JPH10294107A - Negative electrode active material for alkaline storage battery and battery using this - Google Patents

Negative electrode active material for alkaline storage battery and battery using this

Info

Publication number
JPH10294107A
JPH10294107A JP9101398A JP10139897A JPH10294107A JP H10294107 A JPH10294107 A JP H10294107A JP 9101398 A JP9101398 A JP 9101398A JP 10139897 A JP10139897 A JP 10139897A JP H10294107 A JPH10294107 A JP H10294107A
Authority
JP
Japan
Prior art keywords
active material
storage battery
negative electrode
added
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9101398A
Other languages
Japanese (ja)
Other versions
JP3525676B2 (en
Inventor
Toru Kikuyama
亨 菊山
Yoshiaki Nitta
芳明 新田
Koji Yuasa
浩次 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10139897A priority Critical patent/JP3525676B2/en
Publication of JPH10294107A publication Critical patent/JPH10294107A/en
Application granted granted Critical
Publication of JP3525676B2 publication Critical patent/JP3525676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a storage battery of an electrode of a small and thin type by using a compound having a quinone structure to form a complex with a metallic ion for an alkaline storage battery as an active material. SOLUTION: In a negative electrode plate 1, 2,5-dichloro-3,6 dihydroxy-p- benzoquinone is agitated by an alkaline aqueous solution, for example, KOH, and after it is left as it is for a day, an obtained precipitate is filtered and dried, and a complex with a metallic cation is formed as an active material. This is mixed with carbon of a conductive material, a 1 wt.% aqueous solution of carboxymethyl cellulose is added and paste is made, a fluororesin is added as a binding agent, and is applied to both surfaces of a copper current collecting body, and is pressed to a prescribed thickness after drying, and a negative electrode is obtained. In a positive electrode plate 2, a conductive material and a nickel hydroxide are mixed, the 1 wt.% aqueous solution of carboxymethyl cellulose is added and paste is made, a fluororesin is added as a binding agent, and is applied to both surfaces of a nickel current collecting body, and is pressed to a prescribed thickness after drying, and a positive electrode is formed. Nonwoven fabric is used as a separator, and KOH is used as an electrolyte.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池用
の負極活物質およびこれを用いた電池に関するものであ
る。
TECHNICAL FIELD The present invention relates to a negative electrode active material for an alkaline storage battery and a battery using the same.

【0002】[0002]

【従来の技術】近年、ポータブル機器は小型化傾向を強
めており、必然的にその電源である蓄電池の小型化、高
エネルギー密度化が望まれている。
2. Description of the Related Art In recent years, portable devices have been increasingly miniaturized, and it is inevitably demanded that storage batteries, which are power sources of such devices, be miniaturized and have high energy density.

【0003】アルカリ電解液を用いた蓄電池は正極活物
質に水酸化ニッケルを用い、負極活物質にカドミウムを
用いたニッケル・カドミウム蓄電池が従来より広く使用
されていたが、カドミウムの環境問題に対する影響が心
配され、その代替物質としての水素吸蔵合金を用いたニ
ッケル・水素蓄電池が実用化されてきた。これは同時に
蓄電池に要求されている高容量、高密度化を図ることが
できた。
A nickel-cadmium storage battery using nickel hydroxide as a positive electrode active material and cadmium as a negative electrode active material has been widely used for a storage battery using an alkaline electrolyte. However, the influence of cadmium on environmental problems has been increasing. There has been concern that nickel-metal hydride storage batteries using a hydrogen storage alloy as a substitute have been put to practical use. This at the same time enabled the high capacity and high density required of the storage battery.

【0004】アルカリ蓄電池は、大電流で充放電が可能
でサイクル寿命が長い特徴を有しているが、近年、各種
の電子機器のポータブル、コードレス化に伴い、ニッケ
ル・カドミウムおよびニッケル・水素蓄電池の重量エネ
ルギー密度がおよそ70Wh/Kgであるのに対し、そ
れ以上の重量エネルギー密度を有するリチウムイオン蓄
電池の開発が進んできいる。しかし、安全性において優
位であるアルカリ蓄電池にもさらなる小型・軽量化の期
待がもたれ開発が急がれている。
[0004] Alkaline storage batteries have a feature that they can be charged and discharged with a large current and have a long cycle life. In recent years, as various electronic devices have become portable and cordless, nickel-cadmium and nickel-hydrogen storage batteries have been developed. While the weight energy density is about 70 Wh / Kg, development of lithium ion storage batteries having a weight energy density higher than that is progressing. However, alkaline storage batteries, which are superior in safety, are expected to be further reduced in size and weight, and development is urgent.

【0005】アルカリ電解液を用いた蓄電池のうち、負
極活物質にカドミウムあるいは水素吸蔵合金を用いた蓄
電池は、これら活物質自体の単位体積当たりの重量が大
きく、小型・薄型の蓄電池を構成することは困難であ
る。そのため活物質自体の単位体積当たりの重量が小さ
く、成形性の良い材料が求められていた。
[0005] Among storage batteries using an alkaline electrolyte, a storage battery using cadmium or a hydrogen storage alloy as a negative electrode active material has a large weight per unit volume of the active material itself and constitutes a small and thin storage battery. It is difficult. Therefore, a material having a small weight per unit volume of the active material itself and good moldability has been demanded.

【0006】[0006]

【発明が解決しようとする課題】上述したような材料の
一つとして、キノン構造を有する有機化合物が挙げられ
る。このような、キノン構造を有する化合物を活物質と
して用いたものとしては、酸水溶液および非水溶液中で
側鎖にキノン構造を有する酸化還元ポリマーを電極材と
して用いること(特開平6-56989号公報)が提案
されている。
One of the above-mentioned materials is an organic compound having a quinone structure. As a material using such a compound having a quinone structure as an active material, a redox polymer having a quinone structure in a side chain in an aqueous acid solution or a non-aqueous solution is used as an electrode material (Japanese Patent Laid-Open No. 6-56989). ) Has been proposed.

【0007】しかし、キノン構造を持つ多くの化合物は
アルカリ水溶液に対して溶解してしまい、上記公報で提
案されているように薄膜化して、ポリマー電池として使
用する試みが為されてはいるものの、アルカリ蓄電池用
の活物質への応用は大変困難であった。
However, many compounds having a quinone structure dissolve in an aqueous alkaline solution, and although attempts have been made to use them as polymer batteries by making them thinner as proposed in the above publication, Application to active materials for alkaline storage batteries has been very difficult.

【0008】本発明は上記課題を解決するものであり小
型・薄型であって重量エネルギー密度が小さなアルカリ
蓄電池を提供することを目的とする。
An object of the present invention is to solve the above problems and to provide an alkaline storage battery which is small and thin and has a low weight energy density.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するために、負極活物質としてキノン構造持ち、かつ金
属陽イオンと錯体を形成する化合物を用いるものであ
る。
According to the present invention, in order to achieve the above object, a compound having a quinone structure and forming a complex with a metal cation is used as a negative electrode active material.

【0010】[0010]

【発明の実態の形態】キノン化合物として2,5-ジクロロ
-3,6-ジヒドロキシ-p-ベンゾキノンの構造を図1の左側
に示す。p-ベンゾキノンは、可逆な反応系であることが
知られているが、アルカリ水溶液に可溶であるためアル
カリ蓄電池の電極材としては用いることができなかっ
た。
DETAILED DESCRIPTION OF THE INVENTION 2,5-Dichloro as a quinone compound
The structure of -3,6-dihydroxy-p-benzoquinone is shown on the left side of FIG. Although p-benzoquinone is known to be a reversible reaction system, it cannot be used as an electrode material of an alkaline storage battery because it is soluble in an aqueous alkaline solution.

【0011】しかしながら、ベンゾキノン構造の2,5位
の位置にハロゲン基であるクロライドと3,6位の位置に
ヒドロキシル基を有する化合物のようにヒドロキシル基
を有することにより、図1に示すとおりアルカリ水溶液
に触れると金属陽イオンと安定な錯体を形成することが
でき、次のような電気化学反応が可能になる。すなわ
ち、電気化学的還元方向へ電位を掃引すると、プロトン
が錯体に侵入するとともに、パラ位の炭素−酸素2重結
合が解かれ、OH結合を形成する。逆に還元反応の後に
電気化学的酸化方向へ電位を掃引すると、パラ位のOH
結合は脱水素反応を起こし、炭素−酸素2重結合を再び
形成する。
However, by having a hydroxyl group such as a compound having a halogen group at the 2,5-position and a hydroxyl group at the 3,6-position of the benzoquinone structure, as shown in FIG. When touched, a stable complex can be formed with the metal cation, and the following electrochemical reaction becomes possible. That is, when the potential is swept in the electrochemical reduction direction, protons enter the complex, and the carbon-oxygen double bond at the para-position is broken to form an OH bond. Conversely, when the potential is swept in the electrochemical oxidation direction after the reduction reaction, the para-OH
The bond undergoes a dehydrogenation reaction, again forming a carbon-oxygen double bond.

【0012】この様な効果は、テトラクロロ-p-ベンゾ
キノンのように官能基がハロゲン基のみに於いても1つ
の対向位に存在するクロライドは求核置換されやすいた
め、上記と同様な安定な錯体を形成する。さらに、シア
ノ基あるいはハロゲン基は、それらが有する強い電気陰
性度のため錯体形成に必要な金属陽イオンとのイオン性
結合の安定化を助ける効果がある。
[0012] Such an effect is obtained because, even when the functional group is only a halogen group such as tetrachloro-p-benzoquinone, chloride existing at one opposing position is easily subjected to nucleophilic substitution. Form a complex. Further, the cyano group or the halogen group has an effect of helping to stabilize an ionic bond with a metal cation necessary for complex formation due to their strong electronegativity.

【0013】[0013]

【実施例】次に本発明の具体例を説明する。図2は本発
明の一実施例によるニッケル・キノン蓄電池を示す。1
は本発明によるキノン錯体を主成分に用いた負極板、2
は水酸化ニッケルを主成分に用いた正極板、3はセパレ
ータ、4はケース、5は絶縁板、6は安全弁、7は封口
板、8は正極端子、9は正極リードである。
Next, specific examples of the present invention will be described. FIG. 2 shows a nickel quinone storage battery according to one embodiment of the present invention. 1
Are negative plates using the quinone complex according to the present invention as a main component, 2
Is a positive electrode plate mainly composed of nickel hydroxide, 3 is a separator, 4 is a case, 5 is an insulating plate, 6 is a safety valve, 7 is a sealing plate, 8 is a positive electrode terminal, and 9 is a positive electrode lead.

【0014】本発明の実施例において負極板1の作製方
法について示す。まず、2,5-ジクロロ-3,6-ジヒドロキ
シ-p-ベンゾキノンをアルカリ水溶液中(KOH)で攪袢
し、一日放置した後、得られた沈殿物をろ過、乾燥させ
金属陽イオンとの錯体を得た。この錯体を導電材である
カーボンと混合し、カルボキシメチルセルロースの1重
量%水溶液を加えてペーストをつくり、さらに結着剤と
してフッ素系樹脂を加え銅集電体両面に塗着した。これ
を乾燥後、所定の厚みにプレスして負極とした。
An example of the present invention will be described with respect to a method for manufacturing the negative electrode plate 1. First, 2,5-dichloro-3,6-dihydroxy-p-benzoquinone was stirred in an aqueous alkali solution (KOH) and allowed to stand for one day, and the resulting precipitate was filtered, dried, and dried with a metal cation. The complex was obtained. This complex was mixed with carbon as a conductive material, a 1% by weight aqueous solution of carboxymethylcellulose was added to form a paste, and a fluorine-based resin was further added as a binder and applied to both surfaces of the copper current collector. After drying this, it was pressed to a predetermined thickness to obtain a negative electrode.

【0015】正極板2には、導電材と水酸化ニッケルを
混合し、カルボキシメチルセルロースの1重量%水溶液
を加えてペーストをつくり、さらに結着剤としてフッ素
系樹脂を加えニッケル集電体両面に塗着した。これを乾
燥後、所定の厚みにプレスして正極とした。セパレータ
には親水処理を施したポリプロピレン製の不織布を用い
て電極群を構成して、金属ケースに挿入して電解液とし
て比重1.3の苛性カリ水溶液を注液した後、封口しニ
ッケル・キノン蓄電池を構成した。
On the positive electrode plate 2, a conductive material and nickel hydroxide are mixed, a 1% by weight aqueous solution of carboxymethylcellulose is added to form a paste, and a fluororesin is added as a binder, and the paste is applied to both surfaces of the nickel current collector. I wore it. After drying this, it was pressed to a predetermined thickness to obtain a positive electrode. An electrode group is formed by using a nonwoven fabric made of hydrophilic polypropylene as a separator, inserted into a metal case, injected with an aqueous solution of caustic potassium having a specific gravity of 1.3 as an electrolytic solution, and then sealed to close a nickel-quinone storage battery. Was configured.

【0016】図3にこの電池の充放電曲線を示す。電池
サイズはAAA、公称容量300mAhであり、充放電
電流はともに0.1Cで行った。充電電圧は約1.3
V、放電電圧は約1.15Vであった。
FIG. 3 shows a charge / discharge curve of this battery. The battery size was AAA, the nominal capacity was 300 mAh, and the charging and discharging currents were both 0.1 C. Charge voltage is about 1.3
V and the discharge voltage were about 1.15V.

【0017】この実施例において、一日放置するアルカ
リ水溶液の溶質を変えることにより錯体を形成する金属
陽イオンを変えることができるが、金属陽イオンが異な
る場合(リチウム、ナトリウム、バリウム)においても
カリウムの場合と同様な特性が得られた。
In this embodiment, the metal cation forming the complex can be changed by changing the solute of the alkaline aqueous solution which is left for one day. However, even when the metal cation is different (lithium, sodium, barium), potassium is changed. The same characteristics as in the case of were obtained.

【0018】なお、この様なメカニズムからキノン構造
を有する錯体を主鎖にもつ高分子化合物においても同様
な特性が得られるものと考えられる。
From such a mechanism, it is considered that similar characteristics can be obtained in a polymer compound having a complex having a quinone structure in the main chain.

【0019】さらに、電極基板および負極の作製条件を
最適化することにより、さらに大きな電流を流すことが
できると考えられる。
Further, it is considered that by optimizing the manufacturing conditions of the electrode substrate and the negative electrode, a larger current can be passed.

【0020】[0020]

【発明の効果】以上のように本発明によれば、金属陽イ
オンと錯体を形成するキノン構造を有する化合物を活物
質として用いることができる。また、この活物質をアル
カリ蓄電池に用いることにより小型・薄型の電極および
蓄電池を提供できる。
As described above, according to the present invention, a compound having a quinone structure which forms a complex with a metal cation can be used as an active material. Further, by using this active material for an alkaline storage battery, a small and thin electrode and a storage battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に用いたキノン構造を有する
化合物とその金属錯体の構造を表す模式図
FIG. 1 is a schematic diagram showing the structure of a compound having a quinone structure and a metal complex thereof used in one example of the present invention.

【図2】本発明の一実施例におけるニッケル・キノン蓄
電池の概略構成図
FIG. 2 is a schematic configuration diagram of a nickel-quinone storage battery in one embodiment of the present invention.

【図3】本実施例の充放電特性を示す図FIG. 3 is a diagram showing charge / discharge characteristics of the present embodiment.

【符号の説明】[Explanation of symbols]

1 キノン化合物を用いた負極 2 水酸化ニッケル正極 3 セパレータ 1 Negative electrode using quinone compound 2 Nickel hydroxide positive electrode 3 Separator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 キノン構造を有し、金属陽イオン(Li+,
Na+, K+, Ba2+)と錯体を形成する化合物であることを
特徴とするアルカリ蓄電池用負極活物質。
(1) a metal cation (Li +,
A negative electrode active material for an alkaline storage battery, which is a compound that forms a complex with (Na +, K +, Ba2 +).
【請求項2】 化合物は、官能基にヒドロキシル(-OH)
基、シアノ(-CN)基あるいはハロゲン(-F, -Cl, -Br)基
を少なくとも1つ以上有することを特徴とする請求項1
記載のアルカリ蓄電池用負極活物質。
2. The compound has a hydroxyl group (—OH) as a functional group.
2. A compound having at least one of a group, a cyano (-CN) group or a halogen (-F, -Cl, -Br) group.
The negative electrode active material for an alkaline storage battery according to the above.
【請求項3】 請求項1記載の活物質を用いた負極と、
金属酸化物を用いた正極と、アルカリ電解液とを備えた
ことを特徴とするアルカリ蓄電池。
3. A negative electrode using the active material according to claim 1,
An alkaline storage battery comprising a positive electrode using a metal oxide and an alkaline electrolyte.
JP10139897A 1997-04-18 1997-04-18 Negative electrode active material for alkaline storage battery and battery using the same Expired - Fee Related JP3525676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10139897A JP3525676B2 (en) 1997-04-18 1997-04-18 Negative electrode active material for alkaline storage battery and battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10139897A JP3525676B2 (en) 1997-04-18 1997-04-18 Negative electrode active material for alkaline storage battery and battery using the same

Publications (2)

Publication Number Publication Date
JPH10294107A true JPH10294107A (en) 1998-11-04
JP3525676B2 JP3525676B2 (en) 2004-05-10

Family

ID=14299639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10139897A Expired - Fee Related JP3525676B2 (en) 1997-04-18 1997-04-18 Negative electrode active material for alkaline storage battery and battery using the same

Country Status (1)

Country Link
JP (1) JP3525676B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075829A1 (en) * 2001-03-15 2002-09-26 Universität Heidelberg High energy density quinone electrodes for rechargeable batteries
US7879492B2 (en) 1997-12-02 2011-02-01 Acep Inc. Electrode materials derived from polyquinonic ionic compounds and their use in electrochemical generators
WO2014156511A1 (en) * 2013-03-28 2014-10-02 国立大学法人東北大学 Electricity storage device and electrode material therefor
WO2014169122A1 (en) * 2013-04-10 2014-10-16 University Of Houston System Aqueous energy storage devices with organic electrode materials
WO2016025734A1 (en) * 2014-08-13 2016-02-18 University Of Houston System Rechargeable alkaline battery using organic materials as negative electrodes
JP2016170955A (en) * 2015-03-12 2016-09-23 株式会社リコー Secondary battery
US10522875B2 (en) 2015-05-22 2019-12-31 University Of Houston System Lead-acid batteries with fast charge acceptance
CN116333327A (en) * 2023-02-20 2023-06-27 华中科技大学 Water-based sodium ion battery anode material and preparation method and application thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879492B2 (en) 1997-12-02 2011-02-01 Acep Inc. Electrode materials derived from polyquinonic ionic compounds and their use in electrochemical generators
US9722240B2 (en) 1997-12-02 2017-08-01 Acep Inc. Electrode materials derived from polyquinonic ionic compounds and their use in electrochemical generators
WO2002075829A1 (en) * 2001-03-15 2002-09-26 Universität Heidelberg High energy density quinone electrodes for rechargeable batteries
JPWO2014156511A1 (en) * 2013-03-28 2017-02-16 国立大学法人東北大学 Power storage device and electrode material thereof
WO2014156511A1 (en) * 2013-03-28 2014-10-02 国立大学法人東北大学 Electricity storage device and electrode material therefor
US9620297B2 (en) 2013-03-28 2017-04-11 Tohoku University Electricity storage device and electrode material therefor
WO2014169122A1 (en) * 2013-04-10 2014-10-16 University Of Houston System Aqueous energy storage devices with organic electrode materials
US10411262B2 (en) 2013-04-10 2019-09-10 University Of Houston System Aqueous energy storage devices with organic electrode materials
WO2016025734A1 (en) * 2014-08-13 2016-02-18 University Of Houston System Rechargeable alkaline battery using organic materials as negative electrodes
US10033039B2 (en) 2014-08-13 2018-07-24 University Of Houston System Rechargeable alkaline battery using organic materials as negative electrodes
JP2016170955A (en) * 2015-03-12 2016-09-23 株式会社リコー Secondary battery
US10522875B2 (en) 2015-05-22 2019-12-31 University Of Houston System Lead-acid batteries with fast charge acceptance
CN116333327A (en) * 2023-02-20 2023-06-27 华中科技大学 Water-based sodium ion battery anode material and preparation method and application thereof

Also Published As

Publication number Publication date
JP3525676B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
US6210832B1 (en) Mixed ionic electronic conductor coatings for redox electrodes
KR101073228B1 (en) Nonaqueous Electrolyte Secondary Battery
WO2002047185A2 (en) Improved electrodes for lithium batteries
US10511055B2 (en) Metal plating-based electrical energy storage cell
JP4839573B2 (en) Electrochemical device and electrode
US10522869B2 (en) Battery, battery pack, and uninterruptible power supply
JP5082198B2 (en) Lithium ion secondary battery
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
CN108717977A (en) A kind of lithium ion battery with excellent zero volt storage performance
JP3525676B2 (en) Negative electrode active material for alkaline storage battery and battery using the same
WO2001059866A1 (en) Nickel hydroxide paste with pectin binder
CN109119635B (en) Battery with a battery cell
CN100511782C (en) Alkaline secondary battery positive electrode material and alkaline secondary battery
JP2003123836A (en) Lithium secondary battery
CN115312879A (en) Aqueous electrolyte and battery
JPH04169076A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2001160384A (en) Cylindrical secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP7343116B1 (en) secondary battery
JP3163197B2 (en) Collective battery
JP2001313024A (en) Lithium secondary battery
KR19990026737A (en) How to Form a Cathode Conductive Network for Nickel-based Batteries
Shukla et al. Electrochemical power sources: 1. Rechargeable batteries
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2762730B2 (en) Nickel-cadmium storage battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040209

LAPS Cancellation because of no payment of annual fees