JPH10291958A - Production process of 2,6-naphthalene dicarboxylic acid - Google Patents

Production process of 2,6-naphthalene dicarboxylic acid

Info

Publication number
JPH10291958A
JPH10291958A JP9100415A JP10041597A JPH10291958A JP H10291958 A JPH10291958 A JP H10291958A JP 9100415 A JP9100415 A JP 9100415A JP 10041597 A JP10041597 A JP 10041597A JP H10291958 A JPH10291958 A JP H10291958A
Authority
JP
Japan
Prior art keywords
mother liquor
oxidation
reaction
naphthalenedicarboxylic acid
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9100415A
Other languages
Japanese (ja)
Other versions
JP4429393B2 (en
Inventor
Fumio Ogoshi
二三夫 大越
Hiroshi Ogawa
博史 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP10041597A priority Critical patent/JP4429393B2/en
Priority to US09/048,494 priority patent/US6018077A/en
Priority to DE69810531T priority patent/DE69810531T2/en
Priority to ES98106030T priority patent/ES2190554T3/en
Priority to EP98106030A priority patent/EP0872470B1/en
Priority to TW087105804A priority patent/TW446697B/en
Priority to KR1019980013779A priority patent/KR100530340B1/en
Publication of JPH10291958A publication Critical patent/JPH10291958A/en
Application granted granted Critical
Publication of JP4429393B2 publication Critical patent/JP4429393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a continuous production process excellent in production efficiency, having sufficient crystal isolating performance even raising recycling rate of the reaction base solution in the production of 2,6- naphthalenedicarboxylic acid from 2,6-dialkylnaphthalene as a raw material by liquid phase oxidation. SOLUTION: In the continuous production process of 2,6-naphthalene dicarboxylic acid in which 2,6-dialkylnaphthalene is oxidized using molecular oxygen gas in solvent containing lower aliphatic carboxylic acid in the presence of a catalyst consisting of heavy metal compound and bromine compound, the reaction base solution separated from the resulting oxidation reaction product slurry by a solid-liquid separation process, is circulated into the oxidation process after heat treatment at >=150 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は2,6-ナフタレンジカ
ルボン酸を製造する方法に関し、詳しくは2,6-ジアルキ
ルナフタレンの液相酸化により2,6-ナフタレンジカルボ
ン酸を製造するプロセスにおいて2,6-ナフタレンジカル
ボン酸から分離された母液を再び酸化反応工程へリサイ
クルすることにより、工業的に有利に2、6ナフタレン
ジカルボン酸を製造する方法に関する。
The present invention relates to a method for producing 2,6-naphthalenedicarboxylic acid, and more particularly, to a process for producing 2,6-naphthalenedicarboxylic acid by liquid phase oxidation of 2,6-dialkylnaphthalene. The present invention relates to a method for industrially advantageously producing 2,6-naphthalenedicarboxylic acid by recycling a mother liquor separated from 6-naphthalenedicarboxylic acid to an oxidation reaction step again.

【0002】[0002]

【従来の技術】2,6-ナフタレンジカルボン酸およびその
エステルは、高機能ポリエステルの原料として有用な物
質である。従来、2,6-ジアルキルナフタレン類を、低級
脂肪族カルボン酸を含む溶媒中でコバルト、マンガンお
よび臭素を含む触媒を用いて酸化し、2,6-ナフタレンジ
カルボン酸を得る方法は、特公昭34−2666号や特
公昭56−3337号などに多数記載されている。一般
に芳香族炭化水素の液相酸化による芳香族カルボン酸の
製造においては、コバルト、マンガン、臭素などの比較
的高価な触媒を使用するために、それらの触媒は経済的
要請から循環再使用することが必要である。
2. Description of the Related Art 2,6-Naphthalenedicarboxylic acid and its esters are useful substances as raw materials for high-performance polyesters. Conventionally, a method of oxidizing 2,6-dialkylnaphthalenes in a solvent containing a lower aliphatic carboxylic acid using a catalyst containing cobalt, manganese and bromine to obtain 2,6-naphthalenedicarboxylic acid is disclosed in No. 2,666 and Japanese Patent Publication No. 56-3337. Generally, in the production of aromatic carboxylic acids by the liquid-phase oxidation of aromatic hydrocarbons, relatively expensive catalysts such as cobalt, manganese, and bromine are used. is required.

【0003】多くの芳香族酸のうち、最も歴史的に長い
経過と巨大な生産量を維持してきたテレフタル酸の製造
方法においては、主としてマンガンとコバルトからなる
金属触媒の循環再使用は数十年にわたって商業的に成功
した実績を有している。テレフタル酸製造装置における
触媒の循環再使用は、パラキシレンの酸化反応によっ
て生成したテレフタル酸から分離して得られた反応母液
を、再び酸化反応用溶媒として触媒成分などの再調製工
程を経て循環使用する方法(特公昭46−14339号
等)と、反応母液から種々物理的または化学的な方法
で金属触媒を回収して再使用する方法(特公昭41−1
8577号等)の二通りの形態に大別される。
[0003] Among the many aromatic acids, in the method for producing terephthalic acid, which has maintained the longest history and the huge production amount, the recycling of metal catalysts mainly composed of manganese and cobalt has been carried out for several decades. Has a commercially successful track record over the years. The circulating reuse of the catalyst in the terephthalic acid production equipment is based on the fact that the reaction mother liquor obtained by separating from the terephthalic acid generated by the oxidation reaction of para-xylene is reused as a solvent for the oxidation reaction through a process for re-preparing catalyst components and the like. (Japanese Patent Publication No. 46-14339) and a method of recovering and reusing a metal catalyst from the reaction mother liquor by various physical or chemical methods (Japanese Patent Publication No. 41-1).
No. 8577).

【0004】これら2つの方法を比較すれば、当然のこ
とであるがの反応母液をそのまま酸化反応用溶媒とし
て循環使用する方法が簡便であり、また設備投資額と運
転費用の点で優れている。しかしながら、反応母液をそ
のまま酸化反応用溶媒として酸化反応器へ循環使用する
と、酸化反応によって生成した種々の不純物の内、酸化
反応にとって有害な物質、つまり反応抑制物質が溶媒中
に蓄積、増加して酸化反応の速やかな進行を妨げるおそ
れがある。またテレフタル酸品質を悪化させる不純物や
製造装置の円滑な運転に障害となり得る不純物が蓄積、
増加するおそれがあり、従っての方法も自ずから一定
の制約を受けざるを得ない。このような要因によって、
テレフタル酸製造装置では多くの場合、の方法との
方法を組み合わせた方法が行われている。
[0004] Comparing these two methods, it is natural that the method of circulating and using the reaction mother liquor as it is as the solvent for the oxidation reaction is simple, and is excellent in terms of capital investment and operation cost. . However, when the reaction mother liquor is directly recycled to the oxidation reactor as a solvent for the oxidation reaction, among the various impurities generated by the oxidation reaction, substances that are harmful to the oxidation reaction, that is, reaction inhibitory substances, accumulate in the solvent and increase. This may hinder the rapid progress of the oxidation reaction. In addition, impurities that deteriorate terephthalic acid quality and impurities that can hinder the smooth operation of manufacturing equipment accumulate,
There is a possibility that the number will increase, and thus the method must be naturally restricted. Due to these factors,
In many cases, the terephthalic acid producing apparatus employs a method combining the above methods.

【0005】[0005]

【発明が解決しようとする課題】近年に至って商業的規
模の生産が行なわれるようになった2,6-ナフタレンジカ
ルボン酸の製造装置では、技術的な骨格は同じ芳香族カ
ルボン酸としてテレフタル酸製造技術が踏襲、改良され
ている。金属触媒や臭素触媒の循環再使用についても同
様であり、2,6-ジアルキルナフタレンを低級脂肪族カル
ボン酸を含む溶媒中で酸化し、生成した2,6-ナフタレン
ジカルボン酸結晶を分離して得られた母液を再び酸化反
応用溶媒として循環使用(リサイクル)する方法が追求
されている。
In a production apparatus for 2,6-naphthalenedicarboxylic acid, which has recently been produced on a commercial scale, the technical skeleton is the same as that of terephthalic acid as an aromatic carboxylic acid. The technology has been followed and improved. The same applies to the recycle of metal catalysts and bromine catalysts.The 2,6-dialkylnaphthalene is oxidized in a solvent containing a lower aliphatic carboxylic acid, and the resulting 2,6-naphthalenedicarboxylic acid crystals are separated. A method of reusing the recycled mother liquor as a solvent for the oxidation reaction is being pursued.

【0006】しかしながら、2,6-ナフタレンジカルボン
酸の製造装置において母液を酸化反応用溶媒として循環
使用する際には、テレフタル酸製造装置とは異なり、酸
化反応工程で生成した2,6-ナフタレンジカルボン酸結晶
粒子が非常に小さく、しかも反応溶媒に対する2,6-ナフ
タレンジカルボン酸の溶解度が非常に小さいために、テ
レフタル酸製造装置の場合と異なり、いくつかの晶析槽
を経由させても結晶粒径が大きくなりにくく、固液分離
工程において完全な分離性能を発揮するのが非常に困難
である。その結果、2,6-ナフタレンジカルボン酸結晶の
一部、それも酸化反応工程で生成した平均的な結晶粒子
よりもさらに微細な結晶粒子が母液中に含まれることに
なる。この微細結晶を含有した反応母液を、再び酸化反
応用溶媒として酸化反応器に循環使用を繰り返すと、固
液分離工程に供給するスラリー中に含有されている微細
結晶の比率が上昇して、所定の固液分離能力が発揮でき
なくなる。本発明の目的は、以上の如き状況から、2,6-
ジアルキルナフタレンを原料として液相酸化により2,6-
ナフタレンジカルボン酸を製造する際に、反応母液のリ
サイクル率を高めても、充分な結晶分離能力が得られ、
生産効率の優れた連続製造方法を提供することにある。
However, when the mother liquor is circulated and used as an oxidation reaction solvent in a 2,6-naphthalenedicarboxylic acid production apparatus, unlike the terephthalic acid production apparatus, the 2,6-naphthalenedicarboxylic acid produced in the oxidation reaction step is different from the terephthalic acid production apparatus. Since the acid crystal particles are very small and the solubility of 2,6-naphthalenedicarboxylic acid in the reaction solvent is very small, unlike the case of terephthalic acid production equipment, the crystal particles can be passed through several crystallization tanks. The diameter is not easily increased, and it is very difficult to exhibit complete separation performance in the solid-liquid separation step. As a result, part of the 2,6-naphthalenedicarboxylic acid crystals, which are finer than the average crystal particles generated in the oxidation reaction step, are contained in the mother liquor. When the reaction mother liquor containing the fine crystals is repeatedly circulated and used as the solvent for the oxidation reaction in the oxidation reactor, the ratio of the fine crystals contained in the slurry supplied to the solid-liquid separation step is increased. Cannot exert its solid-liquid separation ability. The purpose of the present invention is to
2,6-Dialkylnaphthalene as raw material by liquid phase oxidation
When producing naphthalenedicarboxylic acid, even if the recycling rate of the reaction mother liquor is increased, sufficient crystal separation ability is obtained,
An object of the present invention is to provide a continuous production method with excellent production efficiency.

【0007】[0007]

【課題を解決するための手段】本発明者らは2,6-ナフタ
レンジカルボン酸の製造における上記課題について鋭意
検討を重ねた結果、酸化反応器にリサイクルされる母液
をあらかじめ所要の温度で加熱処理することによって、
母液リサイクル率を高めても充分な固液分離能力が長期
間維持されることを見出し、本発明に到達した。即ち本
発明は、2,6-ジアルキルナフタレンを低級脂肪族カルボ
ン酸を含む溶媒中で重金属化合物及び臭素化合物からな
る触媒の存在下に、分子状酸素ガスを用いて酸化して2,
6-ナフタレンジカルボン酸を連続的に製造するに際し
て、酸化反応生成物スラリーから固液分離工程を経て分
離された母液を150℃以上の温度で加熱処理した後、
酸化反応工程へ循環することを特徴とする2,6-ナフタレ
ンジカルボン酸の製造方法である。
The present inventors have conducted intensive studies on the above-mentioned problems in the production of 2,6-naphthalenedicarboxylic acid. As a result, the mother liquor recycled to the oxidation reactor was heated at a required temperature in advance. By,
The present inventors have found that a sufficient solid-liquid separation ability can be maintained for a long period of time even when the mother liquor recycling rate is increased. That is, the present invention oxidizes 2,6-dialkylnaphthalene in a solvent containing a lower aliphatic carboxylic acid in the presence of a catalyst consisting of a heavy metal compound and a bromine compound, using molecular oxygen gas,
When continuously producing 6-naphthalenedicarboxylic acid, after heating the mother liquor separated from the oxidation reaction product slurry through the solid-liquid separation step at a temperature of 150 ° C. or higher,
This is a method for producing 2,6-naphthalenedicarboxylic acid, which is circulated to an oxidation reaction step.

【0008】[0008]

【発明の実施の形態】本発明による2,6-ナフタレンジカ
ルボン酸の製造方法の説明図を図1に示す。図1におい
て原料の2,6-ジアルキルナフタレンは流路1 から酸化反
応工程2 に導入され、低級脂肪族カルボン酸を含む溶媒
中で重金属化合物及び臭素化合物からなる触媒の存在下
に、分子状酸素ガスを用いて酸化反応が行われる。酸化
反応工程2 からの酸化反応生成物スラリーは晶析工程3
を経由して固液分離工程4 に送られる。固液分離工程で
は結晶が分離されて、乾燥工程5 を経て粗2,6-ナフタレ
ンジカルボン酸6 が得られる。固液分離工程で分離され
た母液は母液槽7 に導入される。母液の一部は回収工程
8 に送られ、触媒成分と溶媒の回収が行われる。母液の
残部は調合槽9 で流路11から触媒成分を加えることによ
り触媒の調合が行われた後、加熱処理槽10を経て酸化反
応工程2 に循環される。なお図1において母液リサイク
ル率は次式のように定義される。 母液リサイクル率=A/(A+B)×100(%) 但し、Aは母液槽7 から調合槽9 へ送られる母液量(k
g/h) Bは母液槽7 から回収工程8 に送られる母液量(kg/
h)
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram illustrating a method for producing 2,6-naphthalenedicarboxylic acid according to the present invention. In FIG. 1, the raw material 2,6-dialkylnaphthalene is introduced into an oxidation reaction step 2 from a flow path 1 and is subjected to molecular oxygen in a solvent containing a lower aliphatic carboxylic acid in the presence of a catalyst comprising a heavy metal compound and a bromine compound. An oxidation reaction is performed using the gas. The oxidation reaction product slurry from the oxidation reaction step 2 is crystallized in the crystallization step 3.
And then sent to the solid-liquid separation step 4. In the solid-liquid separation step, crystals are separated, and a crude 2,6-naphthalenedicarboxylic acid 6 is obtained through a drying step 5. The mother liquor separated in the solid-liquid separation step is introduced into a mother liquor tank 7. Part of mother liquor is recovered
8 to collect the catalyst components and solvent. The remainder of the mother liquor is mixed in the mixing tank 9 by adding a catalyst component from the flow path 11, and then circulated to the oxidation reaction step 2 through the heat treatment tank 10. In FIG. 1, the mother liquor recycling rate is defined by the following equation. Mother liquor recycling rate = A / (A + B) x 100 (%) where A is the amount of mother liquor sent from the mother liquor tank 7 to the preparation tank 9 (k
g / h) B is the amount (kg / h) of mother liquor sent from the mother liquor tank 7 to the recovery step 8.
h)

【0009】本発明で酸化原料として用いられる2,6-ジ
アルキルナフタレンとしては、2,6-ジメチルナフタレ
ン、2,6-ジエチルナフタレン、2,6-ジイソプロピルナフ
タレンなどが挙げられる。酸化反応工程で溶媒として使
用される低級脂肪族カルボン酸としては蟻酸、酢酸、プ
ロピオン酸、酪酸など、あるいはこれらの混合物が挙げ
られるが、酢酸が最も好適である。溶媒には水が含有さ
れていてもよいが、その含有量は30重量%以下が好ま
しい。また溶媒の使用量は酸化原料の2,6-ジアルキルナ
フタレンに対して1〜20重量倍、好ましくは2〜10
重量倍である。
The 2,6-dialkylnaphthalene used as an oxidizing material in the present invention includes 2,6-dimethylnaphthalene, 2,6-diethylnaphthalene, 2,6-diisopropylnaphthalene and the like. As the lower aliphatic carboxylic acid used as a solvent in the oxidation reaction step, formic acid, acetic acid, propionic acid, butyric acid and the like or a mixture thereof can be mentioned, and acetic acid is most preferable. The solvent may contain water, but the content is preferably 30% by weight or less. The amount of the solvent used is 1 to 20 times by weight, preferably 2 to 10 times the weight of the oxidation raw material 2,6-dialkylnaphthalene.
Weight times.

【0010】酸化反応工程の触媒としてコバルト化合
物、マンガン化合物などの重金属化合物と臭素化合物か
らなる触媒が用いられる。必要に応じて更に鉄、セリウ
ム、ニッケルなどの重金属化合物を添加してもよい。こ
れらのコバルト、マンガンおよびその他の重金属化合物
としては、有機酸塩、水酸化物、ハロゲン化物、炭酸塩
などが例示されるが、特に酢酸塩および臭化物が好まし
い。また臭素化合物としては、反応系で溶解し、臭素イ
オンを発生するものであれば如何なるものでもよく、臭
化水素、臭化ナトリウムおよび臭化コバルトなどの無機
臭化物およびブロモ酢酸、テトラブロムエタンなどの有
機臭化物が例示され、特に臭化水素、臭化コバルト、臭
化マンガンが好ましい。
A catalyst comprising a heavy metal compound such as a cobalt compound or a manganese compound and a bromine compound is used as a catalyst in the oxidation reaction step. If necessary, heavy metal compounds such as iron, cerium and nickel may be added. Examples of the cobalt, manganese and other heavy metal compounds include organic acid salts, hydroxides, halides, carbonates and the like, and particularly preferred are acetates and bromides. The bromine compound may be any compound that dissolves in the reaction system and generates bromine ions, such as hydrogen bromide, inorganic bromide such as sodium bromide and cobalt bromide, and bromoacetic acid and tetrabromoethane. Organic bromides are exemplified, and hydrogen bromide, cobalt bromide and manganese bromide are particularly preferred.

【0011】触媒使用量はコバルト、マンガンその他の
重金属成分については、その合計量が酸化原料の2,6-ジ
アルキルナフタレンに対する原子比で0.03〜0.
3、好ましくは0.04〜0.2となるように添加され
る。また臭素については、酸化原料の2,6-ジアルキルナ
フタレンに対する原子比で0.015〜0.15、好ま
しくは0.02〜0.1となるように添加される。触媒
使用量が上記の範囲よりも少ない場合には、反応におけ
る2,6-ナフタレンジカルボン酸の収率が低下する。一
方、触媒使用量が上記の範囲よりも多量に使用される場
合には、生成する2,6-ナフタレンジカルボン酸結晶に同
伴する触媒量が増加し、触媒費用が嵩み工業的に不利で
ある。
The amount of the catalyst used is such that the total amount of cobalt, manganese and other heavy metal components is from 0.03 to 0.1 in terms of atomic ratio to 2,6-dialkylnaphthalene as the oxidizing raw material.
3, preferably 0.04 to 0.2. In addition, bromine is added so that the atomic ratio to the oxidation raw material of 2,6-dialkylnaphthalene is 0.015 to 0.15, preferably 0.02 to 0.1. When the amount of the catalyst used is smaller than the above range, the yield of 2,6-naphthalenedicarboxylic acid in the reaction decreases. On the other hand, when the amount of the catalyst used is larger than the above range, the amount of the catalyst accompanying the generated 2,6-naphthalenedicarboxylic acid crystals increases, and the catalyst cost increases, which is industrially disadvantageous. .

【0012】重金属成分のコバルトに対するマンガンの
原子比は4〜15、好ましくは6〜10であり、この場
合の2,6-ジアルキルナフタレンに対するコバルトの原子
比は0.006〜0.04となる。コバルトに対するマ
ンガンの原子比を高くすることにより触媒活性が増大す
るが、コバルトに対するマンガンの原子比が高すぎる
と、副生するトリメリット酸とマンガンが錯塩を形成し
て2,6-ナフタレンジカルボン酸結晶に該錯塩が付着する
ため、結晶の純度が低下する。
The atomic ratio of manganese to cobalt of the heavy metal component is 4 to 15, preferably 6 to 10, and the atomic ratio of cobalt to 2,6-dialkylnaphthalene is 0.006 to 0.04. Increasing the atomic ratio of manganese to cobalt increases the catalytic activity.However, if the atomic ratio of manganese to cobalt is too high, trimellitic acid and manganese by-product form a complex salt to form 2,6-naphthalenedicarboxylic acid. Since the complex salt adheres to the crystal, the purity of the crystal decreases.

【0013】酸化反応工程における反応温度は170〜
250℃、好ましくは180〜240℃の範囲である。
反応温度が低すぎる場合には6-ホルミル-2- ナフトエ酸
などの反応中間体が多量に生成物中に残存し、また得ら
れる2,6-ナフタレンジカルボン酸の結晶が小さくなり、
固液分離効率に支障をきたすおそれがある。反応温度が
高すぎる場合にはナフタレントリカルボン酸などの副生
物が増加しまた、溶媒の燃焼損失が大きくなるために好
ましくない。酸化反応器の圧力は、上記温度において反
応系が液相を保持できる圧力であればよいが、通常5〜
40kg/cm2 G、好ましくは10〜30kg/cm
2 Gである。
The reaction temperature in the oxidation reaction step is from 170 to
It is in the range of 250 ° C, preferably 180-240 ° C.
If the reaction temperature is too low, a large amount of reaction intermediates such as 6-formyl-2-naphthoic acid remain in the product, and the obtained crystals of 2,6-naphthalenedicarboxylic acid become small,
The efficiency of solid-liquid separation may be affected. If the reaction temperature is too high, it is not preferable because by-products such as naphthalenetricarboxylic acid increase and the combustion loss of the solvent increases. The pressure of the oxidation reactor may be any pressure at which the reaction system can maintain a liquid phase at the above-mentioned temperature.
40 kg / cm 2 G, preferably 10 to 30 kg / cm
Is a 2 G.

【0014】酸化反応に使用される分子状酸素を含むガ
スとしては、酸素ガスまたは酸素を窒素、アルゴンなど
の不活性ガスと混合したガスが挙げられるが、空気が最
も一般的である。本発明では反応の形式としては連続式
製造装置で実施される。回分式あるいは半連続式の反応
方式では効率が低く、2,6-ナフタレンジカルボン酸を工
業的規模で効率よく製造するには連続式製造装置が適当
である。反応は一段の酸化反応で完結させてもよいが、
反応収率を高めるために、複数の反応器を直列に連結さ
せて実施することが好ましい。酸化反応器には撹拌槽や
気泡塔などが用いられるが、反応器内の撹拌を充分に行
なうために撹拌槽が好適に使用される。
The gas containing molecular oxygen used in the oxidation reaction includes oxygen gas or a gas obtained by mixing oxygen with an inert gas such as nitrogen or argon, and air is the most common. In the present invention, the reaction is carried out in a continuous production apparatus. A batch or semi-continuous reaction system has low efficiency, and a continuous production apparatus is suitable for efficiently producing 2,6-naphthalenedicarboxylic acid on an industrial scale. The reaction may be completed by a single oxidation reaction,
In order to increase the reaction yield, the reaction is preferably performed by connecting a plurality of reactors in series. Although a stirring tank or a bubble column is used for the oxidation reactor, a stirring tank is preferably used in order to sufficiently stir the inside of the reactor.

【0015】酸化反応器には分子状酸素含有ガスを連続
的に供給し、反応後のガスはオフガスとして連続的に反
応器外へ抜き出される。反応器には還流冷却器を設け、
オフガスに同伴される多量の溶媒および酸化反応で生成
する水を凝縮させる。凝縮した溶媒および水は通常、反
応器に還流されるが、反応器内の水分濃度を調整するた
めにその一部を反応系外に抜き出すことも行なわれる。
酸化反応器から排出されるオフガス中の酸素濃度は、水
や溶媒を凝縮させた後の乾燥ガス基準で0.5〜5%の
範囲内になるように分子状酸素含有ガス量が調節され
る。オフガス中の酸素濃度が該範囲より低い場合には反
応中間体が増加し、また得られる2,6-ナフタレンジカル
ボン酸の色が悪くなるなどの好ましくない現象が生ず
る。反対に酸素濃度が該範囲より高い場合には、ガス圧
縮機などに要する費用が不必要に嵩むことになる。
A gas containing molecular oxygen is continuously supplied to the oxidation reactor, and the gas after the reaction is continuously withdrawn outside the reactor as an off-gas. A reflux condenser is provided in the reactor,
A large amount of solvent entrained in the off-gas and water generated by the oxidation reaction are condensed. The condensed solvent and water are usually refluxed to the reactor, but a part of the solvent and water may be drawn out of the reaction system in order to adjust the water concentration in the reactor.
The molecular oxygen-containing gas content is adjusted so that the oxygen concentration in the off-gas discharged from the oxidation reactor is in the range of 0.5 to 5% based on the dry gas after condensing water or the solvent. . When the oxygen concentration in the off-gas is lower than the above range, undesired phenomena such as an increase in the amount of the reaction intermediate and an inferior color of the obtained 2,6-naphthalenedicarboxylic acid occur. On the other hand, if the oxygen concentration is higher than the above range, the cost required for the gas compressor or the like is unnecessarily increased.

【0016】酸化反応器で生成した2,6-ナフタレンジカ
ルボン酸結晶を含む流出物は、直列に連結された次の酸
化反応器へ送られて再度分子状酸素含有ガスによって仕
上げの酸化反応を行うことが好ましい。酸化反応生成物
スラリーは、好ましくは次の晶析工程で直列に連結され
た1段以上の晶析槽を経由して、落圧、冷却されて固液
分離工程へ送られる。固液分離工程では酸化反応で生成
した2,6-ナフタレンジカルボン酸を含むスラリーを固液
分離機によって結晶と母液に分離される。固液分離は通
常大気圧下で行なわれる。分離温度に特段の制約はない
が、通常は大気圧下における溶媒の沸点以下、約50℃
〜110℃の範囲で行なわれる。固液分離機の形式とし
ては遠心沈降機、遠心濾過機、真空濾過機などが挙げら
れるが、2,6-ナフタレンジカルボン酸の結晶粒径が極め
て小さいことから、通常は、粒径の小さい結晶でも効率
よく捕集が可能なデカンター型遠心分離機が採用され
る。
The effluent containing the 2,6-naphthalenedicarboxylic acid crystals produced in the oxidation reactor is sent to the next oxidation reactor connected in series, where the final oxidation reaction is carried out again with the molecular oxygen-containing gas. Is preferred. The oxidation reaction product slurry is preferably depressurized and cooled through one or more crystallization tanks connected in series in the next crystallization step, and sent to the solid-liquid separation step. In the solid-liquid separation step, a slurry containing 2,6-naphthalenedicarboxylic acid generated by the oxidation reaction is separated into crystals and a mother liquor by a solid-liquid separator. Solid-liquid separation is usually performed under atmospheric pressure. There is no particular restriction on the separation temperature, but it is usually lower than the boiling point of the solvent at atmospheric pressure, about 50 ° C.
It is performed in the range of ~ 110 ° C. Examples of the type of solid-liquid separator include a centrifugal sedimentator, a centrifugal filter, and a vacuum filter.However, since the crystal grain size of 2,6-naphthalenedicarboxylic acid is extremely small, usually a crystal having a small grain size is used. However, a decanter-type centrifuge capable of collecting efficiently is adopted.

【0017】本発明は、この固液分離工程でリークする
微細結晶を含んだ母液の取扱い方法に関するものであ
る。固液分離工程に供給されるスラリー中の結晶粒度分
布は、酸化反応工程の条件や晶析器の有無とその条件、
固液分離機での運転諸因子等によって決定されるので一
概に言えないが、母液を酸化反応器へリサイクルしない
場合の一例を挙げると次の様になる(結晶粒径はレーザ
ー回折式粒度分布測定装置により測定)。
The present invention relates to a method for handling a mother liquor containing fine crystals leaking in the solid-liquid separation step. The crystal particle size distribution in the slurry supplied to the solid-liquid separation step is determined by the conditions of the oxidation reaction step and the presence or absence of a crystallizer,
It cannot be said unconditionally because it is determined by various factors in the operation of the solid-liquid separator. An example of the case where the mother liquor is not recycled to the oxidation reactor is as follows. Measured by a measuring device).

【0018】[0018]

【表1】 1 μm以下 1.4% 1〜5 μm 14.4% 5〜10μm 11.7% 10〜20μm 21.3% 20〜30μm 20.1% 30〜50μm 22.4% 50 μm以上 8.7%Table 1 1 μm or less 1.4% 1 to 5 μm 14.4% 5 to 10 μm 11.7% 10 to 20 μm 21.3% 20 to 30 μm 20.1% 30 to 50 μm 22.4% 50 μm or more 8.7%

【0019】デカンター型遠心分離機では一般に数μm
以上の粒子が捕集できるとされているが、上表によれば
固液分離機に供給されるスラリー中にはこの水準よりも
小さい粒子がかなり含有されていることが分かる。従っ
て固液分離機を出た母液中に微細結晶が一部リークして
くるのは避け難いのが実態である。リークしてくる微細
結晶の量は、スラリー中の結晶粒度分布に加えて固液分
離機の基本的な性能やその運転条件、あるいは固液分離
機へのスラリー供給量などによって変ってくるが、母液
を酸化反応器へリサイクルしない場合の一例を挙げると
約1重量%である。固液分離工程からの母液は、一部分
は溶媒と触媒を回収するための回収工程へ送られるが、
残りの部分はリサイクル使用するために酸化反応用溶媒
を調製するための調合槽へ送られる。調合槽では不足し
た溶媒と触媒を追加して再調製を行なった後、酸化反応
用溶媒として再び酸化反応器へ供給される。なお原料で
ある2,6-ジアルキルナフタレンは調合槽へ供給してあら
かじめ溶媒と混合されてから酸化反応器へ供給する方法
もあるが、調合槽あるいは酸化反応器へ送られる過程で
の好ましくない変質が危惧されることもあり、原料の2,
6-ジアルキルナフタレンは単独で直接酸化反応器へ供給
するほうがより好ましい。
In a decanter type centrifuge, a few μm is generally used.
Although it is said that the above particles can be collected, it can be seen from the above table that the slurry supplied to the solid-liquid separator contains a lot of particles smaller than this level. Therefore, in reality, it is inevitable that some fine crystals leak into the mother liquor that has exited the solid-liquid separator. The amount of leaked fine crystals varies depending on the basic performance and operating conditions of the solid-liquid separator, the amount of slurry supplied to the solid-liquid separator, etc., in addition to the crystal particle size distribution in the slurry, An example in which the mother liquor is not recycled to the oxidation reactor is about 1% by weight. A part of the mother liquor from the solid-liquid separation step is sent to a recovery step for recovering the solvent and the catalyst,
The remaining part is sent to a preparation tank for preparing a solvent for an oxidation reaction for recycling. In the blending tank, the insufficient solvent and catalyst are added and re-prepared, and then supplied again to the oxidation reactor as a solvent for the oxidation reaction. In addition, there is a method in which the raw material 2,6-dialkylnaphthalene is supplied to the preparation tank and mixed with the solvent in advance, and then supplied to the oxidation reactor. However, undesired deterioration in the process of being sent to the preparation tank or the oxidation reactor is also available. May be a concern,
More preferably, the 6-dialkylnaphthalene alone is directly supplied to the oxidation reactor.

【0020】本発明の方式に従えば、回収工程へ送られ
た母液の残りの部分は、加熱処理を受けたうえで酸化反
応器へ供給される。加熱処理は調合槽の上流、すなわち
調合槽へ供給される母液について行なってもよいが、調
合槽の下流、すなわち調合槽での再調製を経て酸化反応
器へ供給される酸化反応用溶媒について行なった方がよ
り好ましい。加熱処理工程は加熱処理槽の中で所定温度
で滞留させる方式が一般的であるが、液送パイプ内で所
定温度で滞留させてもよい。いずれの方法でも加熱処理
温度は150℃以上で行なう必要があり、好ましくは1
60〜240℃である。加熱処理時間は3分間以上が望
ましく、以下の実施例から明らかなように5分間程度で
も100%の母液リサイクル率を達成できる。リサイク
ルされる母液の加熱処理を行なわない場合、または加熱
処理温度が低すぎるままで酸化反応器へ供給すると、後
述する比較例から明らかなように、連続運転時間の経過
とともに分離母液中へリークしてくる微細結晶量が次第
に増加し、長期間の生産継続に重大な支障をきたすこと
になるので、従来の2,6-ナフタレンジカルボン酸製造装
置では、母液リサイクル率が精々30%程度であったも
のが、本発明によれば母液リサイクル率を40%以上と
することができる。
According to the method of the present invention, the remaining portion of the mother liquor sent to the recovery step is supplied to the oxidation reactor after being subjected to a heat treatment. The heat treatment may be performed on the mother liquor supplied to the preparation tank upstream of the preparation tank, that is, on the solvent for the oxidation reaction supplied to the oxidation reactor downstream of the preparation tank, that is, after preparation in the preparation tank. Is more preferred. In the heat treatment step, a method of staying at a predetermined temperature in a heat treatment tank is generally used, but the heat treatment step may be held at a predetermined temperature in a liquid feed pipe. In any method, the heat treatment temperature must be 150 ° C. or higher, preferably 1 ° C.
60-240 ° C. The heat treatment time is desirably 3 minutes or more, and a 100% mother liquor recycling rate can be achieved even with about 5 minutes as is apparent from the following examples. If the mother liquor to be recycled is not subjected to heat treatment, or if supplied to an oxidation reactor while the heat treatment temperature is too low, as will be apparent from a comparative example described later, the mother liquor leaks into the separated mother liquor as the continuous operation time elapses. Since the amount of fine crystals gradually increases, which seriously hinders long-term production, the mother liquor recycling rate was at most about 30% in the conventional 2,6-naphthalenedicarboxylic acid production apparatus. However, according to the present invention, the mother liquor recycling rate can be 40% or more.

【0021】なお特開平6−293697号には、母液
中にリークしてくる微細結晶をそのまま酸化反応器へ供
給すると、得られる2,6-ナフタレンジカルボン酸の結晶
がより大きくなると述べられている。しかしながら、本
発明者らの連続実験結果によればそのような現象はまっ
たく観察されなかった。この違いはおそらく特開平6−
293697号は回分式実験装置での実験結果に立脚し
たものであることに由来すると考えられる。少なくとも
連続実験装置においては、微細結晶を含んだ母液をその
まま酸化反応器へ供給すると、運転時間の経過とともに
固液分離工程、さらには酸化反応工程においても円滑な
運転継続に重大な障害が発生するであろうことは明白で
ある。
JP-A-6-293697 states that when fine crystals leaking into the mother liquor are supplied as they are to the oxidation reactor, the resulting crystals of 2,6-naphthalenedicarboxylic acid become larger. . However, according to the results of continuous experiments by the present inventors, such a phenomenon was not observed at all. This difference is probably due to
No. 293697 is considered to be derived from the fact that it is based on the experimental results of a batch type experimental apparatus. At least in the continuous experimental apparatus, if the mother liquor containing the fine crystals is supplied to the oxidation reactor as it is, a serious obstacle occurs in the solid-liquid separation step, and further in the oxidation reaction step, in the smooth continuation of the operation as the operation time elapses. It will be obvious.

【0022】[0022]

【実施例】次に実施例によって本発明を具体的に説明す
る。但し本発明は以下の実施例により制限されるもので
はない。
Next, the present invention will be described in detail with reference to examples. However, the present invention is not limited by the following examples.

【0023】製造例 酸化反応器に、撹拌装置、還流冷却器、原料2,6-ジメチ
ルナフタレン供給管、溶媒供給管、空気供給管および反
応生成物抜き出し管などが設置されている内容積60リ
ッターのチタン製外部加熱器つきオートクレーブを使用
し、2,6-ナフタレンジカルボン酸を連続的に製造した。
反応液面は常にコントロールされ、反応器容量のほぼ5
0%になるように運転した。2,6-ジメチルナフタレン原
料は液状に保つために約130℃に加熱し、ピストン型
ポンプを使用して酸化反応器へ供給した。溶媒は調合槽
で予め触媒成分を加えて調合し、ピストン型ポンプを使
用して酸化反応器へ供給した。調合槽は外部加熱装置に
よって加熱調節した。原料2,6-ジメチルナフタレン供給
量および溶媒供給量および溶媒成分は次の通りであっ
た。
Production Example A 60-liter internal volume in which an oxidation reactor is provided with a stirrer, a reflux condenser, a raw material 2,6-dimethylnaphthalene supply pipe, a solvent supply pipe, an air supply pipe, a reaction product extraction pipe, and the like. 2,6-naphthalenedicarboxylic acid was continuously produced using an autoclave with an external heater made of titanium.
The reaction liquid level is always controlled and almost 5
The operation was performed so as to be 0%. The 2,6-dimethylnaphthalene raw material was heated to about 130 ° C. in order to keep it in a liquid state, and supplied to the oxidation reactor using a piston type pump. The solvent was prepared by adding a catalyst component in advance in a preparation tank, and supplied to the oxidation reactor using a piston type pump. The mixing tank was heated and controlled by an external heating device. The raw material 2,6-dimethylnaphthalene supply amount, solvent supply amount, and solvent component were as follows.

【0024】[0024]

【表2】 2,6-ジメチルナフタレン供給量 100重量部 溶媒供給量 500重量部 溶媒成分 水分 5% マンガン 8000ppm コバルト 1200ppm Br 5000ppm 残分 酢酸[Table 2] 2,6-Dimethylnaphthalene supply amount 100 parts by weight Solvent supply amount 500 parts by weight Solvent component Water 5% Manganese 8000 ppm Cobalt 1200 ppm Br 5000 ppm Residual acetic acid

【0025】なお、マンガンは酢酸マンガン4水和物、
コバルトは酢酸コバルト4水和物、臭素は臭化水素酸と
して添加した。圧縮空気を酸化反応器のベントガス中の
酸素濃度が1.8〜2.2%の範囲になるように供給速
度を調節した。酸化反応温度は酸化反応器の中段下部に
挿入した温度計が210℃になるように外部加熱器を調
節した。反応圧力は還流冷却器の下流に設置した圧力計
が20気圧になるように下流の圧力調製弁で調製した。
還流冷却器で凝縮した凝縮液は一部系外へ排出し、残り
の部分は酸化反応器へ還流させた。
Here, manganese is manganese acetate tetrahydrate,
Cobalt was added as cobalt acetate tetrahydrate, and bromine was added as hydrobromic acid. The supply rate of the compressed air was adjusted so that the oxygen concentration in the vent gas of the oxidation reactor was in the range of 1.8 to 2.2%. The temperature of the oxidation reaction was controlled by an external heater so that the temperature of the thermometer inserted in the lower part of the middle of the oxidation reactor became 210 ° C. The reaction pressure was adjusted with a downstream pressure regulating valve such that a pressure gauge installed downstream of the reflux condenser had a pressure of 20 atm.
Part of the condensate condensed in the reflux condenser was discharged out of the system, and the remaining part was refluxed to the oxidation reactor.

【0026】最初に所定の触媒成分などを含んだ溶媒の
みを反応器に仕込み、撹拌しながら所定の温度にまで昇
温してから原料2,6-ジメチルナフタレンと空気を供給
し、反応器の液面が所定の値になるように反応生成物抜
き出し管から反応生成物(スラリー)を連続的に抜きだ
した。抜き出された反応生成物は80℃に加熱調節され
た撹拌機つきの貯槽に受けた。貯槽は大気圧に解放し
た。貯槽から抜き出されたスラリーはデカンター型遠心
分離機へ供給され、一部母液を含む湿った結晶と母液に
分離した。母液はいったん80℃に加熱調節された母液
槽に溜め、以下の実施例および比較例における試料を採
取した。
First, only a solvent containing a predetermined catalyst component and the like is charged into a reactor, the temperature is raised to a predetermined temperature while stirring, and then 2,6-dimethylnaphthalene and air are supplied as raw materials. The reaction product (slurry) was continuously withdrawn from the reaction product withdrawal tube so that the liquid level reached a predetermined value. The extracted reaction product was received in a storage tank equipped with a stirrer and heated to 80 ° C. The storage tank was released to atmospheric pressure. The slurry extracted from the storage tank was supplied to a decanter-type centrifugal separator, where the slurry was separated into wet crystals partially containing mother liquor and mother liquor. The mother liquor was once stored in a mother liquor tank heated to 80 ° C., and samples in the following Examples and Comparative Examples were collected.

【0027】母液槽から抜き出された母液の一部を調合
槽へ送り、残りの部分は廃棄した。この母液リサイクル
率は、次のように定義される。 母液リサイクル率=A/(A+B)×100(%) 但し、Aは母液槽へ送られた母液量(kg/h) Bは廃棄された母液量(kg/h) 調合槽では不足した溶媒と触媒を追加し、表2に示した
溶媒成分に調合して加熱処理槽へ送った。加熱処理槽は
撹拌機のついたチタン製であり、外部加熱装置によって
所定の温度に加熱保持した。加熱処理槽における処理時
間は液面をコントロールする方法で調節した。加熱処理
槽を出た母液は全量酸化反応器へ循環した。
A part of the mother liquor extracted from the mother liquor tank was sent to the preparation tank, and the remaining part was discarded. This mother liquor recycling rate is defined as follows. Mother liquor recycling rate = A / (A + B) x 100 (%) where A is the amount of mother liquor sent to the mother liquor tank (kg / h) B is the amount of mother liquor discarded (kg / h) The catalyst was added, mixed with the solvent components shown in Table 2, and sent to the heat treatment tank. The heat treatment tank was made of titanium with a stirrer, and was heated and maintained at a predetermined temperature by an external heating device. The treatment time in the heat treatment tank was adjusted by controlling the liquid level. The mother liquor that exited the heat treatment tank was completely circulated to the oxidation reactor.

【0028】実施例1〜3、比較例1〜2 以上の製造例において、母液リサイクル率、加熱処理槽
の温度および平均滞留時間を変えて2,6-ナフタレンジカ
ルボン酸の製造を行い、特定時間毎に母液槽から採取し
た母液中に含まれる結晶量をを濾過法によって測定し
た。母液中に含まれる結晶量の測定結果を表3に示す。
Examples 1-3, Comparative Examples 1-2 In the above production examples, 2,6-naphthalenedicarboxylic acid was produced by changing the mother liquor recycling rate, the temperature of the heat treatment tank and the average residence time, and Each time, the amount of crystals contained in the mother liquor collected from the mother liquor tank was measured by a filtration method. Table 3 shows the measurement results of the amount of crystals contained in the mother liquor.

【0029】[0029]

【表3】 実施例1 実施例2 実施例3 実施例4 比較例1 比較例2 母液リサイクル率 (%) 100 100 100 100 100 50 加熱処理槽 温度(℃) 200 220 160 160 80 130 滞留時間(min) 20 20 20 5 20 20 経過時間(hr) 母液中の結晶含有量 (%) 24 1.6 1.9 2.4 1.7 2.1 1.7 48 1.7 2.3 2.6 2.3 5.4 3.5 72 2.0 1.4 1.8 2.5 8.2 5.2 96 1.8 1.9 1.8 1.6 13.0 8.1 120 2.1 2.2 2.0 1.9 18.9 12.9 [Table 3] Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 Mother liquor recycling rate (%) 100 100 100 100 100 50 Heat treatment tank Temperature (° C) 200 220 160 160 80 130 Residence time ( min) 20 20 20 5 20 20 Elapsed time (hr) Crystal content in mother liquor (%) 24 1.6 1.9 2.4 1.7 2.1 1.7 48 1.7 2.3 2.6 2.3 5.4 3.5 72 2.0 1.4 1.8 2.5 8.2 5.2 96 1.8 1.9 1.8 1.6 13.0 8.1 120 2.1 2.2 2.0 1.9 18.9 12.9

【0030】以上の結晶含有量の測定結果から次のよう
なことが分かる。 1)加熱処理を130℃で行なった場合(比較例2)、
母液リサイクル率が50%と低いにもかかわらず、実験
終了時にはまだ母液中の結晶含有量が増加傾向を示して
いるのに対して、160℃以上の処理温度では(実施例
1〜4)と略一定値を示した。従って160℃以上で加
熱処理を行なえば、母液リサイクル率が100%であっ
ても長時間の連続運転を支障無く行うことができる。 2)加熱処理槽の液面を下げて溶媒の平均滞留時間が5
分になるように設定した場合(実施例4)でも、母液中
の結晶含有量は運転経過時間とは殆ど関係なく、略一定
値を示した。従って100%の母液リサイクル率であっ
ても、加熱処理時間は5分間以上あれば、長時間の連続
運転が何等支障無く行うことができる。
The following can be understood from the above measurement results of the crystal content. 1) When the heat treatment is performed at 130 ° C. (Comparative Example 2)
Although the mother liquor recycling rate is as low as 50%, the crystal content in the mother liquor still shows a tendency to increase at the end of the experiment, whereas at a processing temperature of 160 ° C. or higher (Examples 1 to 4) It showed a substantially constant value. Therefore, if the heat treatment is performed at 160 ° C. or more, long-time continuous operation can be performed without any trouble even if the mother liquor recycling rate is 100%. 2) Lower the liquid level in the heat treatment tank to reduce the average residence time of the solvent to 5.
Even in the case where the setting was made to be minutes (Example 4), the crystal content in the mother liquor showed a substantially constant value, regardless of the operation elapsed time. Therefore, even if the mother liquor recycling rate is 100%, a long-time continuous operation can be performed without any trouble if the heat treatment time is 5 minutes or more.

【0031】[0031]

【発明の効果】本発明の方法により酸化反応生成物スラ
リーから固液分離工程を経て分離された母液を加熱処理
して酸化反応工程へ循環することにより、反応母液のリ
サイクル率を高めても、充分な結晶分離能力が得られよ
うになることから、回収工程の負荷が著しく削減され、
溶媒や触媒の損失を削減することができる。従って本発
明の方法により極めて生産効率の優れた2,6-ナフタレン
ジカルボン酸の連続的製造方法が提供され、本発明の工
業的意義は大きい。
The mother liquor separated from the oxidation reaction product slurry through the solid-liquid separation step by the method of the present invention is heated and circulated to the oxidation reaction step, thereby increasing the recycling rate of the reaction mother liquor. Since sufficient crystal separation capacity can be obtained, the load on the recovery step is significantly reduced,
Solvent and catalyst losses can be reduced. Therefore, the method of the present invention provides a continuous production method of 2,6-naphthalenedicarboxylic acid with extremely excellent production efficiency, and the present invention has great industrial significance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の2,6-ナフタレンジカルボン酸の製造方
法を示す説明図である。
FIG. 1 is an explanatory diagram showing a method for producing 2,6-naphthalenedicarboxylic acid of the present invention.

【符号の説明】[Explanation of symbols]

2:酸化反応工程 3:晶析工程 4:固液分離工程 5:乾燥工程 7:母液槽 8:回収工程 9:調合槽 10:加熱処理槽 2: Oxidation reaction step 3: Crystallization step 4: Solid-liquid separation step 5: Drying step 7: Mother liquor tank 8: Recovery step 9: Mixing tank 10: Heat treatment tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】2,6-ジアルキルナフタレンを低級脂肪族カ
ルボン酸を含む溶媒中で重金属化合物及び臭素化合物か
らなる触媒の存在下に分子状酸素ガスを用いて酸化して
2,6-ナフタレンジカルボン酸を連続的に製造するに際し
て、酸化反応生成物スラリーから固液分離工程を経て分
離された母液を150℃以上の温度で加熱処理した後、
酸化反応工程へ循環することを特徴とする2,6-ナフタレ
ンジカルボン酸の製造方法。
1. A method of oxidizing 2,6-dialkylnaphthalene using a molecular oxygen gas in a solvent containing a lower aliphatic carboxylic acid in the presence of a catalyst comprising a heavy metal compound and a bromine compound.
In the continuous production of 2,6-naphthalenedicarboxylic acid, after heating the mother liquor separated from the oxidation reaction product slurry through the solid-liquid separation step at a temperature of 150 ° C. or higher,
A method for producing 2,6-naphthalenedicarboxylic acid, wherein the method is circulated to an oxidation reaction step.
【請求項2】加熱処理が3分間以上であり、固液分離工
程で分離された母液の40%以上を循環する請求項1記
載の2,6-ナフタレンジカルボン酸の製造方法。
2. The method for producing 2,6-naphthalenedicarboxylic acid according to claim 1, wherein the heat treatment is performed for 3 minutes or more, and at least 40% of the mother liquor separated in the solid-liquid separation step is circulated.
JP10041597A 1997-04-17 1997-04-17 Method for producing 2,6-naphthalenedicarboxylic acid Expired - Fee Related JP4429393B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10041597A JP4429393B2 (en) 1997-04-17 1997-04-17 Method for producing 2,6-naphthalenedicarboxylic acid
US09/048,494 US6018077A (en) 1997-04-17 1998-03-26 Process for producing 2,6-naphthalenedicarboxylic acid
ES98106030T ES2190554T3 (en) 1997-04-17 1998-04-02 PROCEDURE TO PRODUCE ACID 2,6-NAFTALENODICARBOXILICO.
EP98106030A EP0872470B1 (en) 1997-04-17 1998-04-02 Process for producing 2,6-naphthalenedicarboxylic acid
DE69810531T DE69810531T2 (en) 1997-04-17 1998-04-02 Process for the preparation of naphthalene-2,6-dicarboxylic acid
TW087105804A TW446697B (en) 1997-04-17 1998-04-16 Process for producing 2,6-naphthalenedicarboxylic acid
KR1019980013779A KR100530340B1 (en) 1997-04-17 1998-04-17 Method for preparing 2,6-naphthalenedicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10041597A JP4429393B2 (en) 1997-04-17 1997-04-17 Method for producing 2,6-naphthalenedicarboxylic acid

Publications (2)

Publication Number Publication Date
JPH10291958A true JPH10291958A (en) 1998-11-04
JP4429393B2 JP4429393B2 (en) 2010-03-10

Family

ID=14273360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10041597A Expired - Fee Related JP4429393B2 (en) 1997-04-17 1997-04-17 Method for producing 2,6-naphthalenedicarboxylic acid

Country Status (1)

Country Link
JP (1) JP4429393B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721439B1 (en) 2006-06-01 2007-05-23 주식회사 효성 Process for purification naphthalene dicarboxylic acid
JP2007238554A (en) * 2006-03-10 2007-09-20 Sumitomo Chemical Co Ltd Method for producing 2-hydroxy-4-methylthiobutanoic acid and equipment for producing the same
KR100841151B1 (en) 2006-12-22 2008-06-24 주식회사 효성 Method for preparing high purified naphthalene dicarboxylic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238554A (en) * 2006-03-10 2007-09-20 Sumitomo Chemical Co Ltd Method for producing 2-hydroxy-4-methylthiobutanoic acid and equipment for producing the same
KR100721439B1 (en) 2006-06-01 2007-05-23 주식회사 효성 Process for purification naphthalene dicarboxylic acid
KR100841151B1 (en) 2006-12-22 2008-06-24 주식회사 효성 Method for preparing high purified naphthalene dicarboxylic acid

Also Published As

Publication number Publication date
JP4429393B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
EP0135341B1 (en) Process for preparing terephthalic acid from para-xylene
US4330676A (en) Oxidation process
KR970000136B1 (en) Process for producing highly purified benzenedicarboxylic acid isomers
EP1758846B1 (en) Process for removal of impurities from mother liquor in the synthesis of carboxylic acid using pressure filtration
US6153790A (en) Method to produce aromatic dicarboxylic acids using cobalt and zirconium catalysts
EP0021747B1 (en) Process for the preparation of terephthalic acid
US5292934A (en) Method for preparing aromatic carboxylic acids
EP2292581B1 (en) Extraction process for removal of impurities from mother liquor in the synthesis of terephthalic acid
JPS639498B2 (en)
KR20040108588A (en) Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid
MX2007003416A (en) Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid.
KR20010005647A (en) Process for preparing 2,6-naphthalenedicarboxylic acid
CA2562246C (en) Recycling 2,6-naphthalenedicarboxylic acid (2,6-nda) contained in polyethylene naphthalate in a process to produce diesters
WO1999031038A1 (en) Method to produce aromatic carboxylic acids
MX2008010939A (en) Carboxylic acid production process.
US6018077A (en) Process for producing 2,6-naphthalenedicarboxylic acid
US4675438A (en) Direct continuous flow integration of production and purification of high purity iso- or terephthalic acid
KR102592022B1 (en) Energy and environmentally integrated method for producing aromatic dicarboxylic acids by oxidation
MX2007003417A (en) Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid.
JP4429393B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JP3199104B2 (en) Process for producing 2,6-naphthalenedicarboxylic acid and its ester
JP4032186B2 (en) Method for producing high purity dimethyl 2,6-naphthalenedicarboxylate
JPH10316615A (en) Production of 2,6-naphthalenedicarboxylic acid
JP2504545B2 (en) Manufacturing method of terephthalic acid
JPH0665143A (en) Production of naphthalendicarboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070501

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees