JPH10293193A - Molten salt electrolysis device - Google Patents

Molten salt electrolysis device

Info

Publication number
JPH10293193A
JPH10293193A JP10172297A JP10172297A JPH10293193A JP H10293193 A JPH10293193 A JP H10293193A JP 10172297 A JP10172297 A JP 10172297A JP 10172297 A JP10172297 A JP 10172297A JP H10293193 A JPH10293193 A JP H10293193A
Authority
JP
Japan
Prior art keywords
liquid metal
molten salt
cathode
container
uranium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10172297A
Other languages
Japanese (ja)
Other versions
JP3305227B2 (en
Inventor
Kazuaki Ota
和明 太田
Hiroshi Takazawa
寛 高澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10172297A priority Critical patent/JP3305227B2/en
Publication of JPH10293193A publication Critical patent/JPH10293193A/en
Application granted granted Critical
Publication of JP3305227B2 publication Critical patent/JP3305227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably recover plutonium, transuranium elements and uranium with electrolysis reduction and effectively deposit the materials precipitated by reduction on the upper surface of a liquid metal cathode on the vessel bottom by preventing the growth of uranium on the surface of the liquid metal cathode. SOLUTION: The molten salt electrolysis device is constituted by providing inside an electrolysis tank 11 with an anode 12 conducting to spent nuclear fuel, molten salt 13 capable of solving at least uranium in the spent nuclear fuel and a cathode 16 consisting of liquid metal stored in a vessel 14 arranged in the molten salt. In this case, a rotation shaft 17 is provided extending from the upper part to vertical downward so as to dip in the liquid metal stored in the vessel 14, and an impeller 18 for stirring liquid metal is fixed to the lower part of the rotational shaft 17. A cylinder 19 is provided so as to surround the impeller 18 inside the vessel 14. Here, by the rotation of the rotational shaft 17, the impeller 18 sucks up the liquid metal 16 from the lower part of the cylinder 19 and discharges out of the upper part of the cylinder 19.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ウランを含む使用
済核燃料を再処理・回収するための溶融塩電解装置に関
するものである。
TECHNICAL FIELD The present invention relates to a molten salt electrolysis apparatus for reprocessing and recovering spent nuclear fuel containing uranium.

【0002】[0002]

【従来の技術】従来、使用済核燃料の乾式再処理装置で
ある溶融塩電解装置では使用済核燃料をバスケットに入
れて電解槽の下部に貯留された液体Cdの中に投入する
か、又は図4に示すように使用済核燃料2をバスケット
3に入れて電解槽1の溶融塩6の中で保持し、液体Cd
又はバスケットを陽極としている。一方、溶融塩6中に
は固体陰極4及び容器8に貯留された液体Cd陰極7が
保持される。このような装置で溶融塩電解を行うと、先
ず溶融塩6に溶解しているウランイオンが矢印Aで示す
ように、固体陰極4にデンドライド状の金属ウラン5と
なって分離回収される。次いで、溶融塩6中に残存され
るウランや濃縮されたプルトニウム、超ウラン元素(A
m,Cm等)が矢印Bで示すように、液体Cd陰極7中
に電解還元され回収される。このような水を用いない乾
式法により使用済核燃料を再処理することにより、再処
理プロセスが簡素化され、水を用いた湿式法により再処
理する場合に比較して再処理費用を低減できることが期
待されている。
2. Description of the Related Art Conventionally, in a molten salt electrolysis apparatus which is a dry reprocessing apparatus for spent nuclear fuel, spent nuclear fuel is put into a basket and poured into a liquid Cd stored in a lower portion of an electrolytic cell, or FIG. The spent nuclear fuel 2 is put in the basket 3 and held in the molten salt 6 of the electrolytic cell 1 as shown in FIG.
Alternatively, the basket is used as the anode. On the other hand, the solid cathode 4 and the liquid Cd cathode 7 stored in the container 8 are held in the molten salt 6. When the molten salt electrolysis is performed by such an apparatus, first, uranium ions dissolved in the molten salt 6 are separated and recovered as dendritic metal uranium 5 on the solid cathode 4 as shown by an arrow A. Next, the uranium remaining in the molten salt 6, the concentrated plutonium, and the transuranium element (A
m, Cm, etc.) are electrolytically reduced and collected in the liquid Cd cathode 7 as shown by the arrow B. By reprocessing spent nuclear fuel by such a dry method without water, the reprocessing process can be simplified, and the cost of reprocessing can be reduced compared to the case of reprocessing by a wet method using water. Expected.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述した乾式
再処理では固体陰極4にデンドライド状のウラン5を容
易に析出させ回収することができる一方、液体Cd陰極
7ではウランを電解還元する際にウランが液体Cd陰極
7の表面に結晶として成長し、その成長した結晶に電流
が集中してデンドライド状のウランのみが異常に成長
し、溶融塩6中に濃縮されたプルトニウムはその析出が
阻害され、正常な電解を行うことができなかった。
However, in the dry reprocessing described above, dendritic uranium 5 can be easily precipitated and recovered on the solid cathode 4, while the liquid Cd cathode 7 is not suitable for electrolytic reduction of uranium. Uranium grows as a crystal on the surface of the liquid Cd cathode 7, current concentrates on the grown crystal, and only dendritic uranium grows abnormally, and the precipitation of plutonium concentrated in the molten salt 6 is inhibited. , Normal electrolysis could not be performed.

【0004】この点を解消するために液体Cd陰極7に
容器8の上部から撹拌インペラ(図示せず)を浸漬し、
液体Cd陰極7をこのインペラで撹拌し、液体Cdを回
転させながら液体Cd陰極7の上面に還元析出した核燃
料物質を機械的に液体Cd陰極7の内部に混合分散させ
ることが試みられている。しかし、単に、陰極7の液体
Cdを回転させるだけでは結晶として成長したウランが
液体Cd陰極7とともに回転するだけで液体Cd陰極7
の内部に混合分散されない不具合がある。この場合、陰
極電流密度を低下させることやインペラの回転数を増大
させることが考えられるが、陰極電流密度を低下させる
と処理能力の低下を招き、インペラの回転数を増大させ
ると、その遠心力により容器8の内壁面に密度の高いウ
ランデンドライド粒子が濃縮され、これが内壁面上部ま
で付着することとなり、電解を長時間行うときには液体
Cd陰極7の上面にウランデンドライドが成長する恐れ
もある。
In order to solve this problem, a stirring impeller (not shown) is immersed in the liquid Cd cathode 7 from the upper part of the container 8.
Attempts have been made to stir the liquid Cd cathode 7 with this impeller and mechanically mix and disperse the nuclear fuel material reduced and deposited on the upper surface of the liquid Cd cathode 7 inside the liquid Cd cathode 7 while rotating the liquid Cd. However, simply rotating the liquid Cd of the cathode 7 causes the uranium grown as a crystal to rotate together with the liquid Cd cathode 7, and the liquid Cd cathode 7
There is a problem that it is not mixed and dispersed inside. In this case, it is conceivable to reduce the cathode current density or increase the rotation speed of the impeller.However, if the cathode current density is reduced, the processing capacity is reduced, and if the rotation speed of the impeller is increased, the centrifugal force is increased. As a result, high-density uranium dendride particles are concentrated on the inner wall surface of the container 8 and adhere to the upper part of the inner wall surface. When electrolysis is performed for a long time, uranium dendride may grow on the upper surface of the liquid Cd cathode 7. .

【0005】本発明の目的は、ウランが液体金属陰極表
面に成長することを防止して、電解還元によるウラン、
プルトニウム及び超ウラン元素の回収を安定に行う溶融
塩電解装置を提供することにある。本発明の別の目的
は、液体金属陰極上面に還元析出した物質を容器下部に
有効に沈降させる溶融塩電解装置を提供することにあ
る。
An object of the present invention is to prevent uranium from growing on the surface of a liquid metal cathode, and to reduce uranium by electrolytic reduction.
An object of the present invention is to provide a molten salt electrolysis apparatus that stably recovers plutonium and transuranium elements. Another object of the present invention is to provide a molten salt electrolysis apparatus for effectively causing a substance reduced and deposited on the upper surface of a liquid metal cathode to settle in a lower portion of a container.

【0006】[0006]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、電解槽11の内部に、使用済核燃料
に導通する陽極12と、使用済核燃料中の少なくともウ
ランを溶解可能な溶融塩13と、溶融塩中に配置された
容器14に貯留された液体金属からなる陰極16とを備
え、溶融塩電解により溶融塩13中に溶解したウランを
液体金属16中に析出させるように構成された溶融塩電
解装置の改良である。その特徴ある構成は、容器14に
貯留された液体金属16に浸漬するように上部より鉛直
下方に延びて設けられた回転軸17と、回転軸17の下
部に取付けられた液体金属撹拌用のインペラ18と、イ
ンペラ18を包囲するように容器14内部に設けられた
筒体19とを備えたところにある。回転軸17の回転に
よりインペラ18は液体金属16を筒体19の下部から
吸上げて筒体19の上部から流出させる循環流を形成す
るため、筒体19の外側で下方に向う液体金属16の流
れが発生し、液体金属陰極の上面に析出したウラン等の
金属は液体金属16の流れに従って液体金属16中に沈
降する。
The invention according to claim 1 is
As shown in FIG. 1, inside an electrolytic cell 11, an anode 12 that communicates with spent nuclear fuel, a molten salt 13 that can dissolve at least uranium in spent nuclear fuel, and a container 14 that is disposed in the molten salt are provided. The present invention is an improvement of a molten salt electrolysis apparatus including a cathode 16 made of stored liquid metal and configured to precipitate uranium dissolved in the molten salt 13 in the liquid metal 16 by molten salt electrolysis. Its characteristic configuration is that a rotating shaft 17 is provided extending vertically downward from the upper portion so as to be immersed in the liquid metal 16 stored in the container 14, and a liquid metal stirring impeller attached to the lower portion of the rotating shaft 17. 18 and a cylindrical body 19 provided inside the container 14 so as to surround the impeller 18. Due to the rotation of the rotation shaft 17, the impeller 18 forms a circulating flow in which the liquid metal 16 is sucked up from the lower part of the cylindrical body 19 and flows out from the upper part of the cylindrical body 19, so that the liquid metal 16 flowing downwardly outside the cylindrical body 19 A flow occurs, and the metal such as uranium deposited on the upper surface of the liquid metal cathode sediments in the liquid metal 16 according to the flow of the liquid metal 16.

【0007】請求項2に係る発明は、請求項1に係る発
明であって、筒体19が容器内部で上下動可能に構成さ
れた電解還元装置である。請求項3に係る発明は、請求
項1に係る発明であって、筒体19と回転軸17とが容
器14内部で上下方向に連動可能に構成された電解還元
装置である。筒体19を容器内部で上下動可能に構成
し、図3に示すように、筒体19の上部を液体金属表面
から上方に突出させれば、陰極16である液体金属の上
面、即ち電流の集中する部分を制御することができ、回
転軸17を容器14内部で上下方向に筒体19と連動さ
せることにより、筒体19を上下動させた場合であって
も液体金属16を筒体19の下部から有効に吸上げる。
A second aspect of the present invention is the electrolytic reduction apparatus according to the first aspect, wherein the cylindrical body 19 is configured to be vertically movable inside the container. The invention according to claim 3 is the invention according to claim 1, which is an electrolytic reduction device in which the cylindrical body 19 and the rotating shaft 17 are configured to be vertically interlockable inside the container 14. The cylindrical body 19 is configured to be able to move up and down inside the container, and as shown in FIG. The concentrated portion can be controlled, and by rotating the rotating shaft 17 vertically with the cylinder 19 inside the container 14, the liquid metal 16 can be moved even when the cylinder 19 is moved up and down. Effectively sucks from the bottom.

【0008】[0008]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1に示すように、本発明の溶融塩
電解装置10は電解槽11の内部に使用済核燃料に導通
する陽極12と、使用済核燃料中の少なくともウランを
溶解可能な溶融塩13と、この溶融塩13中に配置され
た容器14に貯留された液体金属からなる陰極16とを
備える。この装置の電解槽11は蓋11aを有する鋼鉄
製の槽であって、槽底部には溶融されたカドミウムが貯
留され、この溶融カドミウムには上方から棒状の黒鉛製
の電極12aが絶縁被覆された状態で挿入され、この電
極12aを介して溶融カドミウムが陽極12を構成する
ようになっている。電解槽11の蓋11aには電解槽1
1に貯留された陽極12を撹拌するための陽極用インペ
ラ12bが回転可能に設けられ、このインペラ12bを
回転させることにより陽極12である溶融カドミウムを
撹拌できるようになっている。
Embodiments of the present invention will now be described with reference to the drawings. As shown in FIG. 1, a molten salt electrolysis apparatus 10 of the present invention includes an anode 12 that communicates with spent nuclear fuel in an electrolytic cell 11, a molten salt 13 that can dissolve at least uranium in spent nuclear fuel, A cathode 16 made of a liquid metal stored in a container 14 disposed in the salt 13. The electrolytic cell 11 of this apparatus is a steel tank having a lid 11a, in which molten cadmium is stored at the bottom of the cell, and the molten cadmium is covered with a rod-shaped graphite electrode 12a from above. In this state, the molten cadmium forms the anode 12 via the electrode 12a. The lid 11a of the electrolytic cell 11 has an electrolytic cell 1
An anode impeller 12b for stirring the anode 12 stored in 1 is rotatably provided. By rotating the impeller 12b, molten cadmium as the anode 12 can be stirred.

【0009】この陽極12である溶融カドミウムの上部
にはウランを溶解可能な溶融塩13が貯留される。液体
金属からなる陰極16を貯留する容器14は電解槽11
の蓋11aに複数の支軸14a,14aを介して溶融塩
13の中に垂設される。容器14は有底円筒状の黒鉛製
の容器であり、溶融カドミウムを貯留する。この容器1
4には上方から棒状の金属製の電極16aが絶縁被覆さ
れた状態で挿入され、この電極16aを介して容器14
に貯留された溶融カドミウムが陰極16を構成するよう
になっている。なお図示しないが、電解槽11の外側に
は槽内を所定の温度に加熱維持するための加熱コイルが
設けられる。
A molten salt 13 capable of dissolving uranium is stored above the molten cadmium serving as the anode 12. The container 14 for storing the cathode 16 made of liquid metal is the electrolytic cell 11.
Is suspended in the molten salt 13 via a plurality of support shafts 14a, 14a. The container 14 is a bottomed cylindrical container made of graphite, and stores molten cadmium. This container 1
A rod-shaped metal electrode 16a is inserted into the container 4 from above in a state where the electrode 16a is insulated and covered.
The molten cadmium stored in the cathode constitutes the cathode 16. Although not shown, a heating coil for heating and maintaining the inside of the tank at a predetermined temperature is provided outside the electrolytic tank 11.

【0010】容器14上方の電解槽11の蓋11aには
容器14に貯留された液体金属16に浸漬するように上
部より回転軸17が鉛直下方に延びて回転可能にかつ上
下動可能に設けられ、この回転軸17の下部には液体金
属撹拌用のインペラ18が取付けられる。また、蓋11
aには筒体19が複数の支持棒19a,19aを介して
容器14内部でインペラ18を包囲するように上下動可
能に設けられる。本実施の形態におけるインペラ18は
モリブデンからなり、筒体19はイットリア(Y23
の成型体又は窒化ホウ素(BN)の切削加工体である。
インペラ18は所定の傾斜角度を有する羽根を複数枚設
けることにより構成される。このインペラ18は回転軸
17の回転により筒体19の内部で回転し、図の実線矢
印で示すように、陰極16である液体金属を筒体19の
下部から吸上げて筒体19の上部から流出するように構
成される。
On the lid 11a of the electrolytic cell 11 above the container 14, a rotary shaft 17 extends vertically downward from the upper part so as to be immersed in the liquid metal 16 stored in the container 14 so as to be rotatable and vertically movable. An impeller 18 for stirring the liquid metal is mounted below the rotating shaft 17. Also, the lid 11
In a, a cylindrical body 19 is provided movably up and down so as to surround the impeller 18 inside the container 14 via a plurality of support rods 19a, 19a. In this embodiment, the impeller 18 is made of molybdenum, and the cylinder 19 is made of yttria (Y 2 O 3 ).
Or a boron nitride (BN) cut body.
The impeller 18 is configured by providing a plurality of blades having a predetermined inclination angle. The impeller 18 rotates inside the cylindrical body 19 by the rotation of the rotating shaft 17, and sucks the liquid metal as the cathode 16 from the lower part of the cylindrical body 19 and raises the liquid metal as the cathode 16 from the upper part of the cylindrical body 19 as shown by the solid arrow in the figure. Configured to spill.

【0011】このような装置10では図示しない加熱コ
イルに通電して電解槽11を加熱し、槽内部の物質を溶
融した状態にした後、電解槽11下部のCd陽極12中
に使用済の金属燃料を投入し、陰極16及び陽極12に
通電して溶融塩電解を実施すると、溶融塩13中に溶解
したウラン、プルトニウム及び超ウラン元素(Am,C
m等)の各陽イオンが図の破線矢印で示すように容器1
4内の液体Cd陰極16に引寄せられ、これらの金属が
容器14内の液体Cd陰極16中に電解還元され回収さ
れる。
In such an apparatus 10, a heating coil (not shown) is energized to heat the electrolytic cell 11 to melt the substance in the cell, and the used metal is placed in the Cd anode 12 below the electrolytic cell 11. When the fuel is supplied, and the cathode 16 and the anode 12 are energized to perform molten salt electrolysis, uranium, plutonium and transuranium elements (Am, C
m etc.) as shown by the dashed arrows in the figure.
The metal is attracted to the liquid Cd cathode 16 in 4, and these metals are electrolytically reduced and recovered in the liquid Cd cathode 16 in the container 14.

【0012】溶融塩13中に溶解したウラン、プルトニ
ウム等は、初めは液体Cd陰極16の表面で還元析出す
る。ここで、図2に示すように、回転軸17を回転させ
ることによりインペラ18が筒体19の内部で回転し、
陰極16である液体金属が図の実線矢印で示すように、
筒体19の下部から吸上げられて筒体19の上部から流
出した後、筒体19の外側で下方に向う流れを発生させ
る。この液体金属16の流れは液体Cd陰極16上面に
還元析出したウラン、プルトニウム等の金属を容器14
下部に沈降させ、ウランが液体Cd陰極16表面で結晶
成長することを防止する。
Uranium, plutonium and the like dissolved in the molten salt 13 are firstly reduced and precipitated on the surface of the liquid Cd cathode 16. Here, as shown in FIG. 2, by rotating the rotation shaft 17, the impeller 18 rotates inside the cylindrical body 19,
As shown by the solid arrow in the figure, the liquid metal as the cathode 16 is
After being sucked up from the lower part of the cylindrical body 19 and flowing out from the upper part of the cylindrical body 19, a downward flow is generated outside the cylindrical body 19. The flow of the liquid metal 16 is performed by depositing a metal such as uranium or plutonium deposited on the upper surface of the liquid Cd cathode 16 by reduction.
Sediment at the bottom to prevent uranium from growing on the surface of the liquid Cd cathode 16.

【0013】なお、図2ではインペラ18及び筒体19
を液体Cd内部に位置させてウラン、プルトニウム等を
析出させる面積を容器14の断面積と同じくしたが、図
3に示すように、筒体19の上部を液体Cd表面から上
方に突出させて液体Cdを筒体19の上部から溢れさせ
るようにしてもよい。この場合のウラン、プルトニウム
等を析出させる面積は筒体19の外径における断面積と
ほぼ同じになり、このように筒体19の上部を液体Cd
表面から上方に突出させることによりその析出させる面
積を変化させることができる。
In FIG. 2, the impeller 18 and the cylinder 19
Is positioned inside the liquid Cd, and the area for depositing uranium, plutonium, etc. is the same as the cross-sectional area of the container 14. However, as shown in FIG. Cd may overflow from the upper part of the cylinder 19. In this case, the area where uranium, plutonium, etc. are deposited is substantially the same as the cross-sectional area of the outer diameter of the cylinder 19, and thus the upper part of the cylinder 19 is filled with the liquid Cd.
By protruding upward from the surface, the area to be deposited can be changed.

【0014】また、上述した実施の形態では電解槽11
下部のCd陽極12中に使用済の金属燃料を投入した
が、図1の破線で示すように、溶融塩13中に保持され
るバスケット21に使用済核燃料を入れて陽極となる電
極22をバスケット21に接続しても良い。
In the above embodiment, the electrolytic cell 11
Although the spent metal fuel was introduced into the lower Cd anode 12, as shown by the broken line in FIG. 1, the spent nuclear fuel was introduced into the basket 21 held in the molten salt 13, and the electrode 22 serving as the anode was placed in the basket. 21 may be connected.

【0015】[0015]

【実施例】次に、本発明の実施例を説明する。本発明の
効果を確認するために、図1に示す本発明に係る模擬塩
電解装置10により水溶液電解を行った。図に示す容器
14には内径150mm、深さ60mmのアクリル製の
容器を使用した。電解槽11内に溶融塩13の代りに電
解塩水溶液(塩化銀1mol/l)約10リットルを入
れ、かつ容器14内にはガリウムを約500ccを入れ
た後電解を行った。
Next, embodiments of the present invention will be described. In order to confirm the effects of the present invention, aqueous solution electrolysis was performed using the simulated salt electrolysis apparatus 10 according to the present invention shown in FIG. As the container 14 shown in the figure, an acrylic container having an inner diameter of 150 mm and a depth of 60 mm was used. About 10 liters of an electrolytic salt aqueous solution (1 mol / l of silver chloride) was placed in the electrolytic bath 11 in place of the molten salt 13, and about 500 cc of gallium was placed in the container 14 and then electrolysis was performed.

【0016】電解は陽極12と陰極16に20A通電す
ることにより行い、インペラ18及び筒体19は図2に
示すように、液体ガリウム内部に位置させて回転軸17
を回転させることによりガリウム陰極16を筒体19の
下部から吸上げて筒体19の上部から流出させた。筒体
の内径は50mmであって、撹拌インペラ18の回転を
上昇させ液体金属が流出することを目視で確認しながら
3時間電解を行った。また、比較のため筒体19を使用
しない条件でも試験を行った。電解後液体陰極16を容
器14ごと取出し、液体陰極16外への銀デンドライト
の生成状況を確認した。
The electrolysis is carried out by applying a current of 20 A to the anode 12 and the cathode 16, and the impeller 18 and the cylinder 19 are positioned inside the liquid gallium and the rotating shaft 17 as shown in FIG.
The gallium cathode 16 was sucked up from the lower part of the cylindrical body 19 by flowing, and was allowed to flow out from the upper part of the cylindrical body 19. The inner diameter of the cylinder was 50 mm, and the rotation of the stirring impeller 18 was increased to perform electrolysis for 3 hours while visually confirming that the liquid metal flowed out. Further, for comparison, a test was performed under the condition where the cylindrical body 19 was not used. After the electrolysis, the liquid cathode 16 was taken out together with the container 14, and the generation state of silver dendrites outside the liquid cathode 16 was confirmed.

【0017】その結果、筒体19を用いない場合には、
デンドライドの生成が容器14表面に認められたが、筒
体19を使用した場合にはデンドライド状の銀の生成は
筒体19にはほとんど認められず、また、電解も安定し
て行うことが可能であった。また、試験後液体陰極16
下部には、筒体19を用いた場合には銀23が良好に沈
降していることが確認された。
As a result, when the cylindrical body 19 is not used,
Although the generation of dendrites was observed on the surface of the container 14, when the cylinder 19 was used, the generation of dendritic silver was hardly recognized in the cylinder 19, and the electrolysis could be performed stably. Met. After the test, the liquid cathode 16
In the lower part, it was confirmed that silver 23 was successfully settled when the cylindrical body 19 was used.

【0018】[0018]

【発明の効果】以上述べたように、本発明によれば、容
器に貯留された液体金属に浸漬するように上部より鉛直
下方に延びて設けられた回転軸と、回転軸の下部に取付
けられた液体金属撹拌用のインペラと、インペラを包囲
するように容器内部に設けられた筒体とを備えたので、
回転軸を回転させることによりインペラが液体金属を筒
体の下部から吸上げて筒体の上部から流出させ、筒体の
外側で下方に向う流れを発生させる。この結果、この液
体金属の流れに従って液体金属陰極上面に還元析出した
物質を容器下部に有効に沈降させることができる。ま
た、筒体の上部からウランが析出していない液体金属陰
極を常に流出させるため、液体金属陰極の表面にウラン
が成長することを防止することができ、電解還元による
ウラン、プルトニウム及び超ウラン元素の回収を安定に
行うことができる。
As described above, according to the present invention, a rotary shaft extending vertically downward from an upper portion so as to be immersed in liquid metal stored in a container, and a rotary shaft attached to a lower portion of the rotary shaft. Liquid metal stirring impeller, and a cylindrical body provided inside the container so as to surround the impeller,
By rotating the rotating shaft, the impeller sucks up liquid metal from the lower part of the cylindrical body and flows out from the upper part of the cylindrical body to generate a downward flow outside the cylindrical body. As a result, the substance reduced and precipitated on the upper surface of the liquid metal cathode according to the flow of the liquid metal can be effectively settled at the lower portion of the container. In addition, since the liquid metal cathode on which uranium is not precipitated is constantly discharged from the upper part of the cylindrical body, uranium can be prevented from growing on the surface of the liquid metal cathode, and uranium, plutonium, and transuranium elements can be prevented by electrolytic reduction. Can be stably recovered.

【0019】また、筒体を容器内部で上下動可能に構成
すれば、筒体の上部を液体金属表面から上方に突出させ
て陰極である液体金属の所望の金属を析出させる面積を
変更させることができ、回転軸を容器内部で上下方向に
筒体と連動させれば、筒体を上下動させた場合であって
も液体金属を筒体の下部から有効に吸上げることができ
る。
Further, if the cylindrical body is configured to be movable up and down inside the container, the upper part of the cylindrical body is projected upward from the surface of the liquid metal to change the area where the desired metal of the liquid metal serving as the cathode is deposited. If the rotating shaft is vertically linked with the cylinder inside the container, the liquid metal can be effectively sucked from the lower part of the cylinder even when the cylinder is moved up and down.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の溶融塩電解装置の構成図。FIG. 1 is a configuration diagram of a molten salt electrolysis apparatus of the present invention.

【図2】その装置の容器周囲の拡大断面図。FIG. 2 is an enlarged sectional view around the container of the device.

【図3】その筒体を上昇させた状態を示す図2に対応す
る断面図。
FIG. 3 is a sectional view corresponding to FIG. 2 and showing a state in which the cylindrical body is raised.

【図4】従来の溶融塩電解装置を示す断面図。FIG. 4 is a sectional view showing a conventional molten salt electrolysis apparatus.

【符号の説明】[Explanation of symbols]

10 溶融塩電解装置 11 電解槽 12 陽極 13 溶融塩 14 容器 16 陰極(液体金属) 17 回転軸 18 インペラ 19 筒体 DESCRIPTION OF SYMBOLS 10 Molten salt electrolysis apparatus 11 Electrolyzer 12 Anode 13 Molten salt 14 Container 16 Cathode (liquid metal) 17 Rotation axis 18 Impeller 19 Cylindrical body

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解槽(11)の内部に、使用済核燃料に導
通する陽極(12)と、前記使用済核燃料中の少なくともウ
ランを溶解可能な溶融塩(13)と、前記溶融塩中に配置さ
れた容器(14)に貯留された液体金属からなる陰極(16)と
を備え、 溶融塩電解により前記溶融塩(13)中に溶解したウランを
前記液体金属(16)中に析出させるように構成された溶融
塩電解装置において、 前記容器(14)に貯留された液体金属(16)に浸漬するよう
に上部より鉛直下方に延びて設けられた回転軸(17)と、 前記回転軸(17)の下部に取付けられた液体金属撹拌用の
インペラ(18)と、 前記インペラ(18)を包囲するように前記容器(14)内部に
設けられた筒体(19)とを備え、 前記回転軸(17)の回転により前記インペラ(18)が前記液
体金属(16)を前記筒体(19)の下部から吸上げて前記筒体
(19)の上部から流出するように構成されたことを特徴と
する溶融塩電解装置。
An electrolytic cell (11) has an anode (12) that communicates with spent nuclear fuel, a molten salt (13) capable of dissolving at least uranium in the spent nuclear fuel, and A cathode (16) made of a liquid metal stored in a container (14) disposed therein, and uranium dissolved in the molten salt (13) is precipitated in the liquid metal (16) by molten salt electrolysis. In the molten salt electrolysis apparatus configured as described above, the rotating shaft (17) provided vertically extending from the upper portion so as to be immersed in the liquid metal (16) stored in the container (14), the rotating shaft ( A liquid metal stirring impeller (18) attached to a lower portion of the container (17); and a cylindrical body (19) provided inside the container (14) so as to surround the impeller (18). The rotation of the shaft (17) causes the impeller (18) to suck up the liquid metal (16) from the lower part of the cylinder (19), and
(19) A molten salt electrolysis apparatus characterized by being configured to flow out from the upper part of (19).
【請求項2】 筒体(19)が容器(14)内部で上下動可能に
構成された請求項1記載の溶融塩電解装置。
2. The molten salt electrolysis apparatus according to claim 1, wherein the tubular body (19) is configured to be vertically movable inside the container (14).
【請求項3】 筒体(19)と回転軸(17)とが容器(14)内部
で上下方向に連動可能に構成された請求項1記載の溶融
塩電解装置。
3. The molten salt electrolysis apparatus according to claim 1, wherein the cylindrical body (19) and the rotating shaft (17) are configured to be vertically interlockable inside the container (14).
JP10172297A 1997-04-18 1997-04-18 Molten salt electrolyzer Expired - Fee Related JP3305227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10172297A JP3305227B2 (en) 1997-04-18 1997-04-18 Molten salt electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10172297A JP3305227B2 (en) 1997-04-18 1997-04-18 Molten salt electrolyzer

Publications (2)

Publication Number Publication Date
JPH10293193A true JPH10293193A (en) 1998-11-04
JP3305227B2 JP3305227B2 (en) 2002-07-22

Family

ID=14308203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10172297A Expired - Fee Related JP3305227B2 (en) 1997-04-18 1997-04-18 Molten salt electrolyzer

Country Status (1)

Country Link
JP (1) JP3305227B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257986A (en) * 1996-03-26 1997-10-03 Toshiba Corp Molten salt electrolytic refining system
JP2008266662A (en) * 2007-04-16 2008-11-06 Toshiba Corp Molten salt electrolytic refiner and molten salt electrolytic refining method
JP2009133671A (en) * 2007-11-29 2009-06-18 Toshiba Corp Method of reprocessing spent fuel
KR100945156B1 (en) 2008-03-31 2010-03-08 한국원자력연구원 Molten salt electrorefiner for recovering actinide elements
KR100972272B1 (en) 2009-01-23 2010-07-23 한국원자력연구원 Electrowinning apparatus capable of measuring weight of liquid cathode, recovering method of actinide elements and method of monitoring electrodeposit amount of actinide elements
KR101598305B1 (en) * 2014-12-17 2016-02-26 부산대학교 산학협력단 High purity metal extraction device and high purity metal extraction method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257986A (en) * 1996-03-26 1997-10-03 Toshiba Corp Molten salt electrolytic refining system
JP2008266662A (en) * 2007-04-16 2008-11-06 Toshiba Corp Molten salt electrolytic refiner and molten salt electrolytic refining method
JP2009133671A (en) * 2007-11-29 2009-06-18 Toshiba Corp Method of reprocessing spent fuel
KR100945156B1 (en) 2008-03-31 2010-03-08 한국원자력연구원 Molten salt electrorefiner for recovering actinide elements
KR100972272B1 (en) 2009-01-23 2010-07-23 한국원자력연구원 Electrowinning apparatus capable of measuring weight of liquid cathode, recovering method of actinide elements and method of monitoring electrodeposit amount of actinide elements
KR101598305B1 (en) * 2014-12-17 2016-02-26 부산대학교 산학협력단 High purity metal extraction device and high purity metal extraction method

Also Published As

Publication number Publication date
JP3305227B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
Li et al. Electrorefining experience for pyrochemical reprocessing of spent EBR-II driver fuel
KR100880731B1 (en) Continuous electrolytic refining device for metal uranium
US6689260B1 (en) Nuclear fuel electrorefiner
US5531868A (en) Advanced electrorefiner design
JP3305227B2 (en) Molten salt electrolyzer
KR100880421B1 (en) Solid-liquid integrated cathode and method of the recovering of actinide elements using the same
JP3940632B2 (en) Zirconium waste recycling system
JP3199937B2 (en) Molten salt electrorefining equipment
SE200017C1 (en)
Iizuka et al. Development of an innovative electrorefiner for high uranium recovery rate from metal fast reactor fuels
JP3172316B2 (en) Molten salt electrorefining method
US4517064A (en) Electrolytic cell
JP3524234B2 (en) Reprocessing method and reprocessing device for spent oxide fuel
KR100945156B1 (en) Molten salt electrorefiner for recovering actinide elements
JP3193199B2 (en) Electrolytic refining equipment
JP2693593B2 (en) Molten salt electrorefining equipment
NO773127L (en) PROCEDURE FOR RECYCLING ZINC AND ELECTROLYSIS DEVICES FOR USE OF THE PROCEDURE
JP2875819B2 (en) Molten salt electrorefining equipment
Kim et al. In-situ observation of a dendrite growth in an aqueous condition and a uranium deposition into a liquid cadmium cathode in an electrowinning system
JP2000144474A (en) Method for electrolytic refining gallium and device therefor
JP3486044B2 (en) Molten salt electrorefining equipment
JP2005054209A (en) Electrolyzer for oxide electrolytic process
JPH1053888A (en) Method for recovering metallic material to be recovered of fused salt electrolytic device and device therefor
JPH11148995A (en) Molten salt electrolytic refining device
KR101271159B1 (en) Electrolytic refining device for high-throughput electrorefiner in molten salt, and method of U deposit recovery using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020410

LAPS Cancellation because of no payment of annual fees