Example 3 and the ER17 / 50 of Comparative Example 3 having the same configuration as the ER17 / 50-type thionyl chloride-lithium battery used for its production.
FIG. 3 is a view showing discharge characteristics of a thionyl chloride-lithium battery.

【符号の説明】[Explanation of symbols]

1 電気二重層キャパシタ 2 電池 3 リード体 4 外装材 DESCRIPTION OF SYMBOLS 1 Electric double layer capacitor 2 Battery 3 Lead body 4 Exterior material

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電気二重層キャパシタと電池とを組み合
わせたことを特徴とする電気二重層キャパシタと電池と
のハイブリッド素子。
1. A hybrid element of an electric double layer capacitor and a battery, wherein the electric double layer capacitor and a battery are combined.
【請求項2】 請求項1記載の電池が、二次電池である
ことを特徴とする電気二重層キャパシタと電池とのハイ
ブリッド素子。
2. A hybrid element of an electric double layer capacitor and a battery, wherein the battery according to claim 1 is a secondary battery.
【請求項3】 二次電池が、リチウムイオン二次電池で
あることを特徴とする請求項2記載の電気二重層キャパ
シタと電池とのハイブリッド素子。
3. The hybrid element of claim 2, wherein the secondary battery is a lithium ion secondary battery.
【請求項4】 二次電池が、リチウムポリマー二次電池
であることを特徴とする請求項2記載の電気二重層キャ
パシタと電池とのハイブリッド素子。
4. The hybrid device as claimed in claim 2, wherein the secondary battery is a lithium polymer secondary battery.
【請求項5】 電気二重層キャパシタがシート状で、そ
の厚みが円筒形電池の外径(X)に対して0.0025
X〜0.15Xの範囲内にあることを特徴とする請求項
1、2、3または4記載の電気二重層キャパシタと電池
とのハイブリッド素子。
5. The electric double layer capacitor is sheet-shaped and has a thickness of 0.0025 with respect to the outer diameter (X) of the cylindrical battery.
5. The hybrid element of an electric double layer capacitor and a battery according to claim 1, wherein the value is in the range of X to 0.15X.
【請求項6】 電気二重層キャパシタがシート状で、そ
の厚みが角形電池の厚み(Y)に対して0.07Y〜
0.3Yの範囲内にあることを特徴とする請求項1、
2、3または4記載の電気二重層キャパシタと電池との
ハイブリッド素子。
6. The electric double layer capacitor is sheet-shaped and has a thickness of 0.07Y to 0.07Y with respect to the thickness (Y) of the prismatic battery.
3. The method according to claim 1, wherein the distance is within a range of 0.3Y.
A hybrid element of the electric double layer capacitor and the battery according to 2, 3 or 4.
【請求項7】 電気二重層キャパシタがシート状で、そ
の片面が集電板を兼ねており、該片面が電池の外壁と直
接接触して電気的な接続を行っていることを特徴とする
請求項1、2、3、4、5または6記載の電気二重層キ
ャパシタと電池とのハイブリッド素子。
7. The electric double layer capacitor according to claim 1, wherein one surface of the electric double layer capacitor also serves as a current collector, and the one surface is in direct contact with the outer wall of the battery to make an electrical connection. Item 7. A hybrid element of an electric double layer capacitor and a battery according to Item 1, 2, 3, 4, 5, or 6.
JP11614797A 1997-04-17 1997-04-17 Hybrid element of electric double layer capacitor and battery Expired - Fee Related JP4003845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11614797A JP4003845B2 (en) 1997-04-17 1997-04-17 Hybrid element of electric double layer capacitor and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11614797A JP4003845B2 (en) 1997-04-17 1997-04-17 Hybrid element of electric double layer capacitor and battery

Publications (2)

Publication Number Publication Date
JPH10294135A true JPH10294135A (en) 1998-11-04
JP4003845B2 JP4003845B2 (en) 2007-11-07

Family

ID=14679921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11614797A Expired - Fee Related JP4003845B2 (en) 1997-04-17 1997-04-17 Hybrid element of electric double layer capacitor and battery

Country Status (1)

