JPH10290925A - Liquid separator - Google Patents

Liquid separator

Info

Publication number
JPH10290925A
JPH10290925A JP11884497A JP11884497A JPH10290925A JP H10290925 A JPH10290925 A JP H10290925A JP 11884497 A JP11884497 A JP 11884497A JP 11884497 A JP11884497 A JP 11884497A JP H10290925 A JPH10290925 A JP H10290925A
Authority
JP
Japan
Prior art keywords
liquid
piping
permeated
pipe
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11884497A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kawashima
敏行 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP11884497A priority Critical patent/JPH10290925A/en
Publication of JPH10290925A publication Critical patent/JPH10290925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To intermittently take out permeated liquid without stopping a feed pump to unnecessitate a large permeated liquid tank by branching a pipeline on the permeated side of a separation membrane into take-out piping for the permeated liquid and return piping for circulating the permeated liquid to the original liquid feed side of a separation membrane. SOLUTION: Original liquid before treatment is separated into permeated liquid and nonpermeated liquid by a separation membrane module 3 from an original liquid tank 1 through suction piping 71, pressurizing pump 2, and feed piping 72. Permeated side piping 74 is branched into take-out piping 76 and return piping 75, which are provided with automatic stop valves 62, 63 respectively to control flow directions of the permeated liquid. The permeated liquid is normally taken out to outside equipment through the permeation side piping 74, the automatic stop valve 62, and the take-out piping 76, and the automatic stop valve 63 is closed. When the automatic stop valve 62 is closed, the automatic stop valve 63 is opened to cause the permeated liquid to flow in the return piping 75 and is returned to the suction piping 71 by the suction of a pressurizing pump 2 and release the pressure on the permeated side of the separation membrane to the feed side. With the pressurizing pump 2 in stationary operation, the take-out piping 76 is closed to enable the replacement of a permeated liquid recovery vessel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分離膜モジュール
を用いて液体の濃縮や造水操作を行う液体分離装置に属
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid separation apparatus for performing a liquid concentration or fresh water operation using a separation membrane module.

【0002】[0002]

【従来の技術】液体分離膜においては、透過液量を多く
するために、選択分離機能を有する活性スキン層を多孔
質支持膜上に設けた複合膜の形態が汎用されている。液
体分離装置としては、複合膜の活性スキン層を供給側、
多孔質支持膜を透過側とした膜モジュールにポンプで加
圧した原液を供給し、透過側との圧力差によって透過液
を連続的に取り出す構成を一般に備えている。
2. Description of the Related Art In liquid separation membranes, in order to increase the amount of permeate, a composite membrane in which an active skin layer having a selective separation function is provided on a porous support membrane is widely used. As the liquid separation device, the active skin layer of the composite membrane is supplied on the supply side,
Generally, a configuration is provided in which a stock solution pressurized by a pump is supplied to a membrane module having a porous support membrane on a permeation side, and a permeate is continuously taken out by a pressure difference from the permeation side.

【0003】複合膜は、透過側から加わる圧力すなわち
背圧によって活性スキン層が多孔質より剥離しやすいの
が欠点である。そこで、従来、活性スキン層の剥離を防
止するために大別して2つの手段が採られていた。
[0003] A disadvantage of the composite membrane is that the active skin layer is more easily peeled off than the porous layer due to the pressure applied from the permeation side, that is, the back pressure. Therefore, conventionally, roughly two means have been adopted to prevent the peeling of the active skin layer.

【0004】第一の防止手段は、例えば図2に示すよう
に、分離膜9の透過側には運転中に操作する弁を配置す
ることなく、透過側配管91を大気に解放するととも
に、透過側配管91から取り出される透過液を一旦透過
液タンク92に貯液し、必要に応じてタンク92の開閉
弁93を開いて透過液を取り出すというものである。こ
の方法によれば、透過側配管91が常時大気に解放され
ているので、分離膜9に背圧がかからない。
As shown in FIG. 2, for example, as shown in FIG. 2, the first prevention means releases the permeate-side pipe 91 to the atmosphere without disposing a valve operated during operation on the permeate side of the separation membrane 9, and simultaneously releases the permeate-side pipe 91 to the atmosphere. The permeated liquid taken out from the side pipe 91 is temporarily stored in a permeated liquid tank 92, and the on-off valve 93 of the tank 92 is opened as necessary to take out the permeated liquid. According to this method, the back pressure is not applied to the separation membrane 9 because the permeation side pipe 91 is always open to the atmosphere.

【0005】第二の防止手段は、例えば図3に示すよう
に、透過側配管91の管経路にストップバルブ93や仕
切り弁94を配置するというものである。この場合、容
器96に透過液を分配するときは、ストップバルブ93
を開、仕切り弁94を閉とし、容器97への分配に移行
するときは、供給側のポンプを一旦停止した後、ストッ
プバルブ93を閉、仕切り弁94を開とし、再びポンプ
を稼動させる。これにより、少なくともポンプ運転中は
透過側配管91が大気に解放されているので、分離膜9
に背圧がかからない。
[0005] The second prevention means is to arrange a stop valve 93 and a gate valve 94 in the pipe path of the permeation side pipe 91 as shown in FIG. 3, for example. In this case, when distributing the permeated liquid to the container 96, the stop valve 93
Is opened, the gate valve 94 is closed, and when the process shifts to the distribution to the container 97, the pump on the supply side is temporarily stopped, the stop valve 93 is closed, the gate valve 94 is opened, and the pump is operated again. As a result, at least during the operation of the pump, the permeation-side pipe 91 is open to the atmosphere.
No back pressure.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記第一の手
段のように常に透過液タンク92を設置できるスペース
があるとは限らない。従って、省スペース化が要請され
る場合には第一の手段を採用することはできない。ま
た、上記第二の手段において、透過液を個別の容器に分
配する毎に供給ポンプを停止させることは、再び元の運
転圧力に戻すためのタイムロスや、ポンプのモーターの
停止・始動の繰り返しによるポンプの短命化を伴うだけ
でなく、何らかの原因で透過側の管経路を大気に解放で
きない場合に背圧により膜を破損する危険性すらある。
However, there is not always a space in which the permeated liquid tank 92 can be always installed as in the first means. Therefore, when space saving is required, the first means cannot be adopted. Further, in the second means, stopping the supply pump every time the permeated liquid is distributed to the individual containers is caused by time loss for returning to the original operating pressure again, and repeated stop / start of the pump motor. Not only is the life of the pump shortened, but there is even the danger that the membrane may be damaged by back pressure if the permeate tube path cannot be released to the atmosphere for any reason.

【0007】それ故、本発明の目的は、供給ポンプを停
止させることなく透過液を断続的に取り出すことがで
き、専有面積の大きい透過液タンクも必要としない液体
分離装置を提供することにある。
Therefore, an object of the present invention is to provide a liquid separating apparatus which can intermittently take out a permeate without stopping a supply pump and does not require a permeate tank having a large occupied area. .

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の液体分離装置は、分離膜の透過側の管経路
が、透過液を取り出す取り出し配管と、分離膜の原液供
給側に循環する戻り配管とに分岐していることを特徴と
する。
In order to achieve the above-mentioned object, in the liquid separation apparatus of the present invention, a pipe path on the permeation side of the separation membrane is connected to a take-out pipe for extracting permeate and a stock solution supply side of the separation membrane. It is characterized by being branched to a circulating return pipe.

【0009】本発明によれば、取り出し配管より透過液
を自在に取り出すことができる。そして、透過液の分配
に際して取り出し配管を締め切っても、分離膜の透過側
の圧力は戻り配管を通じて供給側に逃げるので、圧力は
配管抵抗以上には上がらないし、配管抵抗は膜出口圧力
より小さいのが普通であるから、背圧とならない。な
お、取り出し配管は、その先で大気に連通しているとは
限らず、次段の分離膜の供給側に接続していてもよい。
According to the present invention, the permeate can be freely taken out from the take-out pipe. And even if the take-out pipe is closed when distributing the permeate, the pressure on the permeate side of the separation membrane escapes to the supply side through the return pipe, so the pressure does not rise above the pipe resistance, and the pipe resistance is smaller than the membrane outlet pressure. Is normal, so there is no back pressure. The take-out pipe is not always in communication with the atmosphere at the end, and may be connected to the supply side of the separation membrane in the next stage.

【0010】原液供給側管経路に原液を供給するための
ポンプが設置されており、前記戻り配管と原液供給側管
経路との接続位置を、そのポンプの吸い込み側とする
と、1つのポンプで原液供給と透過液戻しとを同時に行
うことができる上、分離膜の両側の圧力差を維持するこ
ともできるので好ましい。また、取り出し配管及び戻り
配管の各々に開閉弁が配置されていると、透過液の流路
の切り替えが容易となる。
[0010] A pump for supplying the undiluted solution is installed in the undiluted liquid supply side pipe route, and if the connection position between the return pipe and the undiluted solution supply side pipe route is the suction side of the pump, the undiluted solution is supplied by one pump. It is preferable because the supply and the return of the permeate can be performed simultaneously, and the pressure difference between both sides of the separation membrane can be maintained. In addition, if the open / close valve is arranged in each of the take-out pipe and the return pipe, it is easy to switch the flow path of the permeated liquid.

【0011】上記構成に加えて透過側の管経路に流量計
及び/又は圧力計が設置され、これらの計器の検知数値
に応じて前記各開閉弁の開閉操作を制御する制御機器を
備えていると良い。それによって、剥離による膜破損の
前兆が生じる前に自動的に各開閉弁が作動して透過液を
戻り配管に分配するとともに、透過側圧力が正常になる
と再び自動的に開閉弁が復帰して透過液を取り出し配管
に流すことができるからである。
In addition to the above-mentioned configuration, a flow meter and / or a pressure gauge is installed in the pipe line on the permeation side, and a control device for controlling the opening / closing operation of each of the on-off valves according to the detection values of these instruments is provided. And good. As a result, each on-off valve is automatically operated to distribute the permeate to the return pipe before a sign of membrane breakage due to peeling occurs, and the on-off valve automatically returns again when the permeate pressure becomes normal. This is because the permeated liquid can be taken out and flown to the piping.

【0012】[0012]

【発明の実施の形態】本発明液体分離装置の実施形態を
図面とともに説明する。図1は実施形態の液体分離装置
による液体の流れ図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the liquid separating apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a flow chart of a liquid by the liquid separation device of the embodiment.

【0013】この装置においては、処理前の原液は原液
タンク1に蓄えられており、そこから原液が加圧ポンプ
3の吸い込み配管71を通って加圧ポンプ2に吸い込ま
れ加圧される。加圧された原液は供給配管72を通って
分離膜モジュール3に送られ、分離膜モジュール3で分
離膜の非透過側31に残った非透過液と透過側32に透
過した透過液とに分離される。非透過液は圧力調整弁6
1を経て、非透過側配管73を通って原液タンク1に戻
される。供給される原液の流量及び透過液流量、原液及
び非透過液の圧力をそれぞれ圧力計41及び圧力計42
で計測し、圧力調整弁61を調整することによって制御
される。
In this apparatus, the stock solution before processing is stored in a stock solution tank 1, from which the stock solution is sucked into the pressurizing pump 2 through the suction pipe 71 of the pressurizing pump 3 and pressurized. The pressurized stock solution is sent to the separation membrane module 3 through the supply pipe 72, and separated into the non-permeate liquid remaining on the non-permeate side 31 of the separation membrane and the permeate liquid permeating the permeate side 32 in the separation membrane module 3. Is done. Non-permeated liquid is pressure regulating valve 6
After that, the liquid is returned to the stock solution tank 1 through the non-permeate side pipe 73. The flow rate of the supplied undiluted solution and the flow rate of the permeated liquid, and the pressure of the undiluted solution and the non-permeated liquid are measured by a pressure gauge 41 and a pressure gauge 42, respectively.
, And is controlled by adjusting the pressure adjusting valve 61.

【0014】一方、透過側配管74は、取り出し配管7
6に向かう経路と、戻り配管75に向かう経路とに分岐
しており、各経路に配置された自動開閉弁62,63に
よって実際に透過液が流れる方向が制御される。即ち、
透過液は常時は透過側配管74を通り、自動開閉弁62
及び透過液流量計5を経て、取り出し配管76を通って
液体分離装置の外に出され大気圧となる。この間、自動
開閉弁63は閉じられている。ただし、自動開閉弁62
が閉じられるときは、自動開閉弁63を開いて透過液を
戻り配管75に流し、加圧ポンプ2の吸い込みによって
吸い込み配管71に戻すことができる。これにより分離
膜の透過側の圧力は戻り配管を通じて供給側に逃げる。
従って、加圧ポンプ2の運転を定常に保った状態で、取
り出し配管76を締め切り、透過液回収容器を交換する
ことができる。戻り配管75には逆止め弁8が設けられ
ているので、透過液が逆流したり、原液が分離膜モジュ
ール3を経ずに透過側配管74に浸入することはない。
On the other hand, the transmission side pipe 74 is connected to the extraction pipe 7.
6 and a path toward the return pipe 75, and the direction in which the permeated liquid actually flows is controlled by the automatic opening / closing valves 62 and 63 disposed in each path. That is,
The permeated liquid always passes through the permeation side pipe 74, and the automatic on-off valve 62
After passing through the permeated liquid flow meter 5, the liquid is taken out of the liquid separation device through the take-out pipe 76 and becomes atmospheric pressure. During this time, the automatic on-off valve 63 is closed. However, the automatic on-off valve 62
Is closed, the automatic on-off valve 63 is opened to allow the permeated liquid to flow to the return pipe 75 and to be returned to the suction pipe 71 by the suction of the pressurizing pump 2. Thereby, the pressure on the permeation side of the separation membrane escapes to the supply side through the return pipe.
Therefore, with the operation of the pressure pump 2 kept constant, the take-out pipe 76 can be closed and the permeated liquid recovery container can be replaced. Since the return pipe 75 is provided with the check valve 8, the permeated liquid does not flow backward, and the undiluted liquid does not enter the permeation-side pipe 74 without passing through the separation membrane module 3.

【0015】なお、透過側配管74には接点付き圧力計
43が配置されており、それからの信号に基づいて図略
の制御器で自動開閉弁62,63の開閉操作を制御する
ことも可能である。
A pressure gauge 43 with a contact is arranged in the permeation side pipe 74, and it is also possible to control the opening / closing operation of the automatic opening / closing valves 62 and 63 by a controller (not shown) based on a signal from the pressure gauge 43. is there.

【0016】[0016]

【実施例】【Example】

−実施例1− 図1において原液として電導度250μS/cm、pH
=6.5の井戸水を150m3使用した。分離膜モジュ
ール3としては、操作圧力7.5kgf/cm2で、温
度25℃の0.05%NaCl水溶液において透過水量
6.5m3/day、阻止率99.5%の芳香族ポリア
ミド系複合膜スパイラルモジュールを用いた。
Example 1 In FIG. 1, the conductivity was 250 μS / cm, pH as a stock solution.
= 6.5 of well water was 150m 3 use. As the separation membrane module 3, an aromatic polyamide-based composite membrane having an operating pressure of 7.5 kgf / cm 2 , a permeated water amount of 6.5 m 3 / day, and a rejection of 99.5% in a 0.05% aqueous NaCl solution at a temperature of 25 ° C. A spiral module was used.

【0017】供給水流量30リットル/minのもと、
供給側の圧力計41が7.8kgf/cm2、非透過側
の圧力計42が7.2kgf/cm2を表示するように
圧力調整弁61を調整し、自動開閉弁62を開いて分離
膜モジュール3の透過側32を大気に開放し、自動開閉
弁63を閉じて運転すると、流量4.5リットル/mi
n、電導度11.3μS/cmの透過水を得ることがで
きた。
At a feed water flow rate of 30 l / min,
The pressure control valve 61 is adjusted so that the pressure gauge 41 on the supply side displays 7.8 kgf / cm 2 and the pressure gauge 42 on the non-permeation side displays 7.2 kgf / cm 2 , and the automatic on-off valve 62 is opened to open the separation membrane. When the operation is performed by opening the permeation side 32 of the module 3 to the atmosphere and closing the automatic on-off valve 63, the flow rate is 4.5 liter / mi.
n, permeated water having a conductivity of 11.3 μS / cm was obtained.

【0018】その後、自動開閉弁62を4.5分間の運
転につき0.5分間閉じるように設定した。また、透過
側の接点付き圧力計43が1kgf/cm2以上の値を
検知したとき、その検知信号により自動開閉弁63が開
き、透過水が加圧ポンプ2の吸い込み配管71へ戻るよ
うに設定した。この設定条件で、10時間運転したとこ
ろ、透過水は、流量4.5リットル/min、電導度1
1.3μS/cmをほぼ維持することができた。
Thereafter, the automatic on-off valve 62 was set to be closed for 0.5 minute for every 4.5 minutes of operation. Further, when the pressure gauge 43 with the contact on the permeation side detects a value of 1 kgf / cm 2 or more, the automatic opening / closing valve 63 is opened by the detection signal and the permeated water is returned to the suction pipe 71 of the pressurizing pump 2. did. After operating for 10 hours under the set conditions, the permeated water had a flow rate of 4.5 L / min and an electric conductivity of 1.
1.3 μS / cm could be almost maintained.

【0019】−比較例1− 接点付き圧力計43の検知値にかかわらず、自動開閉弁
63を閉じたままとしたこと以外は実施例1と同一条件
で運転した。その結果、透過水の流量は9.5リットル
/minに増大し、電導度は95.3μS/cmに増大
した。自動開閉弁62が閉じて0.5分後再び開く瞬間
には、接点付き圧力計43が7.5kgf/cm2の値
を示していたことから、これら透過水流量及び電導度の
増大現象は、剥離による膜破損に起因すると思われる。
Comparative Example 1 An operation was performed under the same conditions as in Example 1 except that the automatic on-off valve 63 was kept closed regardless of the detection value of the pressure gauge 43 with a contact. As a result, the flow rate of the permeated water increased to 9.5 liter / min, and the conductivity increased to 95.3 μS / cm. At the moment when the automatic on-off valve 62 closes and reopens 0.5 minutes later, since the pressure gauge 43 with a contact point showed a value of 7.5 kgf / cm 2 , these phenomena of the increase in the permeated water flow rate and the conductivity were as follows. This is probably due to film breakage due to peeling.

【0020】−比較例2− 接点付き圧力計43の検知値にかかわらず、自動開閉弁
63を閉じたままとし、自動開閉弁62の動きに同調し
て加圧ポンプ2を4.5分間の運転につき0.5分間停
止させたこと以外は実施例1と同一条件で運転した。そ
の結果、透過水の流量は4.9リットル/minに微増
し、電導度は25.1μS/cmに増した。加圧ポンプ
2が停止した瞬間、供給側31の残圧により接点付き圧
力計43が7.4kgf/cm2の値を示していたこと
から、上記の結果は、膜の疲労による膜性能に起因する
と思われる。
Comparative Example 2 Regardless of the detection value of the pressure gauge 43 with a contact, the automatic on-off valve 63 is kept closed, and the pressurizing pump 2 is operated for 4.5 minutes in synchronization with the movement of the automatic on-off valve 62. The operation was performed under the same conditions as in Example 1 except that the operation was stopped for 0.5 minute. As a result, the flow rate of the permeated water slightly increased to 4.9 liter / min, and the conductivity increased to 25.1 μS / cm. At the moment when the pressurizing pump 2 was stopped, the pressure gauge 43 with the contact point showed a value of 7.4 kgf / cm 2 due to the residual pressure on the supply side 31. It seems to be.

【0021】−実施例2− 実施例1において、10時間の運転を行った後、透過水
の合計量を測定した結果、2430リットルであった。
Example 2 After operating for 10 hours in Example 1, the total amount of permeated water was measured to be 2,430 liters.

【0022】−比較例3− 実施例1において、自動開閉弁63を閉じたまま加圧ポ
ンプ2を4.5分間運転した後0.5分間停止させ、圧
力計41が0.5kgf/cm2以下に下がるのを待っ
てから自動開閉弁62を閉じた。再び加圧ポンプ2を始
動させると同時に自動開閉弁62を開き、圧力計41が
7.8kgf/cm2に安定したところで加圧ポンプ2
の運転及び停止を前記の間隔で行った。なお、4.5分
間の運転の後に次の4.5分間の運転が開始されるまで
に平均5.2分間必要であった。このような間欠的な運
転を10時間行い、透過水の合計量を測定した結果、2
330リットルであった。また、その透過水の電導度は
平均11.5μS/cmであった。
Comparative Example 3 In Example 1, the pressurizing pump 2 was operated for 4.5 minutes while the automatic on-off valve 63 was closed, then stopped for 0.5 minutes, and the pressure gauge 41 was set to 0.5 kgf / cm 2. After waiting for the following drop, the automatic on-off valve 62 was closed. When the pressure pump 2 is started again, the automatic opening / closing valve 62 is opened at the same time, and when the pressure gauge 41 is stabilized at 7.8 kgf / cm 2 , the pressure pump 2
Was started and stopped at the above intervals. After the operation for 4.5 minutes, an average of 5.2 minutes was required until the operation for the next 4.5 minutes was started. As a result of performing such an intermittent operation for 10 hours and measuring the total amount of permeated water, 2
It was 330 liters. The conductivity of the permeated water was 11.5 μS / cm on average.

【0023】以上のように、自動開閉弁63を閉じたま
までは、実施例1と同じレベルの質の透過水を得るのに
実施例1よりもかなり面倒な操作をしなければならず、
しかも得られる透過水量は実施例1に及ばないことが明
らかであった。
As described above, if the automatic on-off valve 63 is kept closed, it is necessary to perform considerably more troublesome operation than in the first embodiment to obtain the same level of permeate as in the first embodiment.
Moreover, it was clear that the amount of permeated water obtained was lower than that of Example 1.

【0024】[0024]

【発明の効果】本発明の液体分離装置は、上記の構成を
備えるので、分離膜モジュールを用いた連続的な液体の
濃縮や造水操作において、透過側の管経路で断続的な開
閉操作をしても安定した透過液を効率よく得ることがで
きる。また、透過側から直接個別の容器に分配できるの
で、本装置に専用の透過液タンクを設置する必要が無
く、省スペース化を図ることができる。
Since the liquid separation apparatus of the present invention has the above-described structure, in a continuous liquid concentration or fresh water production operation using a separation membrane module, an intermittent opening / closing operation is performed in a permeate pipe route. However, a stable permeate can be obtained efficiently. In addition, since the liquid can be distributed directly to individual containers from the permeation side, there is no need to install a dedicated permeate tank in the present apparatus, and space can be saved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施形態の液体分離装置による液体の流れ図
である。
FIG. 1 is a flow chart of a liquid by a liquid separation device according to an embodiment.

【図2】 従来の液体分離装置による液体の流れ図であ
る。
FIG. 2 is a flow chart of a liquid by a conventional liquid separation device.

【図3】 もう一つの従来の液体分離装置による液体の
流れ図である。
FIG. 3 is a flow chart of a liquid by another conventional liquid separation device.

【符号の説明】[Explanation of symbols]

1 原液タンク 2 加圧ポンプ 3 分離膜モジュール 41,42,43 圧力計 5 流量計 61,62,63 自動開閉弁 71 吸い込み配管 74 透過側配管 75 戻り配管 76 取り出し配管 8 逆止め弁 DESCRIPTION OF SYMBOLS 1 Undiluted solution tank 2 Pressure pump 3 Separation membrane module 41, 42, 43 Pressure gauge 5 Flow meter 61, 62, 63 Automatic opening / closing valve 71 Suction piping 74 Permeation piping 75 Return piping 76 Extraction piping 8 Check valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】分離膜モジュールを用いて液体を分離する
装置において、 分離膜の透過側の管経路が、透過液を取り出す取り出し
配管と、分離膜の原液供給側に循環する戻り配管とに分
岐していることを特徴とする液体分離装置。
An apparatus for separating a liquid using a separation membrane module, wherein a pipe path on a permeation side of the separation membrane is branched into a take-out pipe for taking out a permeate and a return pipe circulating to a stock solution supply side of the separation membrane. A liquid separation device, comprising:
【請求項2】原液供給側管経路に原液を供給するための
ポンプが設置されており、前記戻り配管と原液供給側管
経路との接続位置が、そのポンプの吸い込み側である請
求項1に記載の液体分離装置。
2. The pump according to claim 1, further comprising a pump for supplying the undiluted liquid to the undiluted liquid supply side pipe path, wherein a connection position between the return pipe and the undiluted liquid supply side pipe path is a suction side of the pump. The liquid separation device as described in the above.
【請求項3】取り出し配管及び戻り配管の各々に開閉弁
が配置されている請求項1に記載の液体分離装置。
3. The liquid separating apparatus according to claim 1, wherein an opening / closing valve is disposed in each of the take-out pipe and the return pipe.
【請求項4】更に透過側の管経路に流量計及び/又は圧
力計が設置され、これらの計器の検知数値に応じて前記
各開閉弁の開閉操作を制御する制御機器を備えている請
求項3に記載の液体分離装置。
4. A flow meter and / or a pressure gauge is further provided in a pipe line on the permeation side, and a control device is provided for controlling the opening / closing operation of each of said opening / closing valves in accordance with a detected value of these instruments. 4. The liquid separation device according to 3.
JP11884497A 1997-04-21 1997-04-21 Liquid separator Pending JPH10290925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11884497A JPH10290925A (en) 1997-04-21 1997-04-21 Liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11884497A JPH10290925A (en) 1997-04-21 1997-04-21 Liquid separator

Publications (1)

Publication Number Publication Date
JPH10290925A true JPH10290925A (en) 1998-11-04

Family

ID=14746561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11884497A Pending JPH10290925A (en) 1997-04-21 1997-04-21 Liquid separator

Country Status (1)

Country Link
JP (1) JPH10290925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020524591A (en) * 2017-06-15 2020-08-20 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated Water purifier and method for controlling at least one fluid characteristic in a water purifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020524591A (en) * 2017-06-15 2020-08-20 バクスター・インターナショナル・インコーポレイテッドBaxter International Incorp0Rated Water purifier and method for controlling at least one fluid characteristic in a water purifier

Similar Documents

Publication Publication Date Title
US3992301A (en) Automatic flushing system for membrane separation machines such as reverse osmosis machines
US11673815B2 (en) System and method for the treatment of water by reverse osmosis or nanofiltration
EP0909187B1 (en) System for eliminating gases in a container
CA1096517A (en) Process and apparatus for producing sterilised and bacteria-free water suitable for medicinal injection preparations and other technical purposes
KR101006869B1 (en) Apparatus for producing carbonated water having optimized abstracting system of carbonated water using membrane
WO2001010540A3 (en) A method of cross-flow filtration and a cross-flow filtration installation
US11788197B2 (en) Hydrogen gas dissolving apparatus
JP5135676B2 (en) Operation method of reverse osmosis membrane separator
JPH0255098B2 (en)
JPH0427485A (en) Method for defoaming pure water and reverse osmosis method for production of pure water
JP2000189742A (en) Gas dissolving module
JPH10290925A (en) Liquid separator
SG176988A1 (en) Closed circuit desalination retrofit for improved performance of common reverse osmosis systems
WO2016139672A4 (en) System and method for water treatment
JP3579187B2 (en) Filtration device
CN216584221U (en) Water purification system
JP3778042B2 (en) Membrane breakage detection method and membrane separation system of membrane separation apparatus
JPH0760073A (en) Membrane separation apparatus
JPS61178088A (en) Apparatus for making pure water
JP3608227B2 (en) Membrane separator
JPS595005B2 (en) membrane separation equipment
JP3648790B2 (en) Membrane separator
JP7487812B1 (en) Method for controlling reverse osmosis membrane device in pure water production system
JP2019166424A (en) Wastewater treatment device and wastewater treatment method
JPS60257810A (en) Degassing apparatus