JPH10290912A - Coal gasification combined power generator and its operation - Google Patents

Coal gasification combined power generator and its operation

Info

Publication number
JPH10290912A
JPH10290912A JP10138897A JP10138897A JPH10290912A JP H10290912 A JPH10290912 A JP H10290912A JP 10138897 A JP10138897 A JP 10138897A JP 10138897 A JP10138897 A JP 10138897A JP H10290912 A JPH10290912 A JP H10290912A
Authority
JP
Japan
Prior art keywords
gas
dust
coal
steam
product gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10138897A
Other languages
Japanese (ja)
Inventor
Akio Ueda
昭雄 植田
Fumito Nakajima
史登 中島
Kazunori Shoji
一紀 正路
Yuji Fukuda
祐治 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP10138897A priority Critical patent/JPH10290912A/en
Publication of JPH10290912A publication Critical patent/JPH10290912A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent sulfuric acid dew point corrosion at low temperature and sulfurization corrosion at high temperature caused by corrosive gas in raw product gas generated in a coal gas furnace by fitting a metal filter element to a dust collector. SOLUTION: Raw product gas from a coal gas furnace 1 generates steam by a steam generator 2 to lower its temperature and is led to a dust a dust collector 3, and it gets rid of dust to a concentration of scores of mg/Nm<3> there. After the raw product gas from which dust has been removed exchanges heat with outlet gas from a desulfurizer 5 by a gas-gas heat exchanger 4 and gets rid of H2 S+COS by the desulfurizer 5, the outlet gas from the heat exchanger 4 is burned by a combustor 6 to form high temperature combustion gas to drive a gas turbine 7 by which a generator is driven. Waste gas from the gas turbine 7 is led to a waste heat recovery boiler 8, where waste heat is recovered to obtain steam. The steam from the steam generator 2 and steam from the waste heat recovery boiler 8 are led to a steam turbine. Since the dust collector 3 is fitted with a filter element of metallic fiber, it can be operated within the temperature range of 100-500 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、脱塵装置のフィル
タエレメントの信頼性と経済性とを高めた石炭ガス化複
合発電装置及びその運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated coal gasification combined cycle power generation system in which the reliability and economy of a filter element of a dust removal system are improved and a method of operating the same.

【0002】[0002]

【従来の技術】石炭を利用した高効率発電の新しい技術
の一つとして石炭ガス化複合発電がある。石炭ガス化複
合発電では石炭をガス化し、ガス化した燃料によりガス
タービンを駆動しガスタービンの廃熱から蒸気を回収し
て蒸気タービンを駆動しそれぞれ発電を行う。石炭ガス
化炉からの粗生成ガスはチャー、灰等のダストと石炭中
の硫黄から生成するH2Sを含んでおり、ガスタービン
の摩耗及び腐食を防止するためガスタービンの上流に脱
塵装置と脱硫装置が設置される。脱塵装置で捕集したチ
ャーを石炭ガス化炉へ戻して再びガス化すればガス化効
率が向上する。
2. Description of the Related Art As one of new technologies for high-efficiency power generation using coal, there is integrated coal gasification combined cycle. In the integrated coal gasification combined cycle, coal is gasified, a gas turbine is driven by the gasified fuel, steam is recovered from waste heat of the gas turbine, and a steam turbine is driven to generate power. The crude product gas from the coal gasifier contains dust such as char and ash and H 2 S generated from sulfur in the coal, and a dust removal device is provided upstream of the gas turbine to prevent wear and corrosion of the gas turbine. And a desulfurization device. If the char collected by the dust removal device is returned to the coal gasifier and gasified again, the gasification efficiency is improved.