Country Link
JP (1) JP4003845B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329500A (en) * 1998-05-14 1999-11-30 Sony Corp Solid state electrolyte battery
WO2001004920A1 (en) * 1999-07-12 2001-01-18 Energy Storage Systems Pty Ltd An energy storage device
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor
WO2002089245A1 (en) * 2001-04-27 2002-11-07 Kanebo, Limited Organic electrolyte battery
KR20030027396A (en) * 2001-09-28 2003-04-07 주식회사 뉴턴에너지 Hybrid energy storage system
JP2003257802A (en) * 2002-03-06 2003-09-12 Meidensha Corp Method for manufacturing electric double-layer capacitor
KR20030075375A (en) * 2002-03-18 2003-09-26 광주과학기술원 All Solid State Supercapacitor and Hybridized Fuel Cell therewith
JP2008152671A (en) * 2006-12-19 2008-07-03 Matsushita Electric Works Ltd Radio alarm device
US7833664B2 (en) 2006-03-30 2010-11-16 Kabushiki Kaishatoshiba Nonaqueous electrolyte battery, battery pack and vehicle
EP2332230A1 (en) * 2008-10-03 2011-06-15 Nissan Motor Co., Ltd. Battery cell and monitoring device for assembled battery
JP2011249298A (en) * 2010-05-28 2011-12-08 Hyundai Motor Company Co Ltd Energy storage system
DE102012016438A1 (en) * 2012-08-18 2014-02-20 Audi Ag Energy storage arrangement for motor vehicle, has rechargeable energy storage device with lithium-based storage element, and another rechargeable energy storage device in form of double layer capacitor
CN105006586A (en) * 2014-04-17 2015-10-28 乾坤科技股份有限公司 Compact battery with high energy density and power density
KR20150128096A (en) * 2014-05-08 2015-11-18 삼성에스디아이 주식회사 Secondary battery
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
JPWO2014091925A1 (en) * 2012-12-11 2017-01-05 株式会社村田製作所 Electric storage device and manufacturing method thereof
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
US9799298B2 (en) 2010-04-23 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and driving method thereof
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
WO2020117672A3 (en) * 2018-12-04 2020-07-23 Freudenberg-Nok General Partnership Integrated battery unit
US20230197358A1 (en) * 2021-11-30 2023-06-22 Nissan North America, Inc. Integrated supercapacitor-battery structure

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329500A (en) * 1998-05-14 1999-11-30 Sony Corp Solid state electrolyte battery
EP1204980A4 (en) * 1999-07-12 2006-01-18 Energy Storage Systems Pty Ltd An energy storage device
WO2001004920A1 (en) * 1999-07-12 2001-01-18 Energy Storage Systems Pty Ltd An energy storage device
EP1204980A1 (en) * 1999-07-12 2002-05-15 Energy Storage Systems Pty, Ltd An energy storage device
JP2001351688A (en) * 2000-06-07 2001-12-21 Fdk Corp Complex element of cell and capacitor
WO2002089245A1 (en) * 2001-04-27 2002-11-07 Kanebo, Limited Organic electrolyte battery
KR20030027396A (en) * 2001-09-28 2003-04-07 주식회사 뉴턴에너지 Hybrid energy storage system
JP2003257802A (en) * 2002-03-06 2003-09-12 Meidensha Corp Method for manufacturing electric double-layer capacitor
KR20030075375A (en) * 2002-03-18 2003-09-26 광주과학기술원 All Solid State Supercapacitor and Hybridized Fuel Cell therewith
US7833664B2 (en) 2006-03-30 2010-11-16 Kabushiki Kaishatoshiba Nonaqueous electrolyte battery, battery pack and vehicle
US8263264B2 (en) 2006-03-30 2012-09-11 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
US9203116B2 (en) 2006-12-12 2015-12-01 Commonwealth Scientific And Industrial Research Organisation Energy storage device
JP2008152671A (en) * 2006-12-19 2008-07-03 Matsushita Electric Works Ltd Radio alarm device
US9666860B2 (en) 2007-03-20 2017-05-30 Commonwealth Scientific And Industrial Research Organisation Optimised energy storage device having capacitor material on lead based negative electrode
EP2332230A1 (en) * 2008-10-03 2011-06-15 Nissan Motor Co., Ltd. Battery cell and monitoring device for assembled battery
EP2332230A4 (en) * 2008-10-03 2013-01-23 Nissan Motor Battery cell and monitoring device for assembled battery
US8563152B2 (en) 2008-10-03 2013-10-22 Nissan Motor Co., Ltd. Battery cell and monitoring device for assembled battery
US9450232B2 (en) 2009-04-23 2016-09-20 Commonwealth Scientific And Industrial Research Organisation Process for producing negative plate for lead storage battery, and lead storage battery
US9524831B2 (en) 2009-08-27 2016-12-20 The Furukawa Battery Co., Ltd. Method for producing hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9401508B2 (en) 2009-08-27 2016-07-26 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
US9508493B2 (en) 2009-08-27 2016-11-29 The Furukawa Battery Co., Ltd. Hybrid negative plate for lead-acid storage battery and lead-acid storage battery
US9799298B2 (en) 2010-04-23 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and driving method thereof
JP2011249298A (en) * 2010-05-28 2011-12-08 Hyundai Motor Company Co Ltd Energy storage system
US9812703B2 (en) 2010-12-21 2017-11-07 Commonwealth Scientific And Industrial Research Organisation Electrode and electrical storage device for lead-acid system
DE102012016438A1 (en) * 2012-08-18 2014-02-20 Audi Ag Energy storage arrangement for motor vehicle, has rechargeable energy storage device with lithium-based storage element, and another rechargeable energy storage device in form of double layer capacitor
JPWO2014091925A1 (en) * 2012-12-11 2017-01-05 株式会社村田製作所 Electric storage device and manufacturing method thereof
JP2015207558A (en) * 2014-04-17 2015-11-19 乾坤科技股▲ふん▼有限公司 Battery device with high energy density and power density
CN105006586A (en) * 2014-04-17 2015-10-28 乾坤科技股份有限公司 Compact battery with high energy density and power density
KR20150128096A (en) * 2014-05-08 2015-11-18 삼성에스디아이 주식회사 Secondary battery
WO2020117672A3 (en) * 2018-12-04 2020-07-23 Freudenberg-Nok General Partnership Integrated battery unit
CN113330625A (en) * 2018-12-04 2021-08-31 弗罗伊登贝格-诺克普通合伙公司 Integrated battery unit
US20230197358A1 (en) * 2021-11-30 2023-06-22 Nissan North America, Inc. Integrated supercapacitor-battery structure

Also Published As

Publication number Publication date
JP4003845B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP4003845B2 (en) Hybrid element of electric double layer capacitor and battery
US8993148B2 (en) Rechargeable lithium ion button cell battery
KR100958649B1 (en) Battery unit and the winding method thereof and lithum secondary battery using the same
KR100509606B1 (en) Jelly-roll type battery unit and winding method thereof and lithum secondary battery using the same
JP3822445B2 (en) Electrochemical devices
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
JP3997369B2 (en) Manufacturing method of non-aqueous secondary battery
KR100646520B1 (en) secondary battery and method for assembling the same
KR100529097B1 (en) Secondary battery
JP2001176455A (en) Cylindrical secondary battery
JP2002141100A (en) Battery and its manufacturing method
KR100591435B1 (en) Can-type Lithium-ion Secondary Battery
JP2008027867A (en) Wound cell
JP4092543B2 (en) Non-aqueous secondary battery
KR20040005242A (en) Jelly-roll type battery unit forming short prevention means and the lithium secondary battery applying the same
JP3414729B1 (en) Lithium ion secondary battery
JP4736329B2 (en) Lithium ion secondary battery
JP3469470B2 (en) Cylindrical batteries and capacitors
JPH11121040A (en) Lithium secondary battery
JP2000251940A (en) Nonaqueous secondary battery and its manufacture
JP2001266848A (en) Non-aqueous secondary battery
JP2874529B2 (en) Lithium battery
WO2022000312A1 (en) Separator, electrochemical device comprising same, and electronic device
JP2957690B2 (en) Non-aqueous electrolyte battery
JPH11345626A (en) Sealed battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees