JP2000144474A - Method for electrolytic refining gallium and device therefor - Google Patents
Method for electrolytic refining gallium and device thereforInfo
- Publication number
- JP2000144474A JP2000144474A JP10310332A JP31033298A JP2000144474A JP 2000144474 A JP2000144474 A JP 2000144474A JP 10310332 A JP10310332 A JP 10310332A JP 31033298 A JP31033298 A JP 31033298A JP 2000144474 A JP2000144474 A JP 2000144474A
- Authority
- JP
- Japan
- Prior art keywords
- gallium
- electrolytic
- anode
- raw material
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はガリウムの電解精製
法および装置に関する。The present invention relates to a method and an apparatus for electrolytic purification of gallium.
【0002】[0002]
【従来の技術】ガリウム金属は,GaAsやGaP等の
化合物半導体素子や発光素子の原料として,近来その需
要が増大している。ガリウムは主としてアルミナ製造工
程や亜鉛製錬の副産物として産出するが,その他,半導
体材料のスクラップもガリウム原料となる。2. Description of the Related Art Recently, demand for gallium metal as a raw material for compound semiconductor devices such as GaAs and GaP and light emitting devices has been increasing. Gallium is mainly produced as a by-product of the alumina manufacturing process and zinc smelting, but scrap of semiconductor materials is also a gallium raw material.
【0003】このようなガリウム原料からのガリウム精
製法には,従来より結晶精製法,単結晶引上げ法および
電解精製法が良く知られている。As such a method for purifying gallium from a gallium raw material, a crystal refining method, a single crystal pulling method, and an electrolytic refining method have been well known.
【0004】結晶精製法は,溶融したガリウム金属の冷
却媒体側に種子結晶を存在せしめて冷却媒体による冷却
効果で種子結晶を成長させ,成長した結晶側に精製され
た固体ガリウムを得る方法である。例えば特開平2−5
0926号公報にはこのような結晶成長を多段で行う結
晶精製法を開示している。The crystal refining method is a method in which seed crystals are grown on the cooling medium side of molten gallium metal, the seed crystals are grown by the cooling effect of the cooling medium, and purified solid gallium is obtained on the grown crystal side. . For example, JP-A-2-5
No. 0926 discloses a crystal purification method in which such crystal growth is performed in multiple stages.
【0005】単結晶引上げ法は,溶融したガリウム金属
中に種子結晶の先端を接触させ,この種子結晶から成長
する,不純分の除かれた単結晶をゆっくり引上げる精製
法である。例えば特開平2−243727号公報には,
この方法において,溶融ガリウム表面に酸性溶液層を形
成すると精製効率が向上すると教示している。[0005] The single crystal pulling method is a purification method in which the tip of a seed crystal is brought into contact with molten gallium metal, and a single crystal grown from the seed crystal and excluding impurities is slowly pulled. For example, JP-A-2-243727 discloses that
In this method, it is taught that forming an acidic solution layer on the surface of molten gallium improves purification efficiency.
【0006】電解精製法は,ガリウム原料を陽極として
通電すると電解液中にガリウムおよび電気化学的にガリ
ウムより卑な金属が溶出し,陰極においてガリウムおよ
びガリウムより貴な金属が電着する性質を利用して,陰
極に精製されたガリウム金属を得る方法である。例えば
特開平6−192877号公報には,電解槽の底部にガ
リウム原料液体を入れ,この原料液体を陽極として棒状
の陰極との間で電解を行うと,陰極表面に析出したガリ
ウム金属は粒状となって滴下して下方の受器に捕集さ
れ,他方,ガリウム原料中のインジウム,銅,鉛などの
不純物は陽極側に残されると教示している。[0006] The electrolytic refining method utilizes the property that when gallium raw material is used as an anode and energized, gallium and a metal that is electrochemically less than gallium are eluted into the electrolytic solution, and gallium and a metal nobler than gallium are electrodeposited at the cathode. Then, purified gallium metal is obtained on the cathode. For example, in JP-A-6-192877, when a gallium raw material liquid is put into the bottom of an electrolytic cell and electrolysis is performed between the raw material liquid and a rod-shaped cathode, the gallium metal deposited on the surface of the cathode becomes granular. It teaches that impurities such as indium, copper, and lead in the gallium raw material are left on the anode side while being dropped and collected in a receiver below.
【0007】[0007]
【発明が解決しようとする課題】結晶精製法では,繰り
返し操作しないとガリウム純度が上がらず,また工程が
複雑で生産性が良くないこと等から,処理対象の原料と
しては5N以上(99.999%以上)のガリウム金属
を適用し,これを6N或いは7N以上(99.9999
%或いは99.999999%以上)まで精製する高純
度の領域での適用に限られることが多く,2N,3N程
度の純度の原料については収率が悪く適さない。また,
単結晶引上げ法についても同様に高純度の領域での適用
に限られ,さらに設備が高価であるという問題がある。In the crystal refining method, the gallium purity cannot be increased unless the operation is repeated, and the process is complicated and the productivity is not good. Therefore, the raw material to be treated is more than 5N (99.999). % Or more of gallium metal and apply it to 6N or 7N or more (99.99999).
% Or 99.9999999% or more), and is often limited to applications in a high-purity region, and raw materials having a purity of about 2N and 3N have poor yields and are not suitable. Also,
Similarly, the single crystal pulling method is limited to application in a high-purity region, and has a problem that the equipment is expensive.
【0008】一方,電解精製法は前2法に比べて工程は
簡単で,ほとんど人手による操作を必要とせず,装置も
安価であることから,高純度精製へのつなぎとしての,
低純度精製法としても適用可能であるという利点があ
る。しかし,従来の電解精製法はインジウム,銅,鉛等
を陽極中に濃縮して残すというものであり,所定量以上
の不純物が陽極に濃縮すると,電解液中に不純物が入り
込み,陰極に析出するガリウム純度が低下する結果とな
る。従って精製ガリウムの純度を規制した場合,自ずと
電解寿命が決められることになる。また,従来の電解精
製法では半導体スクラップ等に混入している「金」の除
去ができないという問題がある。On the other hand, the electrolytic refining method is simpler in process than the former two methods, requires almost no manual operation, and is inexpensive, so that it can be used as a bridge to high-purity purification.
There is an advantage that it can be applied as a low-purity purification method. However, in the conventional electrolytic refining method, indium, copper, lead and the like are concentrated and left in the anode, and when a predetermined amount or more of impurities are concentrated in the anode, the impurities enter the electrolyte and precipitate on the cathode. This results in reduced gallium purity. Therefore, when the purity of purified gallium is regulated, the electrolytic life is naturally determined. In addition, there is a problem that "gold" mixed in a semiconductor scrap or the like cannot be removed by the conventional electrolytic refining method.
【0009】[0009]
【発明が解決しようとする課題】したがって本発明は,
安価で工程が単純であり,ほとんど人手による操作を必
要としないガリウムの電解精製法において,従来法では
除去できなかった金等の不純物を除去可能とし,かつ陽
極中への不純物の濃縮度を上昇させ,しかも電解寿命を
延ばすことができるガリウムの電解精製法を開発し,高
収率でガリウムを精製することを課題としたものであ
る。Accordingly, the present invention provides
Inexpensive and simple process, which can remove impurities such as gold that could not be removed by the conventional method and increase the concentration of impurities in the anode in the electrolytic refining method of gallium that requires almost no manual operation. Another object of the present invention is to develop a method for electrolytically refining gallium that can extend the life of electrolysis and to purify gallium with high yield.
【0010】[0010]
【課題を解決するための手段】本発明によれば,ガリウ
ム原料液体を陽極として陰極に精製ガリウムを電解液中
で析出させるガリウムの電解精製法において,該陽極表
面に生成するスカムを電解槽の外に排出する操作と,電
解終了までの間に陽極のガリウム原料液体を補給する操
作を行うこと,更には電解液中のガリウム濃度を電解中
所定範囲に維持する操作を行うことを特徴とするガリウ
ムの電解精製法を提供する。According to the present invention, in a gallium electrolytic refining method in which purified gallium is deposited in an electrolytic solution on a cathode using a gallium raw material liquid as an anode, scum generated on the surface of the anode is converted into an electrolytic cell. It is characterized by performing an operation of discharging to the outside, an operation of replenishing the gallium raw material liquid of the anode until the end of electrolysis, and an operation of maintaining the gallium concentration in the electrolyte within a predetermined range during electrolysis. Provided is a method for electrorefining gallium.
【0011】また,本発明によれば,ガリウム原料液体
を陽極として収容する陽極室と,陰極に析出した精製ガ
リウムを捕集する陰極室とを有し,該陽極室と陰極室と
の間を通流するように電解液を入れたガリウム電解装置
において,該陽極室を円筒状容器に構成し,この円筒状
容器の外側下方に磁石回転子を設置すると共に該円筒状
容器内の中心部にサクションパイプを配置し,また該電
解装置の槽外に不溶性陽極と陰極をもつ補助電解槽を設
けると共に該電解装置と補助電解槽の間を該電解液が循
環する回路を設け,該循環回路にさらに中間槽を設置
し,前記のサクションパイプをこの中間槽に連結し,こ
の中間槽から電解装置に通ずる管路にフイルタを介装さ
せたことを特徴とするガリウム電解精製装置を提供す
る。Further, according to the present invention, there is provided an anode chamber for accommodating a gallium raw material liquid as an anode, and a cathode chamber for collecting purified gallium deposited on the cathode, and a space between the anode chamber and the cathode chamber. In a gallium electrolyzer in which an electrolyte is supplied so as to flow, the anode chamber is formed in a cylindrical container, a magnet rotator is installed below the outside of the cylindrical container, and a central portion in the cylindrical container is provided. A suction pipe is arranged, and an auxiliary electrolytic cell having an insoluble anode and a cathode is provided outside the electrolytic device and a circuit for circulating the electrolytic solution between the electrolytic device and the auxiliary electrolytic cell is provided. Further, there is provided a gallium electrolytic refining apparatus characterized in that an intermediate tank is installed, the suction pipe is connected to the intermediate tank, and a filter is interposed in a pipe leading from the intermediate tank to the electrolytic apparatus.
【0012】[0012]
【発明の実施の形態】本発明者等は前記の課題を解決す
べく鋭意試験研究を重ねた結果,不純物を含む溶融ガリ
ウム金属(ガリウム原料液体と言う)を陽極とし,陰極
に純度の高い精製ガリウム金属を析出させる電解精製法
において,陽極表面に生成するスカムを電解液の一部と
共に電解槽の外に排出する操作を行うと陽極残中の不純
物濃度が高くなっても電解を続行させることができるこ
と,したがって,電解寿命を著しく改善できることを見
い出した。またこのスカムを排出する操作を行うことに
より,ガリウム原料中に同伴する金の除去が行えること
がわかった。そして,陽極中の不純物濃度が高濃度でも
電解を続行させることができることから,陽極のガリウ
ム原料液体を補給しながら電解を行うことが可能とな
り,高い収率で精製ガリウムを得ることができる。その
さい,電解液中のガリウム濃度を一定にする操作を行う
と,一層,電解寿命を長くすることができる。BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have conducted intensive tests and researches to solve the above-mentioned problems. In the electrolytic refining method for depositing gallium metal, if scum generated on the anode surface is discharged out of the electrolytic cell together with part of the electrolyte, electrolysis can be continued even if the impurity concentration in the anode remains high. Have been found to be able to significantly improve the electrolytic life. It was also found that by performing the operation of discharging the scum, the gold accompanying the gallium raw material can be removed. Since the electrolysis can be continued even when the impurity concentration in the anode is high, the electrolysis can be performed while replenishing the gallium raw material liquid for the anode, and purified gallium can be obtained with a high yield. At that time, if the operation of keeping the gallium concentration in the electrolytic solution constant is performed, the electrolytic life can be further extended.
【0013】電解液中のガリウム原料液体を回転(旋
回)させると,回転中心の液表面に黒色を呈する物質が
集まってくる。この物質は黒色を呈することからガリウ
ム酸化物を含むものと見てよい。遠心分離を利用して陽
極の回転中心にスカムを集め,このスカムをサクション
パイプで吸い出せば,ガリウム原料液体と電解液との界
面に発生する酸化膜の除去が容易に行えるし,金も除去
できる点で,特別の効果をもたらす。該酸化膜の生成は
電解効率を極端に悪くするし,金は通常のガリウム電解
精製法では分離できないからである。When the gallium raw material liquid in the electrolytic solution is rotated (turned), a substance exhibiting black color gathers on the liquid surface at the center of rotation. Since this substance has a black color, it can be regarded as containing gallium oxide. If scum is collected at the center of rotation of the anode using centrifugation and this scum is sucked out with a suction pipe, the oxide film generated at the interface between the gallium raw material liquid and the electrolyte can be easily removed, and gold can also be removed. It has a special effect where it can. This is because the formation of the oxide film extremely deteriorates the electrolysis efficiency, and gold cannot be separated by the usual gallium electrorefining method.
【0014】本発明者らは,この回転中心のガリウム原
料液体表面に集まるスカムをサクションパイプを用いて
吸い出す操作を行ったところ,驚くべきことに,金が同
伴して吸い出されることを知った。その理由については
必ずしも明らかではないが,電解の進行につれて原料液
体の表面には主としてガリウムの酸化物が生成し,この
酸化物が,原料ガリウムの液相よりも金を取込み易い性
質を有しているのではないかと考えられる。The present inventors have performed an operation of sucking out scum collected on the surface of the gallium raw material liquid at the center of rotation using a suction pipe, and surprisingly found that gold is sucked out together with the scum. . Although the reason is not always clear, gallium oxide is mainly formed on the surface of the raw material liquid as the electrolysis proceeds, and this oxide has a property that gold is more easily taken up than the liquid phase of the raw material gallium. It is thought that there is.
【0015】ガリウム原料液体に同伴する金は,通常の
電解では,後記の比較例に示すように,陽極残(アノー
ドスライム)には残存してこない。標準電極電位からす
ると金は最も貴な分類に入り,電気化学的にはガリウム
の電解電位では陽極から液中に溶け出すことはない(イ
オン化しない)筈である。にも拘わらず陽極残に残らな
いのであるから,何らかの原因で電解液中にコロイド状
となって分散してゆくのではないかと考えられる。そし
て,このコロイド状態で電解液中に浮遊する金の微粒子
が,陰極においてガリウムイオンが電着するときに巻き
込まれ,精製ガリウム中に同伴するようになると思われ
る。The gold accompanying the gallium raw material liquid does not remain in the anode residue (anode slime) in ordinary electrolysis, as shown in a comparative example described later. From the standard electrode potential, gold falls into the most noble category, and should not electrochemically dissolve (ionize) from the anode at the electrolytic potential of gallium. Nevertheless, since it does not remain in the anode residue, it is considered that it may be dispersed in the electrolytic solution in a colloidal state for some reason. Then, it is considered that the fine gold particles floating in the electrolyte in the colloidal state are involved when the gallium ions are electrodeposited at the cathode, and are entrained in the purified gallium.
【0016】このように,ガリウム原料に同伴する金は
電解精製では除去し難いものであったが,本発明による
と,サクションパイプを通じてスカムと共に金を同伴し
て抜き出すことができ,金の除去が非常に容易となっ
た。他の不純物,例えばIn,Cu,Pb等は金とは別
の挙動を示し,陽極残として濃縮されてくる。As described above, the gold accompanying the gallium raw material is difficult to remove by the electrolytic refining. However, according to the present invention, the gold can be extracted together with the scum through the suction pipe, and the gold can be removed. It became very easy. Other impurities, such as In, Cu, and Pb, behave differently from gold and are concentrated as anode residues.
【0017】また,陽極表面からスカムを除去すること
により,ガリウム原料中の不純物が陽極残に高濃度に濃
縮されても電解を続行することができるようになり,ま
た電解の途中で新たにガリウム原料液体を補給しても,
支障なく電解を続行できる。そのさい,電解液中のガリ
ウム濃度があまり高くなると陽極中の不純物も電解液中
に溶けだすので,電解液中のガリウム濃度は150g/
L以下,好ましくは100g/L以下,さらに好ましく
は60g/L以下に維持するのがよい。このため,電解
槽の槽外に設置した電解採取槽に電解液を循環させ,こ
の電解採取槽の陰極に電解液中のガリウムを析出させる
ことによって,電解液中に過剰に溶存したガリウムを電
解採取するのが望ましい。Also, by removing scum from the anode surface, electrolysis can be continued even if impurities in the gallium raw material are concentrated to a high concentration in the anode residue, and gallium can be newly added during the electrolysis. Even if you replenish the raw material liquid,
Electrolysis can be continued without hindrance. At this time, if the concentration of gallium in the electrolyte becomes too high, impurities in the anode also begin to dissolve in the electrolyte, so that the gallium concentration in the electrolyte is 150 g / g.
L, preferably 100 g / L or less, more preferably 60 g / L or less. For this reason, the electrolyte is circulated through an electrolytic collection tank installed outside the electrolytic cell, and gallium in the electrolytic solution is deposited on the cathode of the electrolytic collection tank, thereby removing excess gallium dissolved in the electrolytic solution. It is desirable to collect.
【0018】しかし,電解液中のガリウム濃度があまり
低くなると電流効率(電着金属量/理論電着金属量)が
低くなるので電解液中のガリウム濃度は30g/L以
上,好ましくは50g/L以上に維持するのが望まし
い。該濃度が30g/L未満では電流効率は80%を切
るようになる。したがって,電解液中のガリウム濃度は
30〜150g/L,好ましくは30〜100g/L,
さらに好ましくは50〜60g/Lに維持するのがよ
い。However, when the concentration of gallium in the electrolytic solution is too low, the current efficiency (the amount of electrodeposited metal / theoretical electrodeposited metal) decreases, so that the concentration of gallium in the electrolytic solution is 30 g / L or more, preferably 50 g / L. It is desirable to maintain above. When the concentration is less than 30 g / L, the current efficiency falls below 80%. Therefore, the concentration of gallium in the electrolyte is 30 to 150 g / L, preferably 30 to 100 g / L,
More preferably, it is good to maintain 50-60 g / L.
【0019】以下,本発明の実施の形態を図面を参照し
ながら説明する。図1は本発明法を実施する装置の例を
示す略断面図であり,図2は該装置の電解槽の略平面を
示したものである。Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view showing an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a schematic plan view of an electrolytic cell of the apparatus.
【0020】この装置は,電解液1を入れた電解槽2内
を,ガリウム原料液体3を陽極としてこれを収容する陽
極室4と,陰極に析出した精製ガリウムを捕集する陰極
室5に区分し,陽極室4を円筒状容器6で形成し,この
円筒状容器6の外側下方に磁石回転子7を設置し,円筒
状容器6内の中心部にサクションパイプ8を配置したも
のである。円筒状容器6は内壁が真円であるのが理想的
であるが,場合によっては部分的に角をもつ多角形であ
ってもよく,また上下方向で半径が異なる内面をもつも
のであってもよい。9は絶縁被覆された導電ロッドであ
る。この導電ロッド9の先端に取り付けた金属端子10
がガリウム原料液体3内に浸漬され,導電ロッド9に正
電圧が印加されることにより,ガリウム原料液体3が陽
極になる。他方,陰極室5内の電解液中には陰極板11
が浸漬され,これに負電圧が印加される。In this apparatus, the inside of an electrolytic cell 2 containing an electrolytic solution 1 is divided into an anode chamber 4 containing a gallium raw material liquid 3 as an anode and a cathode chamber 5 for collecting purified gallium deposited on a cathode. The anode chamber 4 is formed by a cylindrical container 6, a magnet rotator 7 is provided below the outside of the cylindrical container 6, and a suction pipe 8 is arranged in the center of the cylindrical container 6. It is ideal that the inner wall of the cylindrical container 6 is a perfect circle. However, in some cases, the inner wall may be a polygon having a partly angled corner. Is also good. Reference numeral 9 denotes a conductive rod coated with insulation. Metal terminal 10 attached to the tip of this conductive rod 9
Is immersed in the gallium raw material liquid 3, and a positive voltage is applied to the conductive rod 9, whereby the gallium raw material liquid 3 becomes an anode. On the other hand, the electrolyte in the cathode chamber 5 contains the cathode plate 11.
Is immersed, and a negative voltage is applied to this.
【0021】陽極室4と陰極室5とは電解液1が連通す
る構成とするが,図例の装置では,陽極室4を形成して
いる円筒状容器6の高さを電解液1の液面より低くなる
ように電解槽2内の一方の側方に設置することにより,
電解液が両室4と5に連通するようにしてある。12は
両室4と5の間に配置された仕切板である。この仕切板
12の高さも円筒状容器6とほぼ同様にして電解液の液
面より低くしてある。なお,仕切板12と円筒状容器6
との間に形成する空間部には蓋13が施してあり,この
蓋13の下方空間は空洞となっている。陽極室4と陰極
室5との間で電解液1が連通する構成とするには,この
例に限られず,例えば,陽極室を形成する円筒状容器に
隣接して独立した陰極室を作り,両室を区切る壁に連通
路を設けるような構成でもよい。The anode chamber 4 and the cathode chamber 5 are configured so that the electrolyte 1 communicates with each other. In the illustrated apparatus, the height of the cylindrical container 6 forming the anode chamber 4 is adjusted to the height of the electrolyte 1. By installing it on one side in the electrolytic cell 2 so that it is lower than the surface,
The electrolyte is communicated with both chambers 4 and 5. Reference numeral 12 denotes a partition plate disposed between the two chambers 4 and 5. The height of the partition plate 12 is set lower than the level of the electrolytic solution in substantially the same manner as the cylindrical container 6. The partition plate 12 and the cylindrical container 6
A lid 13 is provided in a space formed between the cover 13 and the space 13, and a space below the cover 13 is hollow. The configuration in which the electrolytic solution 1 communicates between the anode chamber 4 and the cathode chamber 5 is not limited to this example. For example, an independent cathode chamber is formed adjacent to a cylindrical container forming the anode chamber, A configuration in which a communication path is provided on a wall that separates both chambers may be used.
【0022】円筒状容器6の外側下方に設置される磁石
回転子7は,容器6の中心軸の周りに回転するように取
付けられ,その回転はモータ14によって付与される。
この回転子7は永久磁石が用いられ,これが容器6の下
方で容器軸を中心として水平面上を回転することによ
り,容器6内のガリウム原料液体3にはその磁力により
同方向の回転力が付与されるので,容器軸を中心とした
旋回流が発生し,この回転により遠心力が与えられる。A magnet rotator 7 installed outside and below the cylindrical container 6 is mounted so as to rotate around the central axis of the container 6, and the rotation is given by a motor 14.
A permanent magnet is used for the rotor 7, which rotates on a horizontal plane below the container 6 about the container axis, so that the gallium raw material liquid 3 in the container 6 is given a rotational force in the same direction by the magnetic force. Therefore, a swirling flow is generated around the container axis, and centrifugal force is given by this rotation.
【0023】円筒状容器6内の中心部に設置されるサク
ションパイプ8は,その先端のサクション孔が,旋回し
ているガリウム原料液体3の中央表面部に位置するよう
に,電解槽2の上方から電解液中に上下動可能に挿入さ
れている。これにより,サクションパイプ8に負圧を発
生させて吸引すると,原料液体2の中央表面部の物質が
吸い込まれる。そのさい,原料液体2の極表層部の物質
を吸い込むことができるように先端のサクション孔の位
置を調節する。The suction pipe 8 installed at the center of the cylindrical vessel 6 is positioned above the electrolytic cell 2 so that the suction hole at the tip thereof is located at the central surface of the swirling gallium raw material liquid 3. From above to be inserted into the electrolyte so as to be vertically movable. Accordingly, when a negative pressure is generated in the suction pipe 8 and the suction is performed, the material on the central surface of the raw material liquid 2 is sucked. At that time, the position of the suction hole at the tip is adjusted so that the material at the extreme surface of the raw material liquid 2 can be sucked.
【0024】旋回しているガリウム原料液体3の中央表
面部には,遠心力によって,原料液体より比重の小さい
物質15(スカム)が集まるので,サクションパイプ8
からはそのスカム15を吸い出すことができる。そのさ
い,電解液1が同伴しても,さらには少量の原料液体3
が同伴しても,同伴量が電解に差し支えない程度であれ
ば,特に問題はない。At the center surface of the swirling gallium raw material liquid 3, a substance 15 (scum) having a lower specific gravity than the raw material liquid is collected by centrifugal force.
The scum 15 can be sucked out of the device. At that time, even if the electrolyte 1 is entrained, a small amount of the raw material liquid 3
There is no particular problem if the amount is accompanied by an amount that does not interfere with electrolysis.
【0025】他方,陰極室5では,陰極板11の表面に
ガリウム金属が析出するが,電解液の温度がガリウムの
融点以上の温度に維持されることにより,析出したガリ
ウム金属は液状となり,下方の受溜め16に落下し,抜
き出し口17から精製ガリウムとして回収される。On the other hand, in the cathode chamber 5, gallium metal precipitates on the surface of the cathode plate 11, but when the temperature of the electrolytic solution is maintained at a temperature equal to or higher than the melting point of gallium, the deposited gallium metal becomes liquid, and And is collected as refined gallium from the outlet 17.
【0026】このような装置構成において,図示の装置
では,電解槽2の槽外に不溶性陽極18と陰極19をも
つ補助電解槽20を設け,電解槽2とこの補助電解槽2
0の間を電解液1が循環する回路21(a,b,c,d) が設け
られている。In such an apparatus configuration, in the illustrated apparatus, an auxiliary electrolytic cell 20 having an insoluble anode 18 and a cathode 19 is provided outside the electrolytic cell 2, and the electrolytic cell 2 and the auxiliary electrolytic cell 2 are provided.
A circuit 21 (a, b, c, d) in which the electrolyte 1 circulates between 0 is provided.
【0027】この補助電解槽20は,電解液1中に溶存
するガリウムを陰極19で析出させることにより,電解
液1中のガリウム濃度があまり高くならないようにする
ものであり,電解液1から過剰ガリウムの電解採取を行
う。補助電解槽20の陰極19で析出したガリウム金属
は,電解液がガリウムの融点温度以上に維持されている
ことにより,陰極19から槽底部に滴下し,取り出し口
22から精製ガリウムとして採取される。The auxiliary electrolytic cell 20 prevents gallium concentration in the electrolytic solution 1 from becoming too high by precipitating gallium dissolved in the electrolytic solution 1 at the cathode 19. Perform gallium electrowinning. The gallium metal deposited on the cathode 19 of the auxiliary electrolytic cell 20 is dropped from the cathode 19 to the bottom of the cell and is collected as purified gallium from the outlet 22 because the electrolytic solution is maintained at a temperature higher than the melting point of gallium.
【0028】また,図示の装置では,電解槽2の槽外
に,さらに中間槽24が設置されている。この中間槽2
4に,前記の補助電解槽20を経た電解液を管路21b
を通じて供給すると共に,この中間槽24と前記のサク
ションパイプ8とを管路25で連結し,サクションパイ
プ8で吸引される流体物を中間槽24に供給する。そし
て,中間槽24から電解槽2に通ずる管路21cには,
フイルタ26とポンプ27が介装してある。すなわち,
電解槽2のオーバーフロー電解液は,管路21a→補助
電解槽20→管路21b→中間槽24→管路21c→フ
イルタ26→管路21dを経て,電解槽2に戻る構成と
してある。In the illustrated apparatus, an intermediate tank 24 is further provided outside the electrolytic tank 2. This intermediate tank 2
4, the electrolytic solution passed through the auxiliary electrolytic cell 20 is supplied to a conduit 21b.
The intermediate tank 24 and the suction pipe 8 are connected by a pipe 25, and the fluid sucked by the suction pipe 8 is supplied to the intermediate tank 24. And, in the pipe 21c leading from the intermediate tank 24 to the electrolytic tank 2,
A filter 26 and a pump 27 are interposed. That is,
The overflow electrolytic solution in the electrolytic cell 2 is configured to return to the electrolytic cell 2 via the pipe 21a → the auxiliary electrolytic tank 20 → the pipe 21b → the intermediate tank 24 → the pipe 21c → the filter 26 → the pipe 21d.
【0029】サクションパイプ8から中間槽24に至る
管路25にはポンプ28が介装されており,このポンプ
28の駆動により,サクションパイプ8に負圧を発生さ
せると共にサクションパイプ8に吸い込まれた流体(ス
カム15+電解液1+原料液体3)を中間槽24に送給
する。そのさいポンプ28の回転数制御や発停により,
吸い出し量を調整することができ,また管路25に流量
調整弁(図示しない)を設けて流量を調整することもで
きる。もっとも,中間槽24とサクションパイプ8との
間に落差を設けておき,ポンプ28によらずに,そのヘ
ッドにより自然に該流体を中間槽24に流し込むように
してもよい。この場合には,管路25に流量調整弁を設
けて流量を調整する。A pump 28 is interposed in a pipeline 25 extending from the suction pipe 8 to the intermediate tank 24. By driving the pump 28, a negative pressure is generated in the suction pipe 8 and the suction pipe 8 is sucked into the suction pipe 8. The fluid (scum 15 + electrolyte 1 + raw material liquid 3) is supplied to the intermediate tank 24. At that time, by controlling the rotation speed and starting / stopping the pump 28,
The amount of suction can be adjusted, and the flow rate can be adjusted by providing a flow control valve (not shown) in the conduit 25. However, a head may be provided between the intermediate tank 24 and the suction pipe 8, and the fluid may flow naturally into the intermediate tank 24 by the head without using the pump 28. In this case, a flow rate adjusting valve is provided in the pipeline 25 to adjust the flow rate.
【0030】中間槽24では,サクションパイプ8から
のスカムと電解液および補助電解槽20からの電解液を
合流させるが,この流体が中間槽24に滞留する間に,
系全体の電解液の温度を調整する。このために,中間槽
24では加熱器30と攪拌機31を備えている。加熱器
30は,図示の例では投げ込みヒータが用いられてお
り,液中に浸漬されたヒータ32の通電量を調整するこ
とにより,槽内流体を所定温度に加熱する。攪拌機31
は掻き混ぜ羽根33をモータで回転させて槽内流体に攪
拌を付与する。In the intermediate tank 24, the scum from the suction pipe 8 and the electrolytic solution and the electrolytic solution from the auxiliary electrolytic tank 20 are combined, while the fluid stays in the intermediate tank 24.
Adjust the temperature of the electrolyte in the entire system. For this purpose, the intermediate tank 24 is provided with a heater 30 and a stirrer 31. The heater 30 employs a throw-in heater in the illustrated example, and heats the fluid in the tank to a predetermined temperature by adjusting the amount of electricity of the heater 32 immersed in the liquid. Stirrer 31
The agitating blade 33 is rotated by a motor to impart agitation to the fluid in the tank.
【0031】温度調整された槽内流体はポンプ27によ
り電解槽2に還流するが,その過程でフイルタ26を経
ることにより,流体中の懸濁物(スカム分)が濾別され
る。フイルタ21の濾材としては図示の装置では活性炭
を用いているが,ポリプロピレンやテフロン等からなる
樹脂フイルタを用いることもでき,その他,50℃で耐
アルカリの素材であれば,特に限定されない。The fluid in the tank whose temperature has been adjusted is returned to the electrolytic cell 2 by the pump 27. In this process, the suspension (scum) in the fluid is filtered off by passing through the filter 26. Activated carbon is used as a filter material for the filter 21 in the illustrated apparatus, but a resin filter made of polypropylene, Teflon, or the like can be used, and other materials that are resistant to alkali at 50 ° C. are not particularly limited.
【0032】フイルタ21の濾液は管路21dを経て電
解槽2に戻されるが,管路21dの吐出端35を陽極室
4の側(円筒状容器6)に配することにより,この流体
を原料液体3の上部に投入する。この還流により,電解
槽2内の電解液1の液面が電解中一定レベル(溢流口3
6のレベル)に維持され且つ電解液の温度も所定の温度
に維持される。The filtrate of the filter 21 is returned to the electrolytic cell 2 via a pipe 21d. By disposing the discharge end 35 of the pipe 21d on the side of the anode chamber 4 (cylindrical vessel 6), this fluid is used as a raw material. It is poured into the upper part of the liquid 3. Due to this reflux, the liquid level of the electrolytic solution 1 in the electrolytic cell 2 is kept at a certain level during the electrolysis (the overflow port 3).
6) and the temperature of the electrolyte is also maintained at a predetermined temperature.
【0033】なお,電解槽2には,陽極室4の円筒状容
器6にガリウム原料液体を電解中に補給するための原料
補給チューブ37が備えてある。このチューブ37は取
外し自在に設置されているが,原料補給時には注入端3
8をガリウム原料液体3内に浸漬しながら液状ガリウム
原料を注入する。The electrolytic cell 2 is provided with a raw material supply tube 37 for supplying the gallium raw material liquid to the cylindrical container 6 of the anode chamber 4 during electrolysis. This tube 37 is detachably installed, but when replenishing the raw material, the injection end 3 is closed.
8 is immersed in the gallium raw material liquid 3 and the liquid gallium raw material is injected.
【0034】なお,図2において,電極板11を中心軸
として左半分のものを右側にも対照的に配置し,陰極室
5を挟んでその両側に円筒状容器6をもつ陽極室4を設
けた電解槽に構成すると,処理量を倍増させることがで
きる。In FIG. 2, the left half with the electrode plate 11 as the central axis is symmetrically arranged on the right side, and the anode chamber 4 having the cylindrical container 6 is provided on both sides of the cathode chamber 5 with the cathode chamber 5 interposed therebetween. If the electrolytic cell is configured in such a manner, the processing amount can be doubled.
【0035】次に,図示の装置を用いて本発明法を実施
する場合の操作態様を説明する。Next, a description will be given of an operation mode when the method of the present invention is carried out using the illustrated apparatus.
【0036】円筒状容器6と仕切板板12の高さは特に
限定されないが,電解液1の液面の1/3程度として,
電解液1が陽極室4と陰極室5との間を自由に流通する
ようにするのがよい。電解液1にはNaOH水溶液を使
用するが,NaOH濃度は100〜200g/L,さら
に好ましくは150g/L程度である。NaOH濃度が
100g/Lより低いと極間電圧が上がり,精製ガリウ
ムの純度が下がるようになる。他方,200g/Lを超
えると,液中に溶け込む不純物濃度が上がり,同じく精
製ガリウムの純度が下がる。電解液の温度は35〜70
℃が好ましく,さらに好ましくは50〜65℃である。
35℃より低いと極間電圧が上がり,70℃を超えても
特別に電解効率が上がる訳ではなく,電解槽の材質等に
支障を与えることがある。この電解液の温度は図示の装
置では,中間槽24の加熱器30で調節される。なお,
金属ガリウムの融点は29.9℃であるから,槽内の温
度はこれ以上に維持されねばならない。The heights of the cylindrical container 6 and the partition plate 12 are not particularly limited.
It is preferable that the electrolytic solution 1 freely flows between the anode chamber 4 and the cathode chamber 5. An aqueous solution of NaOH is used for the electrolytic solution 1. The NaOH concentration is 100 to 200 g / L, more preferably about 150 g / L. When the NaOH concentration is lower than 100 g / L, the voltage between the electrodes increases, and the purity of purified gallium decreases. On the other hand, if it exceeds 200 g / L, the concentration of impurities dissolved in the liquid increases, and the purity of purified gallium also decreases. The temperature of the electrolyte is 35 to 70
C is preferable, and more preferably 50 to 65C.
If the temperature is lower than 35 ° C., the voltage between the electrodes increases, and if the temperature exceeds 70 ° C., the electrolytic efficiency does not particularly increase, and the material of the electrolytic cell may be affected. The temperature of the electrolytic solution is adjusted by the heater 30 of the intermediate tank 24 in the illustrated apparatus. In addition,
Since the melting point of metallic gallium is 29.9 ° C., the temperature in the bath must be maintained higher than this.
【0037】この電解液条件のもとで,陽極室4の円筒
状容器6内に適量のガリウム原料液体3を入れ,磁石回
転子7を回転して該原料液体3に遠心力を付与しなが
ら,原料液体3を陽極として陰極板11との間に通電を
開始するが,電流密度が0.02〜0.2A/cm2,好
ましくは0.05〜0.1A/cm2となるように通電す
る。電流密度が0.02A/cm2より低いと電解が進ま
ず,0.2A/cm2を超えると精製ガリウムの純度が下
がるようになる。Under the conditions of the electrolytic solution, an appropriate amount of the gallium raw material liquid 3 is put into the cylindrical container 6 of the anode chamber 4, and the centrifugal force is applied to the raw material liquid 3 by rotating the magnet rotor 7. An electric current is started between the raw material liquid 3 and the cathode plate 11 using the raw material liquid 3 as an anode, so that the current density becomes 0.02 to 0.2 A / cm 2 , preferably 0.05 to 0.1 A / cm 2. Turn on electricity. When the current density is lower than 0.02 A / cm 2 , the electrolysis does not proceed, and when the current density exceeds 0.2 A / cm 2 , the purity of the purified gallium decreases.
【0038】電解中,磁石回転子7により原料液体3を
中心軸回りに回転して遠心力を付与し続けると,ガリウ
ム金属より比重の低い物質(スカム15)が該原料液体
3の表面中央部に集まってくる。このスカム15の集ま
り状態が最も良好となるように磁石回転子7の回転数を
制御し,原料液体3の回転状況を調節する。スカム15
は原料液体よりも黒色を呈するので,目視観察により,
中央表面への集まり状態を知ることができる。During the electrolysis, when the raw material liquid 3 is rotated around the central axis by the magnet rotor 7 and the centrifugal force is continuously applied, a substance (scum 15) having a lower specific gravity than the gallium metal becomes a central part of the surface of the raw material liquid 3. Come together. The number of rotations of the magnet rotor 7 is controlled so that the gathering state of the scum 15 becomes the best, and the rotation state of the raw material liquid 3 is adjusted. Scum 15
Is blacker than the raw material liquid.
You can know the state of gathering on the central surface.
【0039】先述のように,この中央に集まったスカム
15には,ガリウム酸化物が含まれまた,原料液体3中
の不純物の酸化物も若干含まれることがある。しかし,
金は殆んど酸化しないので,金の酸化物が存在すること
はあり得ない筈であるが,実際にはサクションパイプ8
でこのスカム15を吸い上げると金も同伴するようにな
る。As described above, the scum 15 gathered at the center may contain a small amount of oxides of impurities in the raw material liquid 3 including gallium oxide. However,
Since gold is hardly oxidized, it should not be possible for gold oxide to be present.
Then, when this scum 15 is sucked up, gold is also accompanied.
【0040】中央に集まったスカム15をサクションパ
イプ8で吸い上げるさいには,原料液体3は出来るだけ
吸い上げないようにするために,サクションパイプ8の
先端のサクション孔をスカム15の若干上に位置させ
て,電解液1と共にスカム15を吸い上げるようにする
のがよい。これにより,不可避的に原料液体が同伴する
ものは仕方がないとして,発生するスカム15の殆んど
を電解液と共に吸い上げることができ,また金を同伴し
て吸い上げることができる。When the scum 15 gathered at the center is sucked up by the suction pipe 8, the suction hole at the tip of the suction pipe 8 is positioned slightly above the scum 15 so that the raw material liquid 3 is not sucked up as much as possible. Therefore, it is preferable to suck up the scum 15 together with the electrolytic solution 1. As a result, most of the generated scum 15 can be sucked up together with the electrolytic solution, and it can be sucked up with gold, assuming that the raw material liquid is unavoidably accompanied by the raw material liquid.
【0041】図示の装置では,電解液と共に吸い上げら
れた金同伴のスカム15は中間槽24に入り,補助電解
槽20から中間槽24に入る電解液と共に掻き混ぜられ
且つ加熱器30で加熱される。これにより,電解液中に
スカムおよび金,更には少量のガリウム原料液体が混濁
した所定温度の流体が得られる。この流体はフイルタ2
6で懸濁物が濾別されたあと,電解槽2に戻されるが,
この還流液の温度と流量は電解槽2で必要とする電解液
の温度と量に応じられるように加熱器30の操作とポン
プ27の回転数により調整される。この操作は自動制御
で行うことができる。In the illustrated apparatus, the gold-entrained scum 15 sucked up together with the electrolyte enters the intermediate tank 24, is stirred from the auxiliary electrolytic tank 20 with the electrolyte entering the intermediate tank 24, and is heated by the heater 30. . As a result, a fluid at a predetermined temperature in which scum, gold, and a small amount of a gallium raw material liquid are turbid in the electrolytic solution can be obtained. This fluid is the filter 2
After the suspension is filtered off in step 6, it is returned to the electrolytic cell 2,
The temperature and the flow rate of the reflux liquid are adjusted by the operation of the heater 30 and the rotation speed of the pump 27 so as to correspond to the temperature and the amount of the electrolyte required in the electrolytic cell 2. This operation can be performed by automatic control.
【0042】この還流の過程でフイルタ26において液
中の懸濁分が濾別されるが,この濾別された物質には金
が同伴する。ここで回収される金はガリウム原料液体中
に混在した金の殆んどを占める。したがって,陽極残中
の金濃度は極めて低くなり且つ陰極で析出する精製ガリ
ウム中の金濃度も極めて低くなる。精製ガリウム中の金
濃度が低くなることは,更に高純度ガリウムを得るため
の次工程の負荷を著しく低減することができる。本発明
法で金が除去されていることは,6Nや7Nの高純度ガ
リウムを製造する上で非常に有利となる。In the course of the reflux, the suspended matter in the liquid is filtered off in the filter 26, and gold is entrained with the filtered substance. The gold recovered here occupies most of the gold mixed in the gallium raw material liquid. Therefore, the concentration of gold in the remaining anode is extremely low, and the concentration of gold in purified gallium deposited at the cathode is also extremely low. The lower gold concentration in the purified gallium can significantly reduce the load of the next step for obtaining high-purity gallium. The removal of gold by the method of the present invention is very advantageous in producing high purity gallium of 6N or 7N.
【0043】このようにして,ガリウム原料液体3中に
混在した金はフイルタ26で除去され,またガリウム原
料液体3中に混在した不純物例えばIn,Cu,Pb等
は陽極残中に濃縮される。その結果,陰極室5の受溜め
16で回収される精製ガリウムには,Au,In,C
u,Pb等は殆んど混在せず,高純度の金属ガリウムと
なる。In this manner, the gold mixed in the gallium raw material liquid 3 is removed by the filter 26, and impurities such as In, Cu, Pb and the like mixed in the gallium raw material liquid 3 are concentrated in the anode residue. As a result, the purified gallium collected in the reservoir 16 of the cathode chamber 5 contains Au, In, C
U, Pb, etc. hardly coexist, resulting in high-purity metallic gallium.
【0044】他方,ガリウム原料液体3の表面に発生す
る酸化物系のスカムが除去されることにより,これら酸
化物被膜発生によるブレークアウト(電解中止)等のト
ラブル発生(酸化物被膜が絶縁層となり極間電圧の急激
な上昇を招き,無理に電解を続けると純度の低いガリウ
ムが陰極に電着する等)も未然に防止される。このた
め,原料補給チューブ37からガリウム原料を補給して
電解を続行しても,トラブルなく電解を進行させること
ができる。原料補給しながら電解を進行させると陽極残
中の不純物濃度は高まることになるが,本発明法では表
面部のスカムが除去される結果,よほど不純物濃度が高
くならない限り,電解を続行することができる。On the other hand, since oxide scum generated on the surface of the gallium raw material liquid 3 is removed, troubles such as breakout (electrolysis stop) due to generation of these oxide films occur (the oxide film becomes an insulating layer). If the interelectrode voltage is sharply increased, and if the electrolysis is forcibly continued, low purity gallium is electrodeposited on the cathode, etc.) can be prevented beforehand. Therefore, even if the gallium raw material is supplied from the raw material supply tube 37 and the electrolysis is continued, the electrolysis can proceed without any trouble. If the electrolysis is advanced while replenishing the raw materials, the impurity concentration in the anode residue will increase. However, according to the method of the present invention, the electrolysis can be continued unless the impurity concentration becomes very high as a result of removing the scum on the surface. it can.
【0045】この電解続行の間,電解液の濃度管理は補
助電解槽20で行う。電解液中のガリウム濃度は電解中
は徐々に増加してくるからである。電気量的には陽極・
陰極とも同負荷で陽極から溶け出す量と陰極で電着する
量とは同量で電解液中のガリウム濃度は一定に保たれる
はずであるが,化学的には高温高アルカリ溶液なので陽
極からは電気当量以上が溶出しまた陰極においてもいっ
たん電着した精製ガリウムの再溶解により徐々に電解液
中のガリウム濃度は増加してゆく。先述のように電解液
中のガリウム濃度が高くなると,電解液中に不純物の溶
出も始まるおそれがあるので,補助電解槽20で電解液
中のガリウムを陰極19で析出させることにより,過剰
に溶存しているガリウムを精製ガリウムとして採取す
る。補助電解槽20においては,この電解槽20を出る
電解液中のガリウム濃度が所定の範囲例えば30〜15
0g/L,好ましくは30〜100g/L,さらに好ま
しくは50〜60g/Lとなるように,不溶性陽極18
と陰極19の間に通電する通電量と通電時間を制御すれ
ばよい。この制御は自動化することができる。During the continuation of the electrolysis, the concentration of the electrolytic solution is controlled in the auxiliary electrolytic cell 20. This is because the concentration of gallium in the electrolyte gradually increases during electrolysis. In terms of electricity, the anode
The amount of gallium dissolved in the electrolyte should be the same as that of the cathode and the amount of electrodeposition at the same load, but the gallium concentration in the electrolyte should be kept constant. The gallium concentration in the electrolyte gradually increases due to the elution of an equivalent or more of the purified gallium which has been electrodeposited once again at the cathode. As described above, when the concentration of gallium in the electrolytic solution increases, elution of impurities into the electrolytic solution may also start. Therefore, by precipitating gallium in the electrolytic solution on the cathode 19 in the auxiliary electrolytic tank 20, excessive dissolution is caused. Gallium is collected as purified gallium. In the auxiliary electrolytic cell 20, the gallium concentration in the electrolytic solution exiting the electrolytic cell 20 is within a predetermined range, for example, 30 to 15
0 g / L, preferably 30 to 100 g / L, and more preferably 50 to 60 g / L.
What is necessary is just to control the amount of electricity to be applied between the anode and the cathode 19 and the duration of the electricity. This control can be automated.
【0046】このようにして,本発明によれば,電解中
にガリウム原料を陽極に補給して長時間電解を続行して
も,電解槽2の陰極11さらには補助電解槽20の陰極
19で析出して回収される精製ガリウム中への不純物の
混入を回避でき,また陽極残にはIn,Cu,Pb等の
不純物濃度が高いものが得られ,且つ金もフイルタ26
で採取されるので,高い精製率のもとで生産性よく精製
ガリウムを製造することができる。As described above, according to the present invention, even if the gallium raw material is supplied to the anode during electrolysis and electrolysis is continued for a long time, the cathode 11 of the electrolyzer 2 and the cathode 19 of the auxiliary electrolyzer 20 are used. Impurities can be prevented from being mixed into the purified gallium precipitated and recovered, and the anode residue can have a high impurity concentration of In, Cu, Pb, etc., and the gold can be filtered.
Therefore, purified gallium can be produced with high productivity under a high purification rate.
【0047】[0047]
【実施例】〔実施例1〕図1〜2に示した装置におい
て,Ga:50g/LおよびNaOH:150g/Lを
溶解した35Lの電解液を電解槽2内に入れ,電解槽2
→補助電解槽20→中間槽24→電解槽2の順に,ポン
プ27を駆動して,300mL/minの流量で循環さ
せた。そして,中間槽24において加熱器30と攪拌機
31のスイッチを入れ,電解槽2内の電解液の温度が5
0℃となるように,加熱器27での入熱量を,ヒータ附
属のコントローラーで調節した。EXAMPLE 1 In the apparatus shown in FIGS. 1 and 2, 35 L of an electrolytic solution in which 50 g / L of Ga and 150 g / L of NaOH were dissolved was placed in the electrolytic cell 2.
The pump 27 was driven in the order of → the auxiliary electrolytic cell 20 → the intermediate cell 24 → the electrolytic cell 2 to circulate at a flow rate of 300 mL / min. Then, in the intermediate tank 24, the heater 30 and the stirrer 31 are turned on, and the temperature of the electrolytic solution in the electrolytic tank 2 becomes 5 °.
The amount of heat input by the heater 27 was adjusted by a controller attached to the heater so that the temperature became 0 ° C.
【0048】次いで,予め溶融しておいた10Kgのガ
リウム原料液体3を陽極室4の円筒状容器6内に装入
し,モータ14を駆動して磁石回転子7を回動させ,ガ
リウム原料液体3に旋回流を起こさせて遠心力を与え
た。この状態で,サクションパイプ8の先端のサクショ
ン孔が,原料液体3の中心部表面から約5mm高い位置
となるように調整し,ポンプ28を駆動して150mL
/minの流量で吸引した。また,導電ロッド9の先端
の金属端子10が常時ガリウム原料液体3内に浸漬され
るようにセットした。この状態で,ステンレス鋼板製の
陰極板11との間で,電流密度が0.10A/cm2で通
電を開始し,879時間連続で電解を行った。その間,
原料補給チューブ37から溶融したガリウム原料液体を
24回に分けて合計43.7Kg補給した。また,補助
電解槽20では,通電量6Aのもとで通電の発停を行う
ことにより,電解液中のガリウム濃度が50〜60g/
Lの範囲に収まるようにガリウムの電解採取を行った。Next, 10 kg of the gallium raw material liquid 3 previously melted is charged into the cylindrical container 6 of the anode chamber 4, the motor 14 is driven to rotate the magnet rotor 7, and the gallium raw material liquid 3 is rotated. 3 was caused to generate a swirling flow to apply a centrifugal force. In this state, the suction hole at the tip of the suction pipe 8 is adjusted to a position approximately 5 mm higher than the surface of the center of the raw material liquid 3, and the pump 28 is driven to 150 mL.
/ Min. The metal terminal 10 at the tip of the conductive rod 9 was set so as to be constantly immersed in the gallium raw material liquid 3. In this state, current supply was started at a current density of 0.10 A / cm 2 with the cathode plate 11 made of a stainless steel plate, and electrolysis was continuously performed for 879 hours. in the meantime,
The molten gallium raw material liquid was supplied from the raw material supply tube 37 in a total of 43.7 kg in 24 divided portions. In addition, in the auxiliary electrolytic cell 20, the gallium concentration in the electrolytic solution is 50 to 60 g / min by starting and stopping the energization under a current of 6 A.
Gallium was electrowinned so as to fall within the range of L.
【0049】電解の間,ポンプ27と28の送液量は前
記の量にほぼ維持し続け,サクションパイプ8は中央部
に集まるスカム15より約5mm高い位置に維持される
ように上下位置を調整した。フイルタ26の濾材には活
性炭を用いた。During the electrolysis, the pumping amounts of the pumps 27 and 28 are kept substantially at the above-mentioned amounts, and the vertical position is adjusted so that the suction pipe 8 is maintained at a position about 5 mm higher than the scum 15 gathered at the center. did. Activated carbon was used as the filter medium of the filter 26.
【0050】本例の操業結果を表1に示した。Table 1 shows the operation results of this example.
【0051】[0051]
【表1】 [Table 1]
【0052】表1の結果に見られるように,得られた精
製ガリウム量は,電解槽2と補助電解槽20と合わせ
て,原料ガリウム量に対して90%近くまで回収できた
が,まだ電解は可能であった。また,得られた精製ガリ
ウムの不純物については,インジウムで7ppm,金は
0.1ppm以下,銅と鉛については0.5ppm以下に
まで低減でき,ガリウム品位として4〜5N(99.9
99%)クラスであった。As can be seen from the results in Table 1, the amount of purified gallium thus obtained, together with the electrolytic cell 2 and the auxiliary electrolytic cell 20, could be recovered to nearly 90% of the raw material gallium, but the electrolytic gallium was still electrolyzed. Was possible. In addition, impurities of the obtained purified gallium can be reduced to 7 ppm for indium, 0.1 ppm or less for gold, and 0.5 ppm or less for copper and lead, and a gallium grade of 4 to 5N (99.9) can be obtained.
99%) class.
【0053】〔実施例2〕不純物量の多いガリウム原料
を用いた以外は,実施例1と同様に処理した。ただし,
電解時間は395時間まで行った。その間,溶融したガ
リウム原料液体を10回に分けて合計12.2Kg補給
した。操業結果を表2に示した。Example 2 Processing was performed in the same manner as in Example 1 except that a gallium raw material having a large amount of impurities was used. However,
The electrolysis time was up to 395 hours. During that time, the molten gallium raw material liquid was supplied in a total of 12.2 kg in 10 divided portions. Table 2 shows the operation results.
【0054】[0054]
【表2】 [Table 2]
【0055】表2は,特にIn濃度の高いガリウム原料
を用いて,陽極のガリウム原料液体中にIn濃度を限界
まで濃縮する電解を行った結果を示すものであるが,陽
極残にはInを88%近くまで濃縮できたことを示して
いる。電解終了付近では陽極は導電ロッド9の近傍を除
いて灰色の固形物状態を示した。精製ガリウム中のIn
濃度は800ppm付近となったが,銅と鉛については
検出値以下であった。この結果から,本発明法は非常に
In濃度の高いガリウム原料からの精製に有効であるこ
とがわかる。Table 2 shows the results of electrolysis in which the concentration of In was concentrated to the limit in the gallium raw material liquid of the anode using a gallium raw material having a particularly high In concentration. This indicates that the concentration could be increased to nearly 88%. Near the end of the electrolysis, the anode showed a gray solid state except for the vicinity of the conductive rod 9. In in purified gallium
The concentration was around 800 ppm, but the values for copper and lead were below the detection values. From these results, it is understood that the method of the present invention is effective for purification from a gallium raw material having a very high In concentration.
【0056】〔実施例3〕実施例2で得られた精製ガリ
ウムを原料として,実施例1と同様に処理した。電解時
間は360時間連続であり,その間,10回に分けて合
計11.8Kgの原料を液体状態で補給した。操業結果
を表3に示した。Example 3 The purified gallium obtained in Example 2 was used as a raw material and treated in the same manner as in Example 1. The electrolysis time was continuous for 360 hours, during which time, a total of 11.8 kg of the raw material was replenished in a liquid state in ten batches. Table 3 shows the operation results.
【0057】[0057]
【表3】 [Table 3]
【0058】表3の結果に見られるように,得られた精
製ガリウムの不純物は,インジウムで2ppm以下,銅
と鉛については0.5ppm以下にまで低減でき,ガリ
ウム品位として5N(99.999%)クラスとなっ
た。また精製ガリウム量は,電解槽2と補助電解槽20
と合わせて,90%近くまで回収できた。As can be seen from the results in Table 3, the impurities of the obtained purified gallium can be reduced to 2 ppm or less for indium and 0.5 ppm or less for copper and lead, and the gallium quality can be reduced to 5N (99.999%). ) Class. The amount of purified gallium is determined by the electrolytic cell 2 and the auxiliary electrolytic cell 20.
In total, it was possible to recover up to nearly 90%.
【0059】一方,実施例2の陽極残としてInの高い
ものが得られているので,実施例2と3を組み合わせる
と,高濃度でInを含むガリウム原料からInを効率よ
く分離して高品位のガリウムを得ることができることに
なる。On the other hand, since a high In residue was obtained as an anode residue in Example 2, when Examples 2 and 3 were combined, In was efficiently separated from a gallium raw material containing In at a high concentration to achieve high quality. Gallium can be obtained.
【0060】以上の実施例に見られるように,実操業に
おいては,これらの実施例を組み合わせると,非常に生
産効率の良いラインが完成できる。例えば,不純物のイ
ンジウムを2,000ppm含有したガリウム原料10
0kgから5Nクラスのガリウムを生産する場合,まず
実施例1から精製ガリウム90kgが得られる。またイ
ンジウムを20,000ppmまで濃縮された陽極残ガ
リウム10kgからは実施例2のとおり3Nクラスのガ
リウム9.7kg得られる。不純物が80%まで濃縮さ
れたもの約0.3kgはブリードオフされ,別方法でガ
リウムの回収を行う。3Nクラスのガリウム9.7kg
は最初の工程に戻され, 5Nクラスのガリウムが8.8
kg程度得られる。すなわち, これらの工程から98.
8%の5Nクラスの回収が見込まれる。As can be seen from the above embodiments, in actual operation, by combining these embodiments, a line with extremely high production efficiency can be completed. For example, a gallium raw material 10 containing 2,000 ppm of indium as an impurity
When producing 5N class gallium from 0 kg, first, 90 kg of purified gallium is obtained from Example 1. As in Example 2, 9.7 kg of 3N-class gallium was obtained from 10 kg of anode residual gallium in which indium was concentrated to 20,000 ppm. About 0.3 kg of the impurities concentrated to 80% is bleed off, and gallium is recovered by another method. 9.7kg of 3N class gallium
Is returned to the first process, and 8.8 g of 5N class gallium
kg can be obtained. In other words, 98.
An 8% 5N class recovery is expected.
【0061】〔比較例〕補助電解槽20での電解採取を
行わず,また磁石回転子7を回転させず(モータ14を
駆動させず)且つサクションパイプ8から吸液しない
(ポンプ28を停止)状態として,原料液体に遠心力を
付与せず且つスカムも排出しなかった以外は実施例1と
同様の条件で電解を行ない(フイルタ26も使用しな
い),電解液のガリウム濃度の変化と,この変化に対す
る電流効率および電解液中のIn濃度を測定した。その
結果を表4に示した。[Comparative Example] Electrolysis in the auxiliary electrolytic cell 20 was not performed, the magnet rotor 7 was not rotated (the motor 14 was not driven), and liquid was not absorbed from the suction pipe 8 (the pump 28 was stopped). Electrolysis was carried out under the same conditions as in Example 1 except that no centrifugal force was applied to the raw material liquid and no scum was discharged (the filter 26 was not used). The current efficiency with respect to the change and the In concentration in the electrolytic solution were measured. Table 4 shows the results.
【0062】[0062]
【表4】 [Table 4]
【0063】表4の結果に見られるように,電解液中の
ガリウム濃度は適切な範囲に維持されないと,電解効率
が低くなり,また電解液中にInが溶出してくることが
わかる。As can be seen from the results in Table 4, if the gallium concentration in the electrolyte is not maintained in an appropriate range, the electrolysis efficiency is lowered and In is eluted into the electrolyte.
【0064】[0064]
【発明の効果】以上述べたように,本発明によれば,従
来のガリウムの電解精製法では除去できなかった金等の
不純物の除去ができかつ陽極への原料補給も可能であ
る。そして,陽極残中への不純物の濃縮度を上昇させる
ことができ,電解寿命を延ばすことができる結果,精製
ガリウムの収率が向上し且つその精製効率も向上させる
ことができる。したがって,亜鉛製錬工程から生産され
たガリウム原料や化合物半導体スクラップから回収され
た粗ガリウム,更には高純度ガリウム精製工程より発生
する不純物含有率の高いガリウム原料からのガリウム精
製に多大の貢献ができる。As described above, according to the present invention, impurities such as gold, which cannot be removed by the conventional electrolytic refining method for gallium, can be removed, and raw materials can be supplied to the anode. In addition, the concentration of impurities in the anode residue can be increased, and the electrolysis life can be extended. As a result, the yield of purified gallium can be improved, and the purification efficiency can be improved. Therefore, it can greatly contribute to the purification of gallium from gallium raw materials produced from the zinc smelting process, crude gallium recovered from compound semiconductor scrap, and gallium raw materials having a high impurity content generated from the high-purity gallium purification process. .
【図1】本発明法を実施する装置の例を示す略断面図で
ある。FIG. 1 is a schematic sectional view showing an example of an apparatus for performing the method of the present invention.
【図2】図1の装置の電解槽部分の略平面図である。FIG. 2 is a schematic plan view of an electrolytic cell part of the apparatus of FIG.
1 電解液 2 電解槽 3 ガリウム液体原料 4 陽極室 5 陰極室 6 円筒状容器 7 磁石回転子 8 サクションパイプ 9 導電ロッド 10 金属端子 11 陰極板 12 仕切板 15 ガリウム液体原料の表面中央部に集まったスカム 17 精製ガリウム抜き出し口 20 補助電解槽 21 循環回路 24 中間槽 25 サクションパイプと中間槽を連結する管路 26 フイルタ 30 加熱器 37 原料補給チューブ DESCRIPTION OF SYMBOLS 1 Electrolyte solution 2 Electrolyzer 3 Gallium liquid raw material 4 Anode chamber 5 Cathode chamber 6 Cylindrical container 7 Magnet rotor 8 Suction pipe 9 Conductive rod 10 Metal terminal 11 Cathode plate 12 Partition plate 15 Gallium liquid material gathered at the surface center. Scum 17 Purified gallium discharge port 20 Auxiliary electrolytic tank 21 Circulation circuit 24 Intermediate tank 25 Pipeline connecting suction pipe and intermediate tank 26 Filter 30 Heater 37 Material supply tube
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田山 喜志雄 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 4K058 AA12 BA07 BB03 CA07 CA25 DD18 EB02 FC13 FC27 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kishio Tayama 1-8-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Dowa Mining Co., Ltd. (reference) 4K058 AA12 BA07 BB03 CA07 CA25 DD18 EB02 FC13 FC27
Claims (7)
製ガリウムを電解液中で析出させるガリウムの電解精製
法において,該陽極表面に生成するスカムを電解槽の外
に排出する操作と,電解終了までの間に陽極のガリウム
原料液体を補給する操作を行うことを特徴とするガリウ
ムの電解精製法。1. A method for electrolytically refining gallium in which purified gallium is deposited in an electrolyte using a gallium raw material liquid as an anode and discharging the scum formed on the surface of the anode out of the electrolytic cell, and until the electrolysis is completed. A process for replenishing the gallium raw material liquid for the anode during the process.
製ガリウムを電解液中で析出させるガリウムの電解精製
法において,該陽極表面に生成するスカムを電解槽の外
に排出する操作と,電解終了までの間に陽極のガリウム
原料液体を補給する操作と,そして電解液中のガリウム
濃度を電解中所定範囲に維持する操作を行うことを特徴
とするガリウムの電解精製法。2. A method for electrolytically refining gallium in which purified gallium is deposited in an electrolytic solution on a cathode using a gallium raw material liquid as an anode, wherein scum generated on the surface of the anode is discharged out of the electrolytic cell, and until the electrolysis is completed. A process for replenishing the gallium raw material liquid for the anode and an operation for maintaining the gallium concentration in the electrolyte within a predetermined range during electrolysis.
に排出する操作は,磁界によって陽極のガリウム原料液
体に遠心力を付与し,その中心部表面に集まるスカムを
電解液の一部とともに電解槽の外に吸い出す操作である
請求項1または2に記載のガリウムの電解精製法。3. The operation of discharging scum generated on the surface of the anode to the outside of the electrolytic cell is performed by applying a centrifugal force to the gallium raw material liquid of the anode by a magnetic field, and the scum collected on the surface of the central portion is removed together with a part of the electrolyte. 3. The method for refining gallium according to claim 1 or 2, wherein the gallium is sucked out of the electrolytic cell.
液は,フイルタでスカムが分離されたあと,電解槽に還
流される請求項3に記載のガリウムの電解精製法。4. The method according to claim 3, wherein the scum and the electrolytic solution sucked out of the electrolytic cell are returned to the electrolytic cell after the scum is separated by a filter.
