JPH10292229A - Inorganic fiber product - Google Patents

Inorganic fiber product

Info

Publication number
JPH10292229A
JPH10292229A JP9111742A JP11174297A JPH10292229A JP H10292229 A JPH10292229 A JP H10292229A JP 9111742 A JP9111742 A JP 9111742A JP 11174297 A JP11174297 A JP 11174297A JP H10292229 A JPH10292229 A JP H10292229A
Authority
JP
Japan
Prior art keywords
alumina
ppm
less
fiber
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9111742A
Other languages
Japanese (ja)
Inventor
Yasuo Misu
安雄 三須
Motohiko Ezawa
元彦 江沢
Hiroyuki Terada
浩之 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain TM KK
Original Assignee
Toshiba Monofrax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Monofrax Co Ltd filed Critical Toshiba Monofrax Co Ltd
Priority to JP9111742A priority Critical patent/JPH10292229A/en
Publication of JPH10292229A publication Critical patent/JPH10292229A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6224Fibres based on silica
    • C04B35/62245Fibres based on silica rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Silicon Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly pure inorganic fiber product capable of inhibiting the thermal crystallization of the fiber, improved in heat resistance, extremely little in the generation of powder dust and little in contaminative reactivity with a material to be heated. SOLUTION: This inorganic fiber product contains alumina silica fibers and alumina fibers as main components, if necessary, contains either one or more kinds of organic binders and inorganic binders, and further contains Na and K in a total amount of <=400 ppm, <=130 ppm of Ca and <=200 ppm of Fe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、不純物の少ないア
ルミナ繊維とアルミナシリカ繊維を主成分とする無機繊
維製品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inorganic fiber product mainly composed of alumina fiber and alumina-silica fiber having less impurities.

【0002】[0002]

【従来の技術】アルミナ繊維は、一般に、Al2 3
含有率が70重量%以上であり、アルミナとシリカを主
成分とする直径約2〜4μm、最大長さ100mm程度
の短繊維である。
2. Description of the Related Art Alumina fibers are generally short fibers having a content of Al 2 O 3 of 70% by weight or more, and having a diameter of about 2 to 4 μm and a maximum length of about 100 mm mainly containing alumina and silica. .

【0003】アルミナ繊維は、アルミナの含有率によ
り、ムライトのみ、ムライトとコランダムの混合、また
はコランダムのみの多結晶体である。そのため、加熱に
より新たな結晶の析出がなく、繊維の劣化が少なくて、
1500℃付近にも使用できる。しかし、高価であるの
で、単独で使用されることは少ない。安価なアルミナシ
リカ繊維と共に使用されることが多い。
[0003] Alumina fibers are polycrystals of only mullite, a mixture of mullite and corundum, or only corundum, depending on the alumina content. Therefore, there is no precipitation of new crystals by heating, and there is little deterioration of the fiber,
It can be used at around 1500 ° C. However, since it is expensive, it is rarely used alone. Often used with inexpensive alumina silica fibers.

【0004】アルミナシリカ繊維は、Al2 3 の含有
率が40〜65重量%であり、アルミナとシリカを主成
分とする直径約2〜4μm、最大長さ250mm程度の
非晶質の短繊維で、耐熱温度が1000℃以上である。
アルミナシリカ繊維はこの特性により、補強繊維として
用いられたり、ブランケットやボード、練物などの不定
形の製品に加工されて、各種の工業炉に広く使用され
る。しかし、非晶質であるアルミナシリカ繊維は、10
00℃程度に加熱されると、ムライトの結晶を析出し始
め、1100℃以上ではクリストバライトの結晶を析出
する。
Alumina-silica fibers have an Al 2 O 3 content of 40 to 65% by weight, and are amorphous short fibers having a diameter of about 2 to 4 μm and a maximum length of about 250 mm, which are mainly composed of alumina and silica. And the heat-resistant temperature is 1000 ° C. or higher.
Alumina-silica fibers are widely used in various industrial furnaces because of their properties, they are used as reinforcing fibers or are processed into amorphous products such as blankets, boards and kneaded materials. However, amorphous alumina silica fibers are 10
When heated to about 00 ° C., mullite crystals begin to precipitate, and at 1100 ° C. or higher, cristobalite crystals precipitate.

【0005】ムライトは、熱に安定であり、繊維の耐熱
性を向上する。一方、クリストバライトは、200〜3
00℃の温度域で、熱膨張率が急激に変化する。そのた
め、クリストバライトが多い繊維は、加熱あるいは冷却
による劣化が大きい。繊維の劣化が進行すると強度や耐
熱性が低下したり、また繊維が粉塵となって、炉内の被
加熱物を汚染する等の不具合がある。
[0005] Mullite is heat stable and improves the heat resistance of the fibers. On the other hand, Cristobalite is 200-3
In the temperature range of 00 ° C., the coefficient of thermal expansion changes rapidly. Therefore, a fiber with a large amount of cristobalite is greatly deteriorated by heating or cooling. As the fiber deteriorates, the strength and heat resistance are reduced, and the fiber becomes dust and contaminates the heating target in the furnace.

【0006】かかる不具合に対処するため、不純物を少
なくすることが試みられている。
In order to cope with such a problem, attempts have been made to reduce impurities.

【0007】例えば、アルミナシリカ繊維としては、N
aとKの合計が250ppm以下、又はこれに加え、更
にFeが500ppm以下である繊維が知られている
(特開平4−108115号公報参照)。
For example, as the alumina silica fiber, N
Fibers in which the sum of a and K is 250 ppm or less, or additionally, Fe is 500 ppm or less are known (see JP-A-4-108115).

【0008】また、NaとKの合計が2000ppm以
下であり、Feが500ppm以下であり、Cuが50
ppm以下であり、Niが50ppm以下である無機繊
維積層体も知られている(特開平5−215473号公
報参照)。
The total of Na and K is 2,000 ppm or less, Fe is 500 ppm or less, and Cu is 50 ppm or less.
There is also known an inorganic fiber laminate in which the content is less than 50 ppm and the content of Ni is less than 50 ppm (see Japanese Patent Application Laid-Open No. Hei 5-215473).

【0009】[0009]

【発明が解決しようとする課題】最近は、一部で工業製
品の高品質化が著しく進み、工業炉においても汚染を完
全に防止することが望まれている。
Recently, the quality of industrial products has been remarkably improved in some parts, and it is desired to completely prevent contamination in industrial furnaces.

【0010】特開平4−108115号公報のアルミナ
シリカ繊維や特開平5−215473号公報の無機繊維
積層体では、それらに含まれる不純物を少なくし、不純
物による汚染防止にある程度成功している。しかし、不
純物の影響を十分に小さくできずに、被加熱物の汚染を
満足に防止することができなかった。
In the alumina silica fiber disclosed in JP-A-4-108115 and the inorganic fiber laminate described in JP-A-5-215473, impurities contained therein are reduced, and the contamination by the impurities has been successfully prevented to some extent. However, the influence of impurities cannot be sufficiently reduced, and the contamination of the object to be heated cannot be satisfactorily prevented.

【0011】本発明は、被加熱物を汚染しない高純度の
無機繊維製品を提供することを目的としている。
It is an object of the present invention to provide a high-purity inorganic fiber product which does not contaminate a heated object.

【0012】[0012]

【課題を解決するための手段】本願の第1発明は、アル
ミナシリカ繊維と、アルミナ繊維を主成分とし、必要に
応じて耐火粉末と、有機バインダーおよび無機バインダ
ーのいずれか1種以上を含み、NaとKの合計が500
ppm以下であり、Caが130ppm以下であり、F
eが200ppm以下である無機繊維製品を要旨として
いる。
According to a first aspect of the present invention, an alumina-silica fiber and an alumina fiber are contained as main components, and if necessary, a refractory powder and at least one of an organic binder and an inorganic binder, The sum of Na and K is 500
ppm or less, Ca is 130 ppm or less, and F
The gist is an inorganic fiber product having e of 200 ppm or less.

【0013】本願の第2発明は、アルミナシリカ繊維
と、アルミナ繊維を主成分とし、必要に応じて耐火粉末
と、有機バインダーおよび無機バインダーのいずれか1
種以上を含み、NaとKの合計が500ppm以下であ
り、Caが130ppm以下であり、Feが200pp
m以下であり、Cuが2ppm以下であり、Niが4p
pm以下である無機繊維製品を要旨としている。
[0013] The second invention of the present application is based on an alumina silica fiber, an alumina fiber as a main component, and if necessary, a refractory powder and one of an organic binder and an inorganic binder.
Species, the total of Na and K is 500 ppm or less, the content of Ca is 130 ppm or less, and the content of Fe is 200 pp.
m or less, Cu is 2 ppm or less, and Ni is 4 p
The gist of the present invention is an inorganic fiber product that is not more than pm.

【0014】本願の第3発明においては、アルミナシリ
カ繊維は、NaとKの合計が150ppm以下であり、
Caが100ppm以下であり、Feが100ppm以
下であり、Cuが1.5ppm以下であり、Niが2p
pm以下である。
In the third invention of the present application, the alumina silica fiber has a total of Na and K of 150 ppm or less,
Ca is 100 ppm or less, Fe is 100 ppm or less, Cu is 1.5 ppm or less, and Ni is 2 p
pm or less.

【0015】[0015]

【発明の実施の形態】本発明者らは、アルミナシリカ繊
維の加熱に伴うクリストバライトの析出が、主にCa、
Cu、Ni、更にNa、K、Feなどの不純物に起因す
ることを知見して本発明をなしたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have found that the precipitation of cristobalite accompanying the heating of alumina silica fibers is mainly caused by Ca,
The present invention has been made based on the finding that it is caused by impurities such as Cu, Ni, and Na, K, and Fe.

【0016】アルミナシリカ繊維に含まれるCaは、N
aやKなどのアルカリ金属元素と同様にシリカ部分の融
点を低下させ、クリストバライトの結晶化を著しく促進
させる。
Ca contained in the alumina silica fiber is N
Like the alkali metal elements such as a and K, it lowers the melting point of the silica portion and remarkably promotes the crystallization of cristobalite.

【0017】また、アルミナシリカ繊維に含まれるCu
と、Niの挙動については、明確に解明できていない
が、CuやNiはアルミナシリカ繊維のシリカ中を拡散
移動して繊維表面に濃縮してクリストバライトの析出が
局部的に促進されるものと推定される。
Further, Cu contained in the alumina silica fiber
Although the behavior of Ni has not been clearly elucidated, it is presumed that Cu and Ni diffuse and move in the silica of the alumina silica fiber and concentrate on the fiber surface, and the precipitation of cristobalite is locally promoted. Is done.

【0018】無機繊維製品の製造に際して、使用する
水、耐火粉末、有機バインダーや無機バインダーなど
は、繊維の表面或いは交点に凝集しやすいので、限定し
て使用することが好ましい。
In the production of inorganic fiber products, water, refractory powder, organic binders, inorganic binders and the like used are liable to agglomerate on the surface or intersections of the fibers, so it is preferable to use them in a limited manner.

【0019】例えば、水はイオン交換水或いは蒸留水を
使用すると、無機繊維製品に含まれるNa、Fe、C
a、K、Mgなどの不純物が減少して好ましい。
For example, when ion-exchanged water or distilled water is used as the water, Na, Fe, C contained in the inorganic fiber product is used.
It is preferable because impurities such as a, K, and Mg are reduced.

【0020】耐火粉末は、アルミナ粉やムライト粉が好
ましい。これらの耐火粉末においても、アルコキシドを
原料とする高純度品や、アルカリの含有量を抑えた低ソ
ーダ品が好ましい。
The refractory powder is preferably alumina powder or mullite powder. Among these refractory powders, a high-purity product using an alkoxide as a raw material and a low-soda product having a reduced alkali content are preferable.

【0021】無機バインダーは、Na含有量の少ない低
ソーダのコロイダルシリカやアルミナゾル、気相法で作
られた高純度の微粒シリカ(例えば商品名アエロジル)
などが好ましい。これらの1種又は2種を同時に使用し
ても良い。
Examples of the inorganic binder include low-sodium colloidal silica and alumina sol having a low Na content, and high-purity fine-grained silica prepared by a gas phase method (for example, Aerosil).
Are preferred. One or two of these may be used simultaneously.

【0022】有機バインダーは、Naなどのアルカリ金
属元素や他の不純物の少ない高純度の澱粉やアクリルや
セルロースなどが好ましい。
The organic binder is preferably an alkali metal element such as Na or a high-purity starch, acryl or cellulose containing few other impurities.

【0023】アルミナシリカ繊維とアルミナ繊維と耐火
粉末と無機バインダーの配合構成は、次の重量比が好ま
しい。
The following weight ratio is preferred for the composition of the alumina silica fiber, the alumina fiber, the refractory powder and the inorganic binder.

【0024】アルミナシリカ繊維とアルミナ繊維の重量
比は100:0〜100:100であり、繊維と耐火粉
末の重量比は100:0〜100:100であり、繊維
と耐火粉末の合計と無機バインダーの重量比は100:
0〜80:20である。
The weight ratio between the alumina silica fiber and the alumina fiber is 100: 0 to 100: 100, the weight ratio between the fiber and the refractory powder is 100: 0 to 100: 100, and the total of the fiber and the refractory powder and the inorganic binder Is 100:
0 to 80:20.

【0025】次に、本発明の無機繊維製品が含有する不
純物について説明する。
Next, the impurities contained in the inorganic fiber product of the present invention will be described.

【0026】NaとKの合計は500ppm以下が好ま
しく、Feは200ppm以下が好ましく、Caは13
0ppm以下が好ましく、Cuは2ppm以下が好まし
く、Niは4ppm以下が好ましい。これらの値を越え
ると、いずれも、使用の際に、発生する粉塵が多くなっ
て、被加熱物を汚染する。
The total of Na and K is preferably 500 ppm or less, Fe is preferably 200 ppm or less, and Ca is 13 ppm or less.
0 ppm or less is preferable, Cu is preferably 2 ppm or less, and Ni is preferably 4 ppm or less. When these values are exceeded, the dust generated during use increases the contamination of the object to be heated.

【0027】本発明のアルミナシリカ繊維が含有する不
純物については、NaとKの合計は150ppm以下が
好ましく、Feは100ppm以下が好ましく、Caは
100ppm以下が好ましく、Cuは1.5ppm以下
が好ましく、Niは2ppm以下が好ましい。これらの
値を越えると、いずれも、使用の際に、発生する粉塵が
多くなって、被加熱物を汚染する。
Regarding the impurities contained in the alumina silica fiber of the present invention, the total of Na and K is preferably 150 ppm or less, Fe is preferably 100 ppm or less, Ca is preferably 100 ppm or less, Cu is preferably 1.5 ppm or less, Ni is preferably 2 ppm or less. When these values are exceeded, the dust generated during use increases the contamination of the object to be heated.

【0028】アルミナシリカ繊維は、1000℃〜11
00℃に加熱してムライト結晶を析出させると耐熱性、
および耐久性が一層向上して好ましい。
Alumina-silica fiber is used at 1000 ° C. to 11 ° C.
When heated to 00 ° C to precipitate mullite crystals, heat resistance,
Further, the durability is further improved, which is preferable.

【0029】繊維に含まれるショットは、落下しやすい
ので、被加熱物の汚染を防止するために、処理をしてシ
ョットを少なくするのが好ましい。
Since the shots contained in the fibers are easy to fall, it is preferable to reduce the number of shots by performing treatment in order to prevent contamination of the object to be heated.

【0030】無機繊維製品は、その表面に、例えば、ア
ルミナゾル、アルミニウムのアルコキシド溶液などの高
純度のアルミナ系バインダー、または例えばコロイダル
シリカとアルミナゾルを混合した、高純度のムライト系
バインダーさらに低ソーダのコロイダルシリカなどのシ
リカ系バインダーを塗布すると、更に粉塵を防止でき
て、一層好ましい。
The inorganic fiber product has, on its surface, a high-purity alumina-based binder such as alumina sol or an aluminum alkoxide solution, or a high-purity mullite-based binder obtained by mixing, for example, colloidal silica and alumina sol, and a low-soda colloid. It is more preferable to apply a silica-based binder such as silica because dust can be further prevented.

【0031】有機バインダーを嫌う炉などに無機繊維製
品を使用する場合は、予め800〜1600℃で熱処理
すると、有機バインダーを除去できて好ましい。熱処理
の温度が800℃未満ではそのような処理をするのに長
時間を要し、1600℃を越えると、製品の強度が低下
する。
When an inorganic fiber product is used in a furnace that dislikes an organic binder, a heat treatment at 800 to 1600 ° C. is preferable because the organic binder can be removed. When the temperature of the heat treatment is lower than 800 ° C., it takes a long time to perform such treatment, and when it exceeds 1600 ° C., the strength of the product is reduced.

【0032】[0032]

【実施例】アルミナシリカ繊維、アルミナ繊維およびア
ルミナ粉を所定量計量し、これらの繊維とアルミナ粉の
合計量で1kgを水100リットルに混合分散した。そ
の後、陽性澱粉と低ソーダのコロイダルシリカをそれぞ
れ固形分で60g添加してスラリーを作り、真空成形法
により厚さ20mmの成形品を製作した。
EXAMPLE A predetermined amount of alumina silica fiber, alumina fiber and alumina powder was weighed, and 1 kg of these fibers and alumina powder were mixed and dispersed in 100 liters of water. Thereafter, positive starch and low-soda colloidal silica were each added at a solid content of 60 g to form a slurry, and a molded product having a thickness of 20 mm was produced by a vacuum molding method.

【0033】アルミナシリカ繊維の不純物の分析値を表
1に示し、アルミナ繊維の不純物の分析値を表2に示
し、アルミナ粉の不純物の分析値を表3に示す。
The analytical values of the impurities in the alumina silica fiber are shown in Table 1, the analytical values of the impurities in the alumina fiber are shown in Table 2, and the analytical values of the impurities in the alumina powder are shown in Table 3.

【0034】アルミナシリカ繊維は、ほぼアルミナが5
3重量%、シリカが47重量%である。アルミナ繊維
は、ほぼアルミナが72重量%、シリカが28重量%で
ある。
Alumina-silica fibers have almost 5 alumina.
3% by weight and 47% by weight of silica. The alumina fibers are approximately 72% by weight of alumina and 28% by weight of silica.

【0035】成形品の構成と不純物の分析値を表4に示
し、その特性値を表5に示す。
Table 4 shows the composition of the molded article and the analytical values of impurities. Table 5 shows the characteristic values.

【0036】実施例2は、成形品を1200℃で1時間
加熱処理したものである。実施例3では、1000℃で
15分間加熱処理をしたアルミナシリカ繊維を使用し
て、成形後に高純度のアルミナゾルを成形品の表面に塗
布した。実施例4においては、1000℃で15分間加
熱処理をしたアルミナシリカ繊維をアルミナシリカ繊維
全体の70%使用し、アルミナ粉は高純度品を使用し、
成形品を1400℃で3時間加熱処理した。 特性値の
試験方法を説明する。
In Example 2, a molded article was subjected to heat treatment at 1200 ° C. for 1 hour. In Example 3, after molding, high-purity alumina sol was applied to the surface of the molded article using alumina silica fiber that had been heat-treated at 1000 ° C. for 15 minutes. In Example 4, alumina silica fiber that was heat-treated at 1000 ° C. for 15 minutes was used in 70% of the entire alumina silica fiber, and alumina powder used was a high-purity product.
The molded article was heat-treated at 1400 ° C. for 3 hours. A method for testing characteristic values will be described.

【0037】粉塵発生量は、アルミナ板を置き、このア
ルミナ板上の4隅に高さ20mmの支えを置き、その支
えの上に150mm角の成形品を置いて、1400℃−
8時間加熱を5回繰り返し、アルミナ板に落下した繊維
の数を数えた。
The amount of dust generation was determined by placing an alumina plate, placing supports having a height of 20 mm at the four corners on the alumina plate, and placing a 150 mm square molded product on the supports at 1400 ° C.
Heating was repeated 5 times for 8 hours, and the number of fibers dropped on the alumina plate was counted.

【0038】汚染反応性は、細かく粉砕した成形品0.
3gを石英ガラス板の上に約30mm角に置いて、13
00℃で6時間加熱し、石英ガラスの失透を観察した。
失透の程度により、無、微少、少、中、大の5段階に分
けて評価した。失透の程度が大の状態では、石英ガラス
に無数の泡状物が観察された。
The contamination reactivity was measured using a finely ground molded article.
3g is placed on a quartz glass plate at about 30mm square.
After heating at 00 ° C. for 6 hours, devitrification of the quartz glass was observed.
According to the degree of devitrification, evaluation was made in five stages: none, minute, small, medium, and large. When the degree of devitrification was large, countless bubbles were observed in the quartz glass.

【0039】前述実施例1〜2と同様に比較例を作製し
た。
Comparative examples were prepared in the same manner as in Examples 1 and 2.

【0040】比較例1はCuが多い例である。比較例2
はNiが多い例である。比較例3は、Caが多い例であ
る。比較例5では、通常品のアルミナ粉を使用した。比
較例4および5は、Na、K、Fe、Ca、Cu、Ni
が多い例であり、粉塵発生量および汚染が多い。
Comparative Example 1 is an example in which the amount of Cu is large. Comparative Example 2
Is an example of a large amount of Ni. Comparative Example 3 is an example in which Ca is large. In Comparative Example 5, normal alumina powder was used. Comparative Examples 4 and 5 are Na, K, Fe, Ca, Cu, Ni
And the amount of dust generation and contamination are high.

【0041】実施例2と比較例4の成形品を1400℃
で1000時間加熱した後、アルミナシリカ繊維の表面
状態をSEMにより観察した。その結果を、図1と図2
に示す。図1と図2を比較すると、図1では、図2のも
のよりも結晶成長が抑制されている。
The molded articles of Example 2 and Comparative Example 4 were heated at 1400 ° C.
, And the surface state of the alumina silica fiber was observed by SEM. The results are shown in FIG. 1 and FIG.
Shown in When FIG. 1 is compared with FIG. 2, crystal growth is suppressed in FIG. 1 more than in FIG.

【0042】[0042]

【発明の効果】本発明の無機繊維製品によると、加熱に
よる繊維の結晶化を抑制できて、耐熱性が向上し、粉塵
の発生が極めて少なく、被加熱物との汚染反応性も少な
い。この理由により、本発明の無機繊維製品を使用すれ
ば、被加熱物を汚染することがなく、被加熱物の品質お
よび生産量の向上が可能になる。
According to the inorganic fiber product of the present invention, crystallization of the fiber by heating can be suppressed, heat resistance is improved, generation of dust is extremely small, and contamination reactivity with an object to be heated is small. For this reason, if the inorganic fiber product of the present invention is used, the quality of the object to be heated and the production amount can be improved without contaminating the object to be heated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアルミナシリカ繊維のSEM観察結果
を示す図。
FIG. 1 is a view showing the results of SEM observation of the alumina silica fiber of the present invention.

【図2】比較例のアルミナシリカ繊維のSEM観察結果
を示す図。
FIG. 2 is a view showing the results of SEM observation of alumina silica fibers of a comparative example.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年5月7日[Submission date] May 7, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 無機繊維製品[Title of the Invention] Inorganic fiber products

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、不純物の少ないア
ルミナ繊維とアルミナシリカ繊維を主成分とする無機繊
維製品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inorganic fiber product mainly composed of alumina fiber and alumina-silica fiber having less impurities.

【0002】[0002]

【従来の技術】アルミナ繊維は、一般に、Al
含有率が70重量%以上であり、アルミナとシリカを主
成分とする直径約2〜4μm、最大長さ100mm程度
の短繊維である。
2. Description of the Related Art Alumina fibers are generally short fibers having a content of Al 2 O 3 of 70% by weight or more, and having a diameter of about 2 to 4 μm and a maximum length of about 100 mm, mainly containing alumina and silica. .

【0003】アルミナ繊維は、アルミナの含有率によ
り、ムライトのみ、ムライトとコランダムの混合、また
はコランダムのみの多結晶体である。そのため、加熱に
より新たな結晶の析出がなく、繊維の劣化が少なくて、
1500℃付近にも使用できる。しかし、高価であるの
で、単独で使用されることは少ない。安価なアルミナシ
リカ繊維と共に使用されることが多い。
[0003] Alumina fibers are polycrystals of only mullite, a mixture of mullite and corundum, or only corundum, depending on the alumina content. Therefore, there is no precipitation of new crystals by heating, and there is little deterioration of the fiber,
It can be used at around 1500 ° C. However, since it is expensive, it is rarely used alone. Often used with inexpensive alumina silica fibers.

【0004】アルミナシリカ繊維は、Alの含有
率が40〜65重量%であり、アルミナとシリカを主成
分とする直径約2〜4μm、最大長さ250mm程度の
非晶質の短繊維で、耐熱温度が1000℃以上である。
アルミナシリカ繊維はこの特性により、補強繊維として
用いられたり、ブランケットやボード、練物などの不定
形の製品に加工されて、各種の工業炉に広く使用され
る。しかし、非晶質であるアルミナシリカ繊維は、10
00℃程度に加熱されると、ムライトの結晶を析出し始
め、1100℃以上ではクリストバライトの結晶を析出
する。
Alumina-silica fibers have an Al 2 O 3 content of 40 to 65% by weight, and are amorphous short fibers having a diameter of about 2 to 4 μm and a maximum length of about 250 mm and containing alumina and silica as main components. And the heat-resistant temperature is 1000 ° C. or higher.
Alumina-silica fibers are widely used in various industrial furnaces because of their properties, they are used as reinforcing fibers or are processed into amorphous products such as blankets, boards and kneaded materials. However, amorphous alumina silica fibers are 10
When heated to about 00 ° C., mullite crystals begin to precipitate, and at 1100 ° C. or higher, cristobalite crystals precipitate.

【0005】ムライトは、熱に安定であり、繊維の耐熱
性を向上する。一方、クリストバライトは、200〜3
00℃の温度域で、熱膨張率が急激に変化する。そのた
め、クリストバライトが多い繊維は、加熱あるいは冷却
による劣化が大きい。繊維の劣化が進行すると強度や耐
熱性が低下したり、また繊維が粉塵となって、炉内の被
加熱物を汚染する等の不具合がある。
[0005] Mullite is heat stable and improves the heat resistance of the fibers. On the other hand, Cristobalite is 200-3
In the temperature range of 00 ° C., the coefficient of thermal expansion changes rapidly. Therefore, a fiber with a large amount of cristobalite is greatly deteriorated by heating or cooling. As the fiber deteriorates, the strength and heat resistance are reduced, and the fiber becomes dust and contaminates the heating target in the furnace.

【0006】かかる不具合に対処するため、不純物を少
なくすることが試みられている。
In order to cope with such a problem, attempts have been made to reduce impurities.

【0007】例えば、アルミナシリカ繊維としては、N
aとKの合計が250ppm以下、又はこれに加え、更
にFeが500ppm以下である繊維が知られている
(特開平4−108115号公報参照)。
For example, as the alumina silica fiber, N
Fibers in which the sum of a and K is 250 ppm or less, or additionally, Fe is 500 ppm or less are known (see JP-A-4-108115).

【0008】また、NaとKの合計が2000ppm以
下であり、Feが500ppm以下であり、Cuが50
ppm以下であり、Niが50ppm以下である無機繊
維積層体も知られている(特開平5−215473号公
報参照)。
The total of Na and K is 2,000 ppm or less, Fe is 500 ppm or less, and Cu is 50 ppm or less.
There is also known an inorganic fiber laminate in which the content is less than 50 ppm and the content of Ni is less than 50 ppm (see Japanese Patent Application Laid-Open No. Hei 5-215473).

【0009】[0009]

【発明が解決しようとする課題】最近は、一部で工業製
品の高品質化が著しく進み、工業炉においても汚染を完
全に防止することが望まれている。
Recently, the quality of industrial products has been remarkably improved in some parts, and it is desired to completely prevent contamination in industrial furnaces.

【0010】特開平4−108115号公報のアルミナ
シリカ繊維や特開平5−215473号公報の無機繊維
積層体では、それらに含まれる不純物を少なくし、不純
物による汚染防止にある程度成功している。しかし、不
純物の影響を十分に小さくできずに、被加熱物の汚染を
満足に防止することができなかった。
In the alumina silica fiber disclosed in JP-A-4-108115 and the inorganic fiber laminate described in JP-A-5-215473, impurities contained therein are reduced, and the contamination by the impurities has been successfully prevented to some extent. However, the influence of impurities cannot be sufficiently reduced, and the contamination of the object to be heated cannot be satisfactorily prevented.

【0011】本発明は、被加熱物を汚染しない高純度の
無機繊維製品を提供することを目的としている。
It is an object of the present invention to provide a high-purity inorganic fiber product which does not contaminate a heated object.

【0012】[0012]

【課題を解決するための手段】本願の第1発明は、アル
ミナシリカ繊維と、アルミナ繊維を主成分とし、必要に
応じて耐火粉末と、有機バインダーおよび無機バインダ
ーのいずれか1種以上を含み、NaとKの合計が500
ppm以下であり、Caが130ppm以下であり、F
eが200ppm以下である無機繊維製品を要旨として
いる。
According to a first aspect of the present invention, an alumina-silica fiber and an alumina fiber are contained as main components, and if necessary, a refractory powder and at least one of an organic binder and an inorganic binder, The sum of Na and K is 500
ppm or less, Ca is 130 ppm or less, and F
The gist is an inorganic fiber product having e of 200 ppm or less.

【0013】本願の第2発明は、アルミナシリカ繊維
と、アルミナ繊維を主成分とし、必要に応じて耐火粉末
と、有機バインダーおよび無機バインダーのいずれか1
種以上を含み、NaとKの合計が500ppm以下であ
り、Caが130ppm以下であり、Feが200pp
m以下であり、Cuが2ppm以下であり、Niが4p
pm以下である無機繊維製品を要旨としている。
[0013] The second invention of the present application is based on an alumina silica fiber, an alumina fiber as a main component, and if necessary, a refractory powder and one of an organic binder and an inorganic binder.
Species, the total of Na and K is 500 ppm or less, the content of Ca is 130 ppm or less, and the content of Fe is 200 pp.
m or less, Cu is 2 ppm or less, and Ni is 4 p
The gist of the present invention is an inorganic fiber product that is not more than pm.

【0014】本願の第3発明においては、アルミナシリ
カ繊維は、NaとKの合計が150ppm以下であり、
Caが100ppm以下であり、Feが100ppm以
下であり、Cuが1.5ppm以下であり、Niが2p
pm以下である。
In the third invention of the present application, the alumina silica fiber has a total of Na and K of 150 ppm or less,
Ca is 100 ppm or less, Fe is 100 ppm or less, Cu is 1.5 ppm or less, and Ni is 2 p
pm or less.

【0015】[0015]

【発明の実施の形態】本発明者らは、アルミナシリカ繊
維の加熱に伴うクリストバライトの析出が、主にCa、
Cu、Ni、更にNa、K、Feなどの不純物に起因す
ることを知見して本発明をなしたものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have found that the precipitation of cristobalite accompanying the heating of alumina silica fibers is mainly caused by Ca,
The present invention has been made based on the finding that it is caused by impurities such as Cu, Ni, and Na, K, and Fe.

【0016】アルミナシリカ繊維に含まれるCaは、N
aやKなどのアルカリ金属元素と同様にシリカ部分の融
点を低下させ、クリストバライトの結晶化を著しく促進
させる。
Ca contained in the alumina silica fiber is N
Like the alkali metal elements such as a and K, it lowers the melting point of the silica portion and remarkably promotes the crystallization of cristobalite.

【0017】また、アルミナシリカ繊維に含まれるCu
と、Niの挙動については、明確に解明できていない
が、CuやNiはアルミナシリカ繊維のシリカ中を拡散
移動して繊維表面に濃縮してクリストバライトの析出が
局部的に促進されるものと推定される。
Further, Cu contained in the alumina silica fiber
Although the behavior of Ni has not been clearly elucidated, it is presumed that Cu and Ni diffuse and move in the silica of the alumina silica fiber and concentrate on the fiber surface, and the precipitation of cristobalite is locally promoted. Is done.

【0018】無機繊維製品の製造に際して、使用する
水、耐火粉末、有機バインダーや無機バインダーなど
は、繊維の表面或いは交点に凝集しやすいので、限定し
て使用することが好ましい。
In the production of inorganic fiber products, water, refractory powder, organic binders, inorganic binders and the like used are liable to agglomerate on the surface or intersections of the fibers, so it is preferable to use them in a limited manner.

【0019】例えば、水はイオン交換水或いは蒸留水を
使用すると、無機繊維製品に含まれるNa、Fe、C
a、K、Mgなどの不純物が減少して好ましい。
For example, when ion-exchanged water or distilled water is used as the water, Na, Fe, C contained in the inorganic fiber product is used.
It is preferable because impurities such as a, K, and Mg are reduced.

【0020】耐火粉末は、アルミナ粉やムライト粉が好
ましい。これらの耐火粉末においても、アルコキシドを
原料とする高純度品や、アルカリの含有量を抑えた低ソ
ーダ品が好ましい。
The refractory powder is preferably alumina powder or mullite powder. Among these refractory powders, a high-purity product using an alkoxide as a raw material and a low-soda product having a reduced alkali content are preferable.

【0021】無機バインダーは、Na含有量の少ない低
ソーダのコロイダルシリカやアルミナゾル、気相法で作
られた高純度の微粒シリカ(例えば商品名アエロジル)
などが好ましい。これらの1種又は2種を同時に使用し
ても良い。
Examples of the inorganic binder include low-sodium colloidal silica and alumina sol having a low Na content, and high-purity fine-grained silica prepared by a gas phase method (for example, Aerosil).
Are preferred. One or two of these may be used simultaneously.

【0022】有機バインダーは、Naなどのアルカリ金
属元素や他の不純物の少ない高純度の澱粉やアクリルや
セルロースなどが好ましい。
The organic binder is preferably an alkali metal element such as Na or a high-purity starch, acryl or cellulose containing few other impurities.

【0023】アルミナシリカ繊維とアルミナ繊維と耐火
粉末と無機バインダーの配合構成は、次の重量比が好ま
しい。
The following weight ratio is preferred for the composition of the alumina silica fiber, the alumina fiber, the refractory powder and the inorganic binder.

【0024】アルミナシリカ繊維とアルミナ繊維の重量
比は100:0〜100:100であり、繊維と耐火粉
末の重量比は100:0〜100:100であり、繊維
と耐火粉末の合計と無機バインダーの重量比は100:
0〜80:20である。
The weight ratio between the alumina silica fiber and the alumina fiber is 100: 0 to 100: 100, the weight ratio between the fiber and the refractory powder is 100: 0 to 100: 100, and the total of the fiber and the refractory powder and the inorganic binder Is 100:
0 to 80:20.

【0025】次に、本発明の無機繊維製品が含有する不
純物について説明する。
Next, the impurities contained in the inorganic fiber product of the present invention will be described.

【0026】NaとKの合計は500ppm以下が好ま
しく、Feは200ppm以下が好ましく、Caは13
0ppm以下が好ましく、Cuは2ppm以下が好まし
く、Niは4ppm以下が好ましい。これらの値を越え
ると、いずれも、使用の際に、発生する粉塵が多くなっ
て、被加熱物を汚染する。
The total of Na and K is preferably 500 ppm or less, Fe is preferably 200 ppm or less, and Ca is 13 ppm or less.
0 ppm or less is preferable, Cu is preferably 2 ppm or less, and Ni is preferably 4 ppm or less. When these values are exceeded, the dust generated during use increases the contamination of the object to be heated.

【0027】本発明のアルミナシリカ繊維が含有する不
純物については、NaとKの合計は150ppm以下が
好ましく、Feは100ppm以下が好ましく、Caは
100ppm以下が好ましく、Cuは1.5ppm以下
が好ましく、Niは2ppm以下が好ましい。これらの
値を越えると、いずれも、使用の際に、発生する粉塵が
多くなって、被加熱物を汚染する。
Regarding the impurities contained in the alumina silica fiber of the present invention, the total of Na and K is preferably 150 ppm or less, Fe is preferably 100 ppm or less, Ca is preferably 100 ppm or less, Cu is preferably 1.5 ppm or less, Ni is preferably 2 ppm or less. When these values are exceeded, the dust generated during use increases the contamination of the object to be heated.

【0028】アルミナシリカ繊維は、1000℃〜11
00℃に加熱してムライト結晶を析出させると耐熱性、
および耐久性が一層向上して好ましい。
Alumina-silica fiber is used at 1000 ° C. to 11 ° C.
When heated to 00 ° C to precipitate mullite crystals, heat resistance,
Further, the durability is further improved, which is preferable.

【0029】繊維に含まれるショットは、落下しやすい
ので、被加熱物の汚染を防止するために、処理をしてシ
ョットを少なくするのが好ましい。
Since the shots contained in the fibers are easy to fall, it is preferable to reduce the number of shots by performing treatment in order to prevent contamination of the object to be heated.

【0030】無機繊維製品は、その表面に、例えば、ア
ルミナゾル、アルミニウムのアルコキシド溶液などの高
純度のアルミナ系バインダー、または例えばコロイダル
シリカとアルミナゾルを混合した、高純度のムライト系
バインダーさらに低ソーダのコロイダルシリカなどのシ
リカ系バインダーを塗布すると、更に粉塵を防止でき
て、一層好ましい。
The inorganic fiber product has, on its surface, a high-purity alumina-based binder such as alumina sol or an aluminum alkoxide solution, or a high-purity mullite-based binder obtained by mixing, for example, colloidal silica and alumina sol, and a low-soda colloid. It is more preferable to apply a silica-based binder such as silica because dust can be further prevented.

【0031】有機バインダーを嫌う炉などに無機繊維製
品を使用する場合は、予め800〜1600℃で熱処理
すると、有機バインダーを除去できて好ましい。熱処理
の温度が800℃未満ではそのような処理をするのに長
時間を要し、1600℃を越えると、製品の強度が低下
する。
When an inorganic fiber product is used in a furnace that dislikes an organic binder, a heat treatment at 800 to 1600 ° C. is preferable because the organic binder can be removed. When the temperature of the heat treatment is lower than 800 ° C., it takes a long time to perform such treatment, and when it exceeds 1600 ° C., the strength of the product is reduced.

【0032】[0032]

【実施例】アルミナシリカ繊維、アルミナ繊維およびア
ルミナ粉を所定量計量し、これらの繊維とアルミナ粉の
合計量で1kgを水100リットルに混合分散した。そ
の後、陽性澱粉と低ソーダのコロイダルシリカをそれぞ
れ固形分で60g添加してスラリーを作り、真空成形法
により厚さ20mmの成形品を製作した。
EXAMPLE A predetermined amount of alumina silica fiber, alumina fiber and alumina powder was weighed, and 1 kg of these fibers and alumina powder were mixed and dispersed in 100 liters of water. Thereafter, positive starch and low-soda colloidal silica were each added at a solid content of 60 g to form a slurry, and a molded product having a thickness of 20 mm was produced by a vacuum molding method.

【0033】アルミナシリカ繊維の不純物の分析値を表
1に示し、アルミナ繊維の不純物の分析値を表2に示
し、アルミナ粉の不純物の分析値を表3に示す。
The analytical values of the impurities in the alumina silica fiber are shown in Table 1, the analytical values of the impurities in the alumina fiber are shown in Table 2, and the analytical values of the impurities in the alumina powder are shown in Table 3.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】アルミナシリカ繊維は、ほぼアルミナが5
3重量%、シリカが47重量%である。アルミナ繊維
は、ほぼアルミナが72重量%、シリカが28重量%で
ある。
Alumina-silica fibers have almost 5 alumina.
3% by weight and 47% by weight of silica. The alumina fibers are approximately 72% by weight of alumina and 28% by weight of silica.

【0038】成形品の構成と不純物の分析値を表4に示
し、その特性値を表5に示す。
Table 4 shows the composition of the molded article and the analytical values of impurities. Table 5 shows the characteristic values.

【0039】[0039]

【表4】 [Table 4]

【0040】[0040]

【表5】 [Table 5]

【0041】実施例2は、成形品を1200℃で1時間
加熱処理したものである。実施例3では、1000℃で
15分間加熱処理をしたアルミナシリカ繊維を使用し
て、成形後に高純度のアルミナゾルを成形品の表面に塗
布した。実施例4においては、1000℃で15分間加
熱処理をしたアルミナシリカ繊維をアルミナシリカ繊維
全体の70%使用し、アルミナ粉は高純度品を使用し、
成形品を1400℃で3時間加熱処理した。
In Example 2, a molded article was subjected to heat treatment at 1200 ° C. for 1 hour. In Example 3, after molding, high-purity alumina sol was applied to the surface of the molded article using alumina silica fiber that had been heat-treated at 1000 ° C. for 15 minutes. In Example 4, alumina silica fiber that was heat-treated at 1000 ° C. for 15 minutes was used in 70% of the entire alumina silica fiber, and alumina powder used was a high-purity product.
The molded article was heat-treated at 1400 ° C. for 3 hours.

【0042】特性値の試験方法を説明する。A method for testing characteristic values will be described.

【0043】粉塵発生量は、アルミナ板を置き、このア
ルミナ板上の4隅に高さ20mmの支えを置き、その支
えの上に150mm角の成形品を置いて、1400℃−
8時間加熱を5回繰り返し、アルミナ板に落下した繊維
の数を数えた。
The amount of dust generation was determined by placing an alumina plate, placing supports having a height of 20 mm on the four corners of the alumina plate, and placing a 150 mm square molded product on the supports, at 1400 ° C.
Heating was repeated 5 times for 8 hours, and the number of fibers dropped on the alumina plate was counted.

【0044】汚染反応性は、細かく粉砕した成形品0.
3gを石英ガラス板の上に約30mm角に置いて、13
00℃で6時間加熱し、石英ガラスの失透を観察した。
失透の程度により、無、微少、少、中、大の5段階に分
けて評価した。失透の程度が大の状態では、石英ガラス
に無数の泡状物が観察された。
The contamination reactivity was measured using a finely ground molded article.
3g is placed on a quartz glass plate at about 30mm square.
After heating at 00 ° C. for 6 hours, devitrification of the quartz glass was observed.
According to the degree of devitrification, evaluation was made in five stages: none, minute, small, medium, and large. When the degree of devitrification was large, countless bubbles were observed in the quartz glass.

【0045】前述実施例1〜2と同様に比較例を作製し
た。
Comparative examples were prepared in the same manner as in Examples 1 and 2.

【0046】比較例1はCuが多い例である。比較例2
はNiが多い例である。比較例3は、Caが多い例であ
る。比較例5では、通常品のアルミナ粉を使用した。比
較例4および5は、Na、K、Fe、Ca、Cu、Ni
が多い例であり、粉塵発生量および汚染が多い。
Comparative Example 1 is an example in which the amount of Cu is large. Comparative Example 2
Is an example of a large amount of Ni. Comparative Example 3 is an example in which Ca is large. In Comparative Example 5, normal alumina powder was used. Comparative Examples 4 and 5 are Na, K, Fe, Ca, Cu, Ni
And the amount of dust generation and contamination are high.

【0047】実施例2と比較例4の成形品を1400℃
で1000時間加熱した後、アルミナシリカ繊維の表面
状態をSEMにより観察した。その結果を、図1と図2
に示す。図1と図2を比較すると、図1では、図2のも
のよりも結晶成長が抑制されている。
The molded articles of Example 2 and Comparative Example 4 were heated at 1400 ° C.
, And the surface state of the alumina silica fiber was observed by SEM. The results are shown in FIG. 1 and FIG.
Shown in When FIG. 1 is compared with FIG. 2, crystal growth is suppressed in FIG. 1 more than in FIG.

【0048】[0048]

【発明の効果】本発明の無機繊維製品によると、加熱に
よる繊維の結晶化を抑制できて、耐熱性が向上し、粉塵
の発生が極めて少なく、被加熱物との汚染反応性も少な
い。この理由により、本発明の無機繊維製品を使用すれ
ば、被加熱物を汚染することがなく、被加熱物の品質お
よび生産量の向上が可能になる。
According to the inorganic fiber product of the present invention, crystallization of the fiber by heating can be suppressed, heat resistance is improved, generation of dust is extremely small, and contamination reactivity with an object to be heated is small. For this reason, if the inorganic fiber product of the present invention is used, the quality of the object to be heated and the production amount can be improved without contaminating the object to be heated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアルミナシリカ繊維のSEM観察結果
を示す図。
FIG. 1 is a view showing the results of SEM observation of the alumina silica fiber of the present invention.

【図2】比較例のアルミナシリカ繊維のSEM観察結果
を示す図。
FIG. 2 is a view showing the results of SEM observation of alumina silica fibers of a comparative example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルミナシリカ繊維と、アルミナ繊維を
主成分とし、必要に応じて耐火粉末と、有機バインダー
および無機バインダーのいずれか1種以上を含み、Na
とKの合計が500ppm以下であり、Caが130p
pm以下であり、Feが200ppm以下である無機繊
維製品。
1. An alumina-silica fiber, comprising an alumina fiber as a main component and, if necessary, a refractory powder and one or more of an organic binder and an inorganic binder.
Is less than 500 ppm, and Ca is 130 p
pm or less and Fe is 200 ppm or less.
【請求項2】 アルミナシリカ繊維と、アルミナ繊維を
主成分とし、必要に応じて耐火粉末と、有機バインダー
および無機バインダーのいずれか1種以上を含み、Na
とKの合計が500ppm以下であり、Caが130p
pm以下であり、Feが200ppm以下であり、Cu
が2ppm以下であり、Niが4ppm以下である無機
繊維製品。
2. An alumina-silica fiber and an alumina fiber as main components and, if necessary, a refractory powder and one or more of an organic binder and an inorganic binder.
Is less than 500 ppm, and Ca is 130 p
pm or less, Fe is 200 ppm or less, Cu
Is 2 ppm or less and Ni is 4 ppm or less.
【請求項3】 アルミナシリカ繊維は、NaとKの合計
が150ppm以下であり、Caが100ppm以下で
あり、Feが100ppm以下であり、Cuが1.5p
pm以下であり、Niが2ppm以下である請求項1ま
たは2記載の無機繊維製品。
3. The alumina silica fiber has a total of Na and K of 150 ppm or less, Ca of 100 ppm or less, Fe of 100 ppm or less, and Cu of 1.5 p or less.
The inorganic fiber product according to claim 1 or 2, wherein the content of Ni is 2 ppm or less.
JP9111742A 1997-04-15 1997-04-15 Inorganic fiber product Pending JPH10292229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9111742A JPH10292229A (en) 1997-04-15 1997-04-15 Inorganic fiber product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9111742A JPH10292229A (en) 1997-04-15 1997-04-15 Inorganic fiber product

Publications (1)

Publication Number Publication Date
JPH10292229A true JPH10292229A (en) 1998-11-04

Family

ID=14569044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9111742A Pending JPH10292229A (en) 1997-04-15 1997-04-15 Inorganic fiber product

Country Status (1)

Country Link
JP (1) JPH10292229A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348428B1 (en) * 1999-02-23 2002-02-19 Toshiba Monofrax Co., Ltd. High-purity crystalline inorganic fiber, molded body thereof, and method of production thereof
JP2003082569A (en) * 2001-04-13 2003-03-19 Toshiba Monofrax Co Ltd Inorganic fiber product
JP2011132629A (en) * 2009-12-24 2011-07-07 Isolite Insulating Products Co Ltd Flameproof paper made from ceramic fiber and method for producing the same
CN104704151A (en) * 2012-08-15 2015-06-10 3M创新有限公司 Sized short alumina-based inorganic oxide fiber, method of making, and composition including the same
JP2019039106A (en) * 2017-08-25 2019-03-14 デンカ株式会社 Alumina fibers, alumina fiber aggregate, and retaining material for use in exhaust gas purification device
JP2020040034A (en) * 2018-09-12 2020-03-19 イビデン株式会社 Method for producing honeycomb structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348428B1 (en) * 1999-02-23 2002-02-19 Toshiba Monofrax Co., Ltd. High-purity crystalline inorganic fiber, molded body thereof, and method of production thereof
JP2003082569A (en) * 2001-04-13 2003-03-19 Toshiba Monofrax Co Ltd Inorganic fiber product
JP2011132629A (en) * 2009-12-24 2011-07-07 Isolite Insulating Products Co Ltd Flameproof paper made from ceramic fiber and method for producing the same
CN104704151A (en) * 2012-08-15 2015-06-10 3M创新有限公司 Sized short alumina-based inorganic oxide fiber, method of making, and composition including the same
US9617659B2 (en) 2012-08-15 2017-04-11 3M Innovative Properties Sized short alumina-based inorganic oxide fiber, method of making, and composition including the same
JP2019039106A (en) * 2017-08-25 2019-03-14 デンカ株式会社 Alumina fibers, alumina fiber aggregate, and retaining material for use in exhaust gas purification device
EP3623504A4 (en) * 2017-08-25 2020-07-15 Denka Company Limited Alumina fibers, alumina fiber aggregate, and retaining material for use in exhaust gas purification device
US11345641B2 (en) 2017-08-25 2022-05-31 Denka Company Limited Alumina fibers, alumina fiber aggregate, and retaining material for use in exhaust gas purification device
JP2020040034A (en) * 2018-09-12 2020-03-19 イビデン株式会社 Method for producing honeycomb structure

Similar Documents

Publication Publication Date Title
US4088502A (en) Corrosion resistant castable refractory mix
JPH0329741B2 (en)
TW200940470A (en) Refractory glass ceramics
JP2013512186A (en) Low thermal expansion doped fused silica crucible
JPH10292229A (en) Inorganic fiber product
JPH10286416A (en) Ceramic filter and its production method
JP3862045B2 (en) High purity alumina fiber and inorganic fiber product
NL9401182A (en) High density fused silica mixtures, refractory molds made therefrom, and method of manufacture of the same.
JPH0244067A (en) Bn no-pressure sintered ceramic having excellent melting flacture resistance
US5114882A (en) Filter for aluminum hot melt having a partially crystalline binder
JPH10218676A (en) Electrocast refractory based on betha-alumina
JPH0224779B2 (en)
JPH11247029A (en) High-purity alumina-silica-zirconia fiber and refractory heat-insulating material
JPH0662336B2 (en) Aluminum titanate ceramics
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP3665553B2 (en) Conductive low thermal expansion ceramic sintered body
JPH0639483A (en) Ceramic core
US3264123A (en) Fused cast refractory
JPH0641347A (en) Filler for electronic part sealer
JPH0568433B2 (en)
JP2000160434A (en) High purity alumina filament and its fiber product and fire-resistant insulating material
JPS60186462A (en) Thermal impact-resistant refractories
US3230101A (en) Fused cast refractory and method of making
JPH059610A (en) Ceramic filter for filtering molten aluminum
JP3602705B2 (en) Filter media for molten metal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801