【0003】[0003]

【発明が解決しようとする課題】典型的な脱塵装置とし
て電気集塵機、バグフィルタ、セラミックフィルタ、グ
ラニュラーベッドが挙げられる。このうち電気集塵機は
粗生成ガスに含まれる未燃分であるチャーの粒径が小さ
く、主成分が電気の導体である炭素のため漏電の問題が
有り適用できない。バグフィルタは濾布が有機物であれ
ば耐熱温度は100℃以下のため使用できず、濾布がガ
ラス質の場合に耐熱温度は300℃であるが粗生成ガス
に含まれるH2Sにより脆くなり剛性を失って長期使用
に耐えない。セラミックフィルタは高温に耐えるが熱衝
撃により割れたり、エレメント支持部でセラミックと支
持材の金属との熱膨張率差により破損し信頼性に欠ける
上に高価である。グラニュラーベッドは粒子がフィルタ
パネル内を下降しながらチャーを捕集し、フィルタパネ
ル外で振動篩によりチャーを分離し粒子を循環させるも
ので、捕集したチャーがフィルタパネル内で再飛散した
り装置が複雑で粒子の摩耗、損失が多く実用に適さな
い。本発明の目的は、石炭ガス化炉で発生する粗生成ガ
スを脱塵する脱塵装置の信頼性と経済性とを高めること
にある。
A typical dust remover includes an electric dust collector, a bag filter, a ceramic filter, and a granular bed. Among them, the electric precipitator is not applicable because there is a problem of leakage due to the small particle size of the char which is the unburned portion contained in the crude product gas and the main component is carbon which is an electric conductor. If the filter cloth is organic, the bag filter cannot be used because the heat resistance temperature is 100 ° C or less. If the filter cloth is glassy, the heat resistance temperature is 300 ° C, but it becomes brittle due to H 2 S contained in the crude gas. Loses rigidity and cannot withstand long-term use. Ceramic filters can withstand high temperatures, but are cracked by thermal shock or damaged by a difference in the coefficient of thermal expansion between the ceramic and the metal of the support material at the element support, resulting in poor reliability and high cost. The granular bed collects the char as the particles descend inside the filter panel, separates the char by a vibrating sieve outside the filter panel and circulates the particles, and the collected char re-scatters inside the filter panel. However, it is complicated and causes abrasion and loss of particles, which is not suitable for practical use. An object of the present invention is to improve the reliability and economy of a dust removing device that removes crude product gas generated in a coal gasifier.

【0004】[0004]

【課題を解決するための手段】上記目的は、石炭をガス
化し粗生成ガスを得る石炭ガス化炉と、粗生成ガスを脱
塵する脱塵装置と、脱塵した生成ガスを燃料として発電
機を駆動するガスタービンとを有する石炭ガス化複合発
電装置において、脱塵装置が金属性フィルタエレメント
を装着していることにより達成される。上記目的は、石
炭をガス化し粗生成ガスを得る石炭ガス化炉と、粗生成
ガスを脱塵する脱塵装置と、脱塵した生成ガスを燃料と
して発電機を駆動するガスタービンとを有する石炭ガス
化複合発電装置において、脱塵装置がCrを少なくとも
10Wt%含むCr基合金鋼の繊維であるフィルタエレ
メントを装着していることにより達成される。上記目的
は、石炭をガス化し粗生成ガスを得る石炭ガス化炉と、
粗生成ガスを脱塵する脱塵装置と、脱塵した生成ガスを
燃料として発電機を駆動するガスタービンとを有する石
炭ガス化複合発電装置において、脱塵装置がCrを少な
くとも10Wt%含むCr基合金鋼の繊維にCr,N
i,Tiをメッキしたフィルタエレメントを装着してい
ることにより達成される。脱塵装置を温度100〜50
0℃で運転することが望ましい。上記構成によれば、H
2S及びHClを約1,000ppm含む500℃の粗
生成ガス中で金属表面に硫化膜が形成され腐食は進行し
ない。粗生成ガスは数%の水分を含み露点は約100℃
であるから100℃以上で脱塵装置を運転すれば露点腐
食は進行しない。フィルタエレメントに合金鋼を用いて
いるので熱衝撃に耐え、支持金属材との熱膨張率差によ
り破損することも無い。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a coal gasifier for gasifying coal to obtain a crude product gas, a dust removing device for removing dust from the crude product gas, and a generator using the produced gas as fuel. In the combined gasification combined cycle power plant having a gas turbine that drives a gas turbine, the dust removal device is provided with a metallic filter element. The above object is to provide a coal gasifier having a coal gasifier for gasifying coal to obtain a crude product gas, a dust removing device for removing dust from the crude product gas, and a gas turbine driving a generator using the removed dust gas as fuel. In the combined gasification power generation apparatus, the present invention is achieved by providing the dust removal apparatus with a filter element that is a fiber of a Cr-based alloy steel containing at least 10 Wt% of Cr. The above object is a coal gasifier for gasifying coal to obtain a crude product gas,
In a coal gasification combined cycle power plant having a dust removing device for removing a crude product gas and a gas turbine driving a generator using the removed product gas as a fuel, the dust removing device is a Cr-based gas containing at least 10 Wt% of Cr. Cr, N on alloy steel fiber
This is achieved by mounting a filter element plated with i, Ti. Set the dedusting device at a temperature of 100 to 50.
It is desirable to operate at 0 ° C. According to the above configuration, H
A sulfide film is formed on the metal surface in a crude gas containing 500 ppm of 2 S and HCl at 500 ° C., and the corrosion does not proceed. Crude gas contains several% of water and dew point is about 100 ℃
Therefore, if the dust remover is operated at 100 ° C. or higher, dew point corrosion does not proceed. Since alloy steel is used for the filter element, it resists thermal shock and does not break due to a difference in thermal expansion coefficient with the supporting metal material.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態を図に
より説明する。図1は本発明の実施の形態の石炭ガス化
複合発電装置構成を示すブロック図である。本図に示す
ように微粉炭と酸素を供給してガス化する石炭ガス化炉
1の下流に蒸気発生器2が設置されている。さらに蒸気
発生器2の下流に金属性フィルタエレメントを装着した
脱塵装置3、脱塵装置3の下流にガス・ガス熱交換器
4、脱硫装置5、燃焼器6及びガスタービン7が設置さ
れている。ガスタービン7の下流に排熱回収ボイラ8が
設置されている。石炭ガス化炉1では微粉炭と酸素がH
2及びCOを主成分とし、CO2及びHOを微量含む粗
生成ガスとなる。ガス化によって微粉炭中の硫黄分はH
SとCOSになる。また、粗生成ガス中には微粉炭の
未燃分であるチャーと微粉炭が燃焼した灰からなるダス
トを含む。石炭ガス化炉1からの粗生成ガスは蒸気発生
器2で蒸気を発生させて自らは温度が低下して脱塵装置
3に導かれる。ガスタービン7にダストが流入するとタ
ービンブレードが摩耗するから脱塵装置3で数十mg/
Nm3以下の濃度に脱塵する。脱塵した粗生成ガスをガ
ス・ガス熱交換器4で脱硫装置5の出口ガスと熱交換
し、脱硫装置5でH2SとCOSを除去した後、燃焼器
6で空気により燃焼させて高温の燃焼ガスとしガスター
ビン7で図示せざる発電機を駆動する。ガスタービン7
からの排ガスを排熱回収ボイラ8へ導き排熱を回収して
蒸気を得る。蒸気発生器2からの蒸気と排熱回収ボイラ
8からの蒸気を図示せざる蒸気タービンへ導く。脱塵装
置3は金属性繊維のフィルタエレメントを装着している
から温度範囲100〜500℃で運転することができ
る。金属性フィルタエレメントを構成する繊維の径は細
いほど表面積が大きくなりダストの捕集性能は向上する
が、あまり細過ぎると粗生成ガス中に含まれる腐食性の
2S及びHClにより腐食して消滅する。このため金
属性フィルタエレメントの素材としては優れた耐食性が
要求され、耐食性は金属性フィルタエレメント素材の合
金鋼中のCr含有量に比例して増加する。一方、腐食速
度は粗生成ガス中のH2S及びHCl濃度によって異な
るため、石炭ガス化炉1へ供給する石炭性状によって合
金鋼中のCr含有量を変える必要があり、少なくとも1
0Wt%以上は必要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an integrated coal gasification combined cycle power generation device according to an embodiment of the present invention. As shown in this figure, a steam generator 2 is installed downstream of a coal gasifier 1 for supplying pulverized coal and oxygen to gasify. Further, a dust removing device 3 having a metallic filter element mounted downstream of the steam generator 2 and a gas / gas heat exchanger 4, a desulfurizing device 5, a combustor 6 and a gas turbine 7 are installed downstream of the dust removing device 3. I have. An exhaust heat recovery boiler 8 is provided downstream of the gas turbine 7. In the coal gasifier 1, pulverized coal and oxygen are H
A crude product gas containing 2 and CO as main components and containing trace amounts of CO 2 and H 2 O. Due to gasification, the sulfur content in pulverized coal becomes H
2 S and COS. In addition, the crude product gas includes char, which is an unburned portion of the pulverized coal, and dust composed of ash from the pulverized coal. The crude product gas from the coal gasifier 1 generates steam in the steam generator 2, and the temperature of the gas itself decreases to be guided to the dust removal device 3. When dust flows into the gas turbine 7, the turbine blades are worn.
Dedust to a concentration of Nm 3 or less. The degassed crude product gas is heat-exchanged with the outlet gas of the desulfurization unit 5 by the gas-gas heat exchanger 4, H 2 S and COS are removed by the desulfurization unit 5, and then burned by air in the combustor 6 to obtain a high temperature. And a gas turbine 7 drives a generator (not shown). Gas turbine 7
The exhaust gas from the furnace is guided to an exhaust heat recovery boiler 8 to recover the exhaust heat to obtain steam. The steam from the steam generator 2 and the steam from the exhaust heat recovery boiler 8 are guided to a steam turbine (not shown). The dust removing device 3 can be operated in a temperature range of 100 to 500 ° C. since the filter element is provided with a metallic fiber filter element. The smaller the diameter of the fiber constituting the metallic filter element is, the larger the surface area becomes, and the dust collecting performance is improved. However, if the diameter is too small, the fiber is corroded by corrosive H 2 S and HCl contained in the crude gas. Disappear. Therefore, excellent corrosion resistance is required as a material of the metallic filter element, and the corrosion resistance increases in proportion to the Cr content in the alloy steel of the metallic filter element material. On the other hand, since the corrosion rate depends on the concentration of H 2 S and HCl in the crude product gas, it is necessary to change the Cr content in the alloy steel depending on the properties of the coal supplied to the coal gasifier 1, and at least 1
0 Wt% or more is necessary.

【0006】図2は模擬生成ガスの温度とCr基合金鋼
の腐食量の関係を示す図表である。本図は腐食性の成分
としてH2Sを1,000ppm含む模擬生成ガス中で
Cr含有量2.25〜18Wt%までの合金鋼について
腐食試験を行った結果を示すものである。それぞれの試
験片は2.25Cr1Mo鋼、9Cr1Mo鋼、12C
r1Mo鋼、18Cr10Ni鋼である。何れの試験片
も温度500℃以上で腐食量は急増するが、9Cr1M
o鋼及び2.25Cr1Mo鋼では腐食が顕著に進行す
る。また、150℃以下においても9Cr1Mo鋼及び
2.25Cr1Mo鋼腐食が顕著に進行する。これは模
擬生成ガスが露点以下となり酸露点腐食によるものであ
る。Cr含有量10Wt%以上であっても模擬生成ガス
が露点以下となれば酸露点腐食は速度が遅いものの進行
は認められる。従って脱塵装置3を粗生成ガスの露点以
上で硫化腐食発生温度以下の温度範囲即ち、100〜5
00℃、好ましくは150〜400℃で運転すれば腐食
の進行を遅くすることができる。なお、脱塵装置3には
金属性繊維のフィルタエレメントを装着しているから熱
衝撃に耐え、支持金属材との熱膨張率差により破損する
ことも無い。金属性繊維の径はダストの粒径、捕集性能
との関連で決定する必要は有るが、数μm〜数十μmの
範囲が好適である。脱塵装置3の逆洗は粗生成ガスと逆
の方向にリサイクルした生成ガス、窒素ガスを流して行
い、金属性繊維のフィルタエレメントに捕集されたダス
トを剥離させる。脱塵装置3の金属性繊維のフィルタエ
レメントに用いるCr含有量10Wt%以上の合金鋼と
しては、SUS410(13Cr)、SUS430(1
8Cr)、SUS304(18Cr8Ni)、SUS3
10(25Cr20Ni)が使用できる。また、低温に
おける腐食が懸念される場合にはMoを含むことが有効
でSUS316(18Cr8NiMo)を使用しても良
い。また、、石炭ガス化炉1へ供給する石炭中の硫黄が
極めて高い場合には上記金属性繊維にCr、Ni、Ti
をメッキして耐食性を向上させても良い。更に、本実施
の形態の脱塵装置3の上流にサイクロンを設置し粗脱塵
を行えば、脱塵装置3で精密脱塵が可能となりガスター
ビン7の長期連続運転に好ましい状態をもたらし、その
上金属性繊維のフィルタエレメント逆洗の負担も軽くな
る。
FIG. 2 is a table showing the relationship between the temperature of the simulation product gas and the amount of corrosion of the Cr-based alloy steel. This figure shows the results of a corrosion test performed on an alloy steel having a Cr content of 2.25 to 18 Wt% in a simulated product gas containing 1,000 ppm of H 2 S as a corrosive component. Each test piece was 2.25Cr1Mo steel, 9Cr1Mo steel, 12C
r1Mo steel and 18Cr10Ni steel. Although the amount of corrosion of all test pieces increased rapidly at a temperature of 500 ° C. or more, 9Cr1M
Corrosion progresses remarkably in o steel and 2.25Cr1Mo steel. Even at 150 ° C. or lower, corrosion of 9Cr1Mo steel and 2.25Cr1Mo steel remarkably progresses. This is due to the acid dew point corrosion when the simulated product gas becomes lower than the dew point. Even if the Cr content is 10 Wt% or more, if the simulated product gas is below the dew point, acid dew point corrosion is slow but progresses. Therefore, the dust removal device 3 is set to a temperature range of not less than the dew point of the crude gas and not more than the sulfidation corrosion occurrence temperature, namely
Operating at 00 ° C, preferably 150-400 ° C, can slow the progress of corrosion. Since the dust removing device 3 is provided with the metallic fiber filter element, the dust removing device 3 withstands thermal shock and does not break due to a difference in thermal expansion coefficient with the supporting metal material. The diameter of the metallic fiber needs to be determined in relation to the particle diameter of dust and the collecting performance, but is preferably in the range of several μm to several tens μm. The backwashing of the dust removing device 3 is performed by flowing a generated gas and a nitrogen gas which are recycled in a direction opposite to the direction of the crudely generated gas, thereby peeling off the dust collected by the metal fiber filter element. SUS410 (13Cr) and SUS430 (1) are used as the alloy steel having a Cr content of 10 Wt% or more used for the filter element of the metallic fiber of the dust removing device 3.
8Cr), SUS304 (18Cr8Ni), SUS3
10 (25Cr20Ni) can be used. When corrosion at low temperatures is a concern, it is effective to include Mo, and SUS316 (18Cr8NiMo) may be used. When the sulfur in the coal supplied to the coal gasifier 1 is extremely high, Cr, Ni, Ti
May be plated to improve corrosion resistance. Furthermore, if a cyclone is installed upstream of the dust removal device 3 of the present embodiment to perform coarse dust removal, precise dust removal becomes possible with the dust removal device 3, which brings about a favorable state for long-term continuous operation of the gas turbine 7. The burden of backwashing the filter element of the upper metallic fiber is also reduced.

【0007】[0007]

【発明の効果】本発明によれば、脱塵装置に導かれる粗
生成ガス中の腐食性ガスにより発生する低温における酸
露点腐食と高温における硫化腐食とが防止され、脱塵装
置の信頼性と経済性とを高める効果が得られる。また、
フィルタエレメントに合金鋼を用いているので熱衝撃に
耐え、支持金属材との熱膨張率差による破損を防止でき
る。
According to the present invention, acid dew point corrosion at low temperature and sulfurization corrosion at high temperature, which are generated by corrosive gas in the crude product gas led to the dust removal device, are prevented, and the reliability of the dust removal device is improved. The effect of improving economic efficiency can be obtained. Also,
Since alloy steel is used for the filter element, it can withstand thermal shock and prevent damage due to a difference in thermal expansion coefficient with the supporting metal material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の石炭ガス化複合発電装置
構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an integrated coal gasification combined cycle device according to an embodiment of the present invention.

【図2】模擬生成ガスの温度とCr基合金鋼の腐食量の
関係を示す図表である。
FIG. 2 is a table showing the relationship between the temperature of a simulation product gas and the amount of corrosion of a Cr-based alloy steel.

【符号の説明】[Explanation of symbols]

1 石炭ガス化炉 2 蒸気発生器 3 脱塵装置 4 ガス・ガス熱交換器 5 脱硫装置 6 燃焼器 7 ガスタービン 8 排熱回収ボイラ DESCRIPTION OF SYMBOLS 1 Coal gasifier 2 Steam generator 3 Dust removal device 4 Gas / gas heat exchanger 5 Desulfurization device 6 Combustor 7 Gas turbine 8 Exhaust heat recovery boiler

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福田 祐治 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yuji Fukuda 3-36 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Kure Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 石炭をガス化し粗生成ガスを得る石炭ガ
ス化炉と、該粗生成ガスを脱塵する脱塵装置と、脱塵し
た生成ガスを燃料として発電機を駆動するガスタービン
とを有する石炭ガス化複合発電装置において、 前記脱塵装置が金属性フィルタエレメントを装着してい
ることを特徴とする石炭ガス化複合発電装置。
1. A coal gasifier for gasifying coal to obtain a crude product gas, a dust removing device for removing the crude product gas, and a gas turbine for driving a generator using the removed dust gas as a fuel. An integrated coal gasification combined cycle device, wherein the dust removal device is provided with a metallic filter element.
【請求項2】 石炭をガス化し粗生成ガスを得る石炭ガ
ス化炉と、該粗生成ガスを脱塵する脱塵装置と、脱塵し
た生成ガスを燃料として発電機を駆動するガスタービン
とを有する石炭ガス化複合発電装置において、 前記脱塵装置がCrを少なくとも10Wt%含むCr基
合金鋼の繊維であるフィルタエレメントを装着している
ことを特徴とする石炭ガス化複合発電装置。
2. A coal gasifier for gasifying coal to obtain a crude product gas, a dust removing device for removing dust from the crude product gas, and a gas turbine for driving a generator using the removed dust gas as fuel. An integrated coal gasification combined cycle power plant, wherein the dust removal device is provided with a filter element that is a fiber of a Cr-based alloy steel containing at least 10 Wt% of Cr.
【請求項3】 石炭をガス化し粗生成ガスを得る石炭ガ
ス化炉と、該粗生成ガスを脱塵する脱塵装置と、脱塵し
た生成ガスを燃料として発電機を駆動するガスタービン
とを有する石炭ガス化複合発電装置において、 前記脱塵装置がCrを少なくとも10Wt%含むCr基
合金鋼の繊維にCr,Ni,Tiをメッキしたフィルタ
エレメントを装着していることを特徴とする石炭ガス化
複合発電装置。
3. A coal gasifier for gasifying coal to obtain a crude product gas, a dedusting device for removing dust from the crude product gas, and a gas turbine for driving a generator using the removed dust gas as fuel. Coal gasification combined cycle power plant, wherein the dust removal device is equipped with a filter element in which Cr, Ni, and Ti are plated on fibers of a Cr-based alloy steel containing at least 10 Wt% of Cr. Combined power generator.
【請求項4】 請求項1から請求項3のうちの何れかの
請求項に記載の前記脱塵装置を温度100〜500℃で
運転することを特徴とする石炭ガス化複合発電装置の運
転方法。
4. A method for operating a coal gasification combined cycle power plant, comprising operating the dust removing device according to any one of claims 1 to 3 at a temperature of 100 to 500 ° C. .
JP10138897A 1997-04-18 1997-04-18 Coal gasification combined power generator and its operation Pending JPH10290912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10138897A JPH10290912A (en) 1997-04-18 1997-04-18 Coal gasification combined power generator and its operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10138897A JPH10290912A (en) 1997-04-18 1997-04-18 Coal gasification combined power generator and its operation

Publications (1)

Publication Number Publication Date
JPH10290912A true JPH10290912A (en) 1998-11-04

Family

ID=14299384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10138897A Pending JPH10290912A (en) 1997-04-18 1997-04-18 Coal gasification combined power generator and its operation

Country Status (1)

Country Link
JP (1) JPH10290912A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502142A (en) * 1999-06-18 2003-01-21 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム High temperature gas filtration system
CN105396379A (en) * 2010-05-04 2016-03-16 陈志伟 Method and kiln for producing combustible gas
CN105779020A (en) * 2016-03-14 2016-07-20 鲁西化工集团股份有限公司煤化工分公司 Coarse coal gas purification and waste heat recovery system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003502142A (en) * 1999-06-18 2003-01-21 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム High temperature gas filtration system
CN105396379A (en) * 2010-05-04 2016-03-16 陈志伟 Method and kiln for producing combustible gas
CN105779020A (en) * 2016-03-14 2016-07-20 鲁西化工集团股份有限公司煤化工分公司 Coarse coal gas purification and waste heat recovery system and method
CN105779020B (en) * 2016-03-14 2019-04-16 鲁西化工集团股份有限公司煤化工分公司 A kind of raw gas purifying and waste heat recycling system and method

Similar Documents

Publication Publication Date Title
JP4436068B2 (en) Coal gasification plant, coal gasification method, coal gasification power plant, and expansion facility for coal gasification plant
PL227903B1 (en) Energy recovery system in industrial installations, preferably in the synthesis gas installations
Barnes Recent operating experience and improvement of commercial IGCC
Pruschek et al. Combined cycle power plant with integrated coal gasification, CO shift and CO2 washing
JPH10290912A (en) Coal gasification combined power generator and its operation
JP5602308B2 (en) Gas cooler, gasifier, and carbon-containing fuel gasification combined cycle generator
JP2000048844A (en) Integrated coal gasification fuel cell combined cycle power plant
JP2870929B2 (en) Integrated coal gasification combined cycle power plant
JP6000148B2 (en) Gasification combined power generation system and operation method of gasification combined power generation system
Zhu et al. Integrated gasification combined cycle (IGCC) systems
Zhu et al. Integrated gasification combined cycle (IGCC) power plant design and technology
JP2003185123A (en) High temperature dust collecting equipment
JP2951265B2 (en) Direct coal-fired gas turbine combined power generation method and apparatus with alkali metal vapor removal
JP5305327B2 (en) Coal gasification power generation system and mercury removal method in coal gasification power generation system
JP4107869B2 (en) Desulfurization equipment operation device incorporated in coal gasification system and its operation method
JP2001107061A (en) Electric power generation system by gasifying waste
Suchkov et al. Effective ways to modernize outdated coal heat power plants
Ayala Application of IGCC technology to power generation
JP6547960B2 (en) Operating method when starting gas turbine and exhaust gas path device for gas turbine
Ciliberti et al. Particulate removal from high temperature and pressure gases. Twentieth monthly progress report, September 1-September 30, 1979
Ratajczak et al. Emerging technologies for coal-fired generation
Dennis US Department of Energys high-temperature and high-pressure particulate cleanup for advanced coal-based power systems
Newby et al. Westinghouse Combustion Turbine Performance in Coal Gasification Combined Cycles
Robson et al. Combined-Cycle Power Systems
Pandey et al. Recent research and various techniques available for efficiency improvement of IGCC power plants