囲に維持する操作は,電解槽の槽外に設置した電解採取
槽に該電解液を循環させ,該電解採取槽の陰極に電解液
中のガリウムを析出させる操作である請求項2,3また
は4に記載のガリウムの電解精製法。5. An operation for maintaining the gallium concentration in the electrolytic solution within a predetermined range during the electrolysis, wherein the electrolytic solution is circulated through an electrolytic collecting tank provided outside the electrolytic tank, and the electrolytic solution is supplied to the cathode of the electrolytic collecting tank. 5. The method for electrolytically refining gallium according to claim 2, which is an operation for precipitating gallium therein.
容する陽極室と,陰極に析出した精製ガリウムを捕集す
る陰極室とを有し,該陽極室と陰極室との間を通流する
ように電解液を入れたガリウム電解装置において,該陽
極室を円筒状容器に構成し,この円筒状容器の外側下方
に磁石回転子を設置すると共に該円筒状容器内の中心部
にサクションパイプを配置し,かつ該電解装置の槽外に
不溶性陽極と陰極をもつ補助電解槽を設けると共に該電
解装置と補助電解槽の間を該電解液が循環する回路を設
けたことを特徴とするガリウム電解精製装置。6. An anode chamber for accommodating a gallium raw material liquid as an anode, and a cathode chamber for collecting purified gallium deposited on the cathode, wherein a flow is made between the anode chamber and the cathode chamber. In a gallium electrolyzer containing an electrolyte solution, the anode chamber is formed in a cylindrical vessel, a magnet rotor is installed below the outside of the cylindrical vessel, and a suction pipe is arranged in the center of the cylindrical vessel. And an auxiliary electrolytic cell having an insoluble anode and a cathode provided outside the cell of the electrolytic device, and a circuit for circulating the electrolytic solution between the electrolytic device and the auxiliary electrolytic cell is provided. apparatus.
陽極室と,陰極に析出した精製ガリウムを捕集する陰極
室とを有し,該陽極室と陰極室との間を通流するように
電解液を入れたガリウム電解装置において,該陽極室を
円筒状容器に構成し,この円筒状容器の外側下方に磁石
回転子を設置すると共に該円筒状容器内の中心部にサク
ションパイプを配置し,かつ該電解装置の槽外に不溶性
陽極と陰極をもつ補助電解槽を設けると共に該電解装置
と補助電解槽の間を該電解液が循環する回路を設け,該
循環回路にさらに中間槽を設置し,前記のサクションパ
イプをこの中間槽に連結し,この中間槽から電解装置に
通ずる管路にフイルタを介装させたことを特徴とするガ
リウム電解精製装置。7. An anode chamber for accommodating a gallium raw material liquid as an anode, and a cathode chamber for collecting purified gallium deposited on the cathode, and an electrolytic chamber for flowing between the anode chamber and the cathode chamber. In the gallium electrolyzer containing the liquid, the anode chamber is constituted by a cylindrical container, a magnet rotor is installed below the outside of the cylindrical container, and a suction pipe is arranged at a central portion in the cylindrical container. An auxiliary electrolytic cell having an insoluble anode and a cathode is provided outside the electrolytic apparatus, and a circuit for circulating the electrolytic solution between the electrolytic apparatus and the auxiliary electrolytic cell is provided. An intermediate cell is further provided in the circulation circuit. A gallium electrolytic refining apparatus, characterized in that the suction pipe is connected to the intermediate tank, and a filter is interposed in a pipe leading from the intermediate tank to the electrolytic apparatus.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31033298A JP3927706B2 (en) | 1998-10-30 | 1998-10-30 | Method and apparatus for electrolytic purification of gallium |
US09/428,476 US6221232B1 (en) | 1998-10-30 | 1999-10-28 | Electrolytic refining method for gallium and apparatus for use in the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31033298A JP3927706B2 (en) | 1998-10-30 | 1998-10-30 | Method and apparatus for electrolytic purification of gallium |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000144474A true JP2000144474A (en) | 2000-05-26 |
JP3927706B2 JP3927706B2 (en) | 2007-06-13 |
Family
ID=18003967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31033298A Expired - Fee Related JP3927706B2 (en) | 1998-10-30 | 1998-10-30 | Method and apparatus for electrolytic purification of gallium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3927706B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007063044A (en) * | 2005-08-30 | 2007-03-15 | Dowa Holdings Co Ltd | Method for recovering gallium |
CN107338455A (en) * | 2017-09-01 | 2017-11-10 | 江西德义半导体科技有限公司 | The electrolysis unit and method of a kind of high purity gallium |
CN108531944A (en) * | 2018-07-24 | 2018-09-14 | 河南海之德高新环保科技有限公司 | A kind of gallium cyclic electrolysis combined type yin, yang electrode plate |
CN108642523A (en) * | 2018-07-24 | 2018-10-12 | 河南海之德高新环保科技有限公司 | A kind of gallium cyclic electrolysis system |
CN111501069A (en) * | 2020-06-02 | 2020-08-07 | 株洲科能新材料有限责任公司 | Molten salt electrolysis purification method of crude gallium |
KR20220095329A (en) * | 2020-12-29 | 2022-07-07 | 성일하이메탈(주) | Electrorefining apparatus |
KR20230095372A (en) * | 2021-12-22 | 2023-06-29 | 주식회사 퀀타머티리얼스 | Method of high purity indium-gallium collecting from igzo waste targer |
-
1998
- 1998-10-30 JP JP31033298A patent/JP3927706B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007063044A (en) * | 2005-08-30 | 2007-03-15 | Dowa Holdings Co Ltd | Method for recovering gallium |
CN107338455A (en) * | 2017-09-01 | 2017-11-10 | 江西德义半导体科技有限公司 | The electrolysis unit and method of a kind of high purity gallium |
CN108531944A (en) * | 2018-07-24 | 2018-09-14 | 河南海之德高新环保科技有限公司 | A kind of gallium cyclic electrolysis combined type yin, yang electrode plate |
CN108642523A (en) * | 2018-07-24 | 2018-10-12 | 河南海之德高新环保科技有限公司 | A kind of gallium cyclic electrolysis system |
CN111501069A (en) * | 2020-06-02 | 2020-08-07 | 株洲科能新材料有限责任公司 | Molten salt electrolysis purification method of crude gallium |
KR20220095329A (en) * | 2020-12-29 | 2022-07-07 | 성일하이메탈(주) | Electrorefining apparatus |
KR102512626B1 (en) * | 2020-12-29 | 2023-03-23 | 성일하이메탈(주) | Electrorefining apparatus |
KR20230095372A (en) * | 2021-12-22 | 2023-06-29 | 주식회사 퀀타머티리얼스 | Method of high purity indium-gallium collecting from igzo waste targer |
KR102715581B1 (en) * | 2021-12-22 | 2024-10-11 | 주식회사 퀀타머티리얼스 | Method of high purity indium-gallium collecting from igzo waste targer |
Also Published As
Publication number | Publication date |
---|---|
JP3927706B2 (en) | 2007-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI479051B (en) | Primary production of elements | |
US11118276B2 (en) | High purity tin and method for producing same | |
KR101410187B1 (en) | Method for producing indium hydroxide or compound containing indium hydroxide | |
JP7398395B2 (en) | Improvements in copper electrorefining | |
US3787293A (en) | Method for hydroelectrometallurgy | |
EA021918B1 (en) | Method and arrangement for producing metal powder | |
JP5831432B2 (en) | Nickel removal method from copper removal electrolyte | |
US6221232B1 (en) | Electrolytic refining method for gallium and apparatus for use in the method | |
JP3927706B2 (en) | Method and apparatus for electrolytic purification of gallium | |
EP0253783B1 (en) | Process for refining gold and apparatus employed therefor | |
CN109485023A (en) | A method of recycling tellurium from cupric tellurium waste liquid | |
JPS60211092A (en) | Method and apparatus for refining metal by electrolysis of metal halide in molten salt bath | |
WO1993020262A1 (en) | Electrochemical system for recovery of metals from their compounds | |
JP3427879B2 (en) | Method for removing copper from copper-containing nickel chloride solution | |
JP3802245B2 (en) | Method and apparatus for electrolytic purification of gallium | |
JP3146706B2 (en) | Gallium electrolysis method | |
JP3882608B2 (en) | Method and apparatus for electrolytic purification of high purity tin | |
JP4515804B2 (en) | Method for recovering metallic indium by electrowinning | |
JP2685755B2 (en) | Gold refining equipment | |
NO773127L (en) | PROCEDURE FOR RECYCLING ZINC AND ELECTROLYSIS DEVICES FOR USE OF THE PROCEDURE | |
EP0028158A1 (en) | Methods and systems of removal of metals from solution and of purification of metals and purified solutions and metals so obtained | |
JPH07300691A (en) | Method for adjusting copper ion concentration in electrolyte for removing copper | |
JP7497632B2 (en) | Method and device for recovering solid matter | |
JPS625233B2 (en) | ||
JPH0711075B2 (en) | Indium purification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060418 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060614 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061031 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061211 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061220 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070305 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100309 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110309 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110309 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120309 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120309 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130309 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130309 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140309 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |