JP4107869B2 - Desulfurization equipment operation device incorporated in coal gasification system and its operation method - Google Patents

Desulfurization equipment operation device incorporated in coal gasification system and its operation method Download PDF

Info

Publication number
JP4107869B2
JP4107869B2 JP2002116168A JP2002116168A JP4107869B2 JP 4107869 B2 JP4107869 B2 JP 4107869B2 JP 2002116168 A JP2002116168 A JP 2002116168A JP 2002116168 A JP2002116168 A JP 2002116168A JP 4107869 B2 JP4107869 B2 JP 4107869B2
Authority
JP
Japan
Prior art keywords
coal gasification
gas
gasification system
combustion
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002116168A
Other languages
Japanese (ja)
Other versions
JP2003313564A (en
Inventor
克彦 横濱
新太郎 本城
洲崎  誠
雅浩 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Central Research Institute of Electric Power Industry
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Kansai Electric Power Co Inc
Tokyo Electric Power Co Inc
Kyushu Electric Power Co Inc
Chugoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hokuriku Electric Power Co
Shikoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Electric Power Development Co Ltd
Central Research Institute of Electric Power Industry
Hokkaido Electric Power Co Inc
Tohoku Electric Power Co Inc
Kansai Electric Power Co Inc
Tokyo Electric Power Co Inc
Kyushu Electric Power Co Inc
Chugoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hokuriku Electric Power Co
Shikoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Central Research Institute of Electric Power Industry, Hokkaido Electric Power Co Inc, Tohoku Electric Power Co Inc, Kansai Electric Power Co Inc, Tokyo Electric Power Co Inc, Kyushu Electric Power Co Inc, Chugoku Electric Power Co Inc, Chubu Electric Power Co Inc, Hokuriku Electric Power Co, Shikoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Electric Power Development Co Ltd
Priority to JP2002116168A priority Critical patent/JP4107869B2/en
Publication of JP2003313564A publication Critical patent/JP2003313564A/en
Application granted granted Critical
Publication of JP4107869B2 publication Critical patent/JP4107869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Industrial Gases (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石炭ガス化システムに組み込まれた脱硫設備の運転方法とそのシステムに係り、特に石炭ガス化システムの脱硫設備内の液体循環ラインで発生したCH系固形有機物をシステム内で処理し、プラント運転時の廃棄物発生量の低減を図った前記脱硫設備の運転方法とそのシステムに関する。
【0002】
【従来の技術】
従来より石炭ガス化システムとして図2に示す装置が提案されている。
図中1は、コンバスタ1aとリダクタ1bからなる空気吹き加圧二段噴流床式ガス化炉で、コンバスタ1a内に微粉炭(石炭)とチャーと空気とを投入して高温燃焼した後、更にその上方のリダクタ1b内に更に微粉炭(石炭)を投入してコンバスタ1aの高温燃焼を利用して乾留ガス化させる。ガス化したCOやH2等の生成ガスは、水冷壁ボイラ(熱回収ボイラ)12により冷却された後、ポーラスフィルタ(脱塵装置)13、ガス熱交換器21、COS変換器22、ガス熱交換器23を経てガス冷却塔14及びガス洗浄塔15からなるアンモニア除去装置でアンモニアを除去した後、H2S吸収塔16に送られ、H2Sを除去する。
前記ガス洗浄塔15からガス冷却塔14への冷却水の戻りライン31、及びガス冷却塔14から冷却水貯留槽26へのライン32に夫々ストレーナ8、9を設け、前記気液接触により冷却水中に析出したベンゼン系炭化水素を主要成分とする固形状有機物を分離する。
2S吸収塔16では、吸収液により粗生成ガス中のH2S、COS等の硫黄化合物がガスタ−ビン17の許容濃度以下まで除去される。
【0003】
精製されたガスはスチーム熱交換器24、ガス熱交換器23及びガス熱交換器21で順次昇温してガスタ−ビン17に送られ、発電が行われ、一方ガスタ−ビン17からの燃焼排ガスは不図示の排熱回収ボイラにて冷却されると同時にスチーム熱交換器24で昇温された高圧蒸気を回収し、ここで得られた蒸気は不図示の蒸気タービンに送られ、発電が行われる。
【0004】
又H2S吸収塔16でH2S等の硫黄化合物を吸収した吸収液は吸収再生塔18に送られ、吸収液再生加熱器19で加熱することで吸収しているH2Sを脱離し再生される。
【0005】
【発明が解決しようとする課題】
かかる石炭ガス化システムに組み込まれた脱硫設備においては、前記アンモニアガス除去のためのガス冷却塔14への冷却水の戻りライン31、及びガス冷却塔14から冷却水貯留槽26へのライン32に夫々ストレーナ8、9を、H2S吸収塔16から熱交換器25への抜き出しライン上にはストレーナ10を設け、生成ガスの冷却により生じたベンゼン系炭化水素系の固形物を析出する。
このような石炭ガス化複合発電の脱硫装置で設備内の液体循環ラインで発生した固形物は、ストレーナ等の異物除去装置で回収して産業廃棄物として廃棄していた。
【0006】
しかしながら固形物の廃棄は公害防止上なかなか困難な状況にある。
そこで近年前記固形物を燃焼することが検討されているが、元々析出点が高くその燃焼が困難であるのみならず、炉壁にタール等として付着しやすい。
本発明の目的は、かかる従来技術の課題に鑑み、石炭ガス化システムの脱硫設備内の液体循環ラインで発生したCH系固形有機物をシステム内で処理し、プラント運転時の廃棄物発生量の低減を図った前記脱硫設備の運転方法とそのシステムを提供することにある。
本発明の他の目的は閉サイクルで前記CH系固形有機物を処理するとともに、より高効率な熱回収が可能な前記脱硫設備の運転方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明はかかる課題を解決するもので、石炭ガス化システムの脱硫設備部で、設備内の液体循環ラインに設けられた固形物除去装置で回収された固形有機物を、軽油、灯油或いはアセトンのいずれかからなる有機溶媒に溶解し、該溶解物を、微粉炭を高温燃焼して生成ガスを生成する石炭ガス化炉内に投入して燃料の一部として利用するとともに、前記溶解物を硫化水素ストリッパオフガスの燃焼を行うオフガス燃焼炉で燃焼させて生成される燃焼排ガスにより蒸気を発生させ、この蒸気を蒸気タービンの駆動に利用することを特徴とする石炭ガス化システムに組み込まれた脱硫設備運転方法を提案する。
かかる発明によれば、脱硫設備内の液体循環ラインで発生したCH系固形有機物は5mmから卵大の大きさを有し、滞留させると不定形のスラッジから卵大以上の大きさに成長するが、これを有機溶媒で溶解して燃料の一部として用いるために、確実な燃焼が可能であり、閉サイクルで前記CH系固形有機物を処理するとともに、より高効率な熱回収が可能となる。
また、前記燃焼炉を、硫化水素ストリッパオフガスの燃焼を行うオフガス燃焼炉で構成し、これにより硫化水素ストリッパオフガスの有効な燃焼を実現するとともに、前記オフガス燃焼炉の下流側に熱交換器を配設して蒸気タービン発電用の蒸気を生成することにより高温度の蒸気の生成が可能となり、効率的な熱回収が可能となる。
更に本発明によれば、前記固形物が閉サイクルシステム内で処理され、プラント運転時の廃棄物発生量の低減を図ることが出来る。
【0008】
この場合、前記固形状の有機物の溶解を促進するために、前記固形物を微粒化した後、溶解するのがよい。
又前記固形物を溶解するための溶媒としては軽油若しくは灯油が安価であるが、アセトンを組み合わせて使用することにより、値段的にリーズナブルで且つ溶解も促進される。
【0009】
かかる運転方法の発明を達成する好適なシステムとして、石炭ガス化システムの脱硫設備部内の液体循環ラインに設けられた固形物除去装置で回収可能に構成された石炭ガス化システムにおいて、
前記固形有機物を、軽油、灯油或いはアセトンのいずれかからなる有機溶媒に溶解する溶解手段と、該溶解による溶解物を燃焼させる2つの燃焼炉と、該燃焼炉の一方で生成される燃焼排ガスにより蒸気を発生させる熱交換器とを備えるとともに、
前記2つの燃焼炉の内、1の燃焼炉が、微粉炭を高温燃焼して生成ガスを生成する石炭ガス化炉であり、他の燃焼炉が、硫化水素ストリッパオフガスの燃焼を行うオフガス燃焼炉であることを特徴とする石炭ガス化システムを提案する。
【0010】
これにより硫化水素ストリッパオフガスの有効な燃焼とともに、前記のように、オフガス燃焼炉の下流側に熱交換器を配設して蒸気タービン発電用の蒸気を生成することにより高温度の蒸気の生成が可能となるとともに、効率的な熱回収が可能となる。
【0011】
又前記燃焼炉として、微粉炭を高温燃焼して生成ガスを生成する石炭ガス化炉に用いても良く、この場合は燃料としての再利用とともに、再度生成ガスの生成が可能である。又前記固形状有機物の溶解手段の上流側に、前記固形物を粉砕する手段を配置するのがよいことは前記したとおりである。
【0012】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載される構成部品の寸法、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく単なる説明例に過ぎない。
【0013】
図1は、石炭ガス化複合発電システムの脱硫設備内の液体循環ラインで発生したCH系固形有機物をシステム内で処理し、プラント運転時の廃棄物発生量の低減を図った本発明の実施例に係る石炭ガス化複合発電システムの全体図で、図中1は、コンバスタ1aとリダクタ1bからなる空気吹き加圧二段噴流床式ガス化炉、12は水冷壁ボイラ(熱回収ボイラ)、13はポーラスフィルタ(脱塵装置)、21、23はガス熱交換器、22はCOS変換器、17はガスタービンで、ここまでの構成は前記従来技術で説明した通りである。
そしてガス熱交換器23で精製ガスと熱交換された生成ガスは、ガス冷却塔14及びガス洗浄塔15内で冷却水の気液接触により冷却、洗浄されアンモニアを除去される。即ち、前記ガス洗浄塔15からガス冷却塔14への冷却水の戻りライン31、及びガス冷却塔14から冷却水貯留槽26へのライン32に夫々ストレーナ8、9を設け、前記気液接触により冷却水中に析出したベンゼン系炭化水素を主要成分とする固形状有機物を分離する。尚、ストレーナ8、9の設置位置は循環ラインでもよい。
【0014】
そして前記アンモニア除去装置でアンモニアを除去した生成ガスは、H2S吸収塔16に送られ、硫化水素吸収液の散布により、H2Sを除去する。
2S吸収塔16では、吸収液により粗生成ガス中のH2S、COS等の硫黄化合物がガスタ−ビン17の許容濃度以下まで除去される。
精製されたガスはスチーム熱交換器24、ガス熱交換器23及びガス熱交換器21で順次昇温してガスタ−ビン17に送られ、発電が行われ、一方ガスタ−ビン17からの燃焼排ガスは不図示の排熱回収ボイラにて冷却されると同時にスチーム熱交換器24で昇温された高圧蒸気を回収し、ここで得られた蒸気は不図示の蒸気タービンに送られ、発電が行われる。
【0015】
2S吸収塔16でH2S、COS等の硫黄化合物を吸収した吸収液は、ストレーナ10で前記固形状有機物を除去した後、吸収再生塔18に送られ,吸収液再生加熱器19で加熱することで吸収しているH2Sを脱離し再生される。
吸収再生塔18で再生された吸収液は、熱交換器25を介してH2S吸収塔16に送られ、硫化水素吸収液の散布により、H2Sを除去する点は前記した通りである。
又吸収再生塔18で分離されたH2Sストリッパオフガスは、ライン6を介してオフガス燃焼炉5に導入されて燃焼される。
【0016】
一方前記3つのストレーナ8、9、10で分離された固形状有機物は、固形物回収装置2で回収された後、ローラミルやボールミル等の固形物粉砕装置3で微粉状に粉砕され、固形物溶解装置4に送られる。
固形物溶解装置4では、前記固形物を溶解するための溶媒として軽油若しくは灯油からなる第1の溶媒とアセトンからなる第2の溶媒を組み合わせて撹拌溶解する。
勿論、溶剤として軽油若しくは灯油からなる第1の溶媒のみを用いた方がコストは安価であり、又アセトンからなる第2の溶媒を用いた方が溶解力は高いが、コスト及び溶解速度の面より、両者を組み合わせて撹拌溶解するのがよい。
【0017】
溶解された固形物/溶媒は、液状燃料として利用できるために、オフガス燃焼炉5にライン7を介して空気とともに導入されてH2Sストリッパオフガスとともに燃焼される。
この場合、前記オフガス燃焼炉5は筒状をなし、空気と前記液状燃料はその入口側に導入し、燃焼域が高温となった前記筒状のオフガス燃焼炉5の途中位置にH2Sストリッパオフガスを導入して燃焼するのがよい。
そして前記オフガス燃焼炉5で燃焼された高温排ガスは、前記オフガス燃焼炉5の下流側に熱交換器29を配設して蒸気タービン発電用の蒸気を生成した後、公知の排煙脱硫設備に送給される。
これにより高温度の蒸気の生成が可能となるとともに、効率的な熱回収が可能となる。
【0018】
又前記液状燃料は、ライン11を介して微粉炭を高温燃焼して生成ガスを生成する石炭ガス化炉1のコンバスタ1a内に導入しても良く、この場合は燃料としての再利用とともに、前記液状燃料がベンゼン系炭化水素を含むために、再度生成ガスの生成が可能である。
【0019】
【発明の効果】
以上記載のごとく本発明によれば、石炭ガス化システムの脱硫設備内の液体循環ラインで発生したCH系固形有機物をシステム内で処理し、プラント運転時の廃棄物発生量の低減を図ることが出来るとともに、閉サイクルで前記CH系固形有機物を処理することが出来、より高効率な熱回収が可能となる。
【図面の簡単な説明】
【図1】 石炭ガス化複合発電システムの脱硫設備内の液体循環ラインで発生したCH系固形有機物をシステム内で処理し、プラント運転時の廃棄物発生量の低減を図った本発明の実施例に係る石炭ガス化複合発電システムの全体図である。
【図2】 従来技術にかかる図1対応の石炭ガス化複合発電システムの全体図である。
【符号の説明】
1 ガス化炉
1a コンバスタ
1b リダクタ
2 固形物回収装置
3 固形物粉砕装置
4 固形物溶解装置
5 オフガス燃焼炉
6、7、11 ライン
8、9、10 ストレーナ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and system for operating a desulfurization facility incorporated in a coal gasification system, and in particular, a CH solid organic matter generated in a liquid circulation line in the desulfurization facility of the coal gasification system is treated in the system. The present invention relates to a method and a system for operating the desulfurization facility that reduce the amount of waste generated during plant operation.
[0002]
[Prior art]
Conventionally, an apparatus shown in FIG. 2 has been proposed as a coal gasification system.
In the figure, 1 is an air-blown pressurized two-stage entrained bed gasification furnace comprising a combustor 1a and a reductor 1b. After combusting high-temperature combustion by putting pulverized coal (coal), char and air into the combustor 1a, Pulverized coal (coal) is further introduced into the upper reductor 1b, and dry distillation gasification is performed using high-temperature combustion of the combustor 1a. Gasified CO, H 2 and other generated gases are cooled by a water-cooled wall boiler (heat recovery boiler) 12 and then a porous filter (dust removal device) 13, a gas heat exchanger 21, a COS converter 22, gas heat after removal of the ammonia in the ammonia removal device comprising a gas cooling tower 14 and the gas washing column 15 via exchanger 23, it is sent to the H 2 S absorption tower 16, to remove the H 2 S.
Strainers 8 and 9 are provided in a cooling water return line 31 from the gas cleaning tower 15 to the gas cooling tower 14 and a line 32 from the gas cooling tower 14 to the cooling water storage tank 26, respectively. A solid organic substance mainly composed of benzene-based hydrocarbons precipitated is separated.
In the H 2 S absorption tower 16, sulfur compounds such as H 2 S, COS and the like in the crude product gas are removed by the absorption liquid to an allowable concentration of the gas turbine 17 or less.
[0003]
The purified gas is sequentially heated in the steam heat exchanger 24, the gas heat exchanger 23 and the gas heat exchanger 21 and sent to the gas turbine 17 for power generation, while the combustion exhaust gas from the gas turbine 17 is generated. Is recovered by high-pressure steam heated by the steam heat exchanger 24 at the same time as it is cooled by a waste heat recovery boiler (not shown), and the steam obtained here is sent to a steam turbine (not shown) for power generation. Is called.
[0004]
The absorbent that has absorbed the sulfur compounds such as H 2 S in H 2 S absorption tower 16 is sent to an absorption regeneration tower 18, the H 2 S which is absorbed by heating the absorption liquid regeneration heater 19 desorbed Played.
[0005]
[Problems to be solved by the invention]
In the desulfurization facility incorporated in such a coal gasification system, a cooling water return line 31 to the gas cooling tower 14 for removing the ammonia gas and a line 32 from the gas cooling tower 14 to the cooling water storage tank 26 are provided. The strainers 8 and 9 are respectively provided on the extraction lines from the H 2 S absorption tower 16 to the heat exchanger 25, and the strainers 10 are provided to precipitate benzene hydrocarbon solids generated by cooling the product gas.
In such a coal gasification combined power generation desulfurization apparatus, solid matter generated in a liquid circulation line in the facility has been recovered by a foreign matter removing apparatus such as a strainer and discarded as industrial waste.
[0006]
However, it is very difficult to dispose of solids in order to prevent pollution.
Therefore, in recent years, it has been studied to burn the solid matter, but not only the precipitation point is originally high and the combustion is difficult, but also it tends to adhere to the furnace wall as tar or the like.
An object of the present invention is to reduce the amount of waste generated during plant operation by treating CH solid organic matter generated in a liquid circulation line in a desulfurization facility of a coal gasification system in the system in view of the problems of the conventional technology. An object of the present invention is to provide a method and system for operating the desulfurization facility.
Another object of the present invention is to provide a method for operating the desulfurization facility capable of treating the CH-based solid organic matter in a closed cycle and more efficiently recovering heat.
[0007]
[Means for Solving the Problems]
The present invention solves such a problem. In the desulfurization equipment section of the coal gasification system, the solid organic matter recovered by the solid matter removing device provided in the liquid circulation line in the equipment is either light oil, kerosene, or acetone. less becomes dissolved in an organic solvent, the lysate, as well as used as a part of the pulverized coal to be charged into the hot combustion to coal gasification furnace to produce a product gas fuel, the lysate hydrogen sulfide Operation of a desulfurization facility built in a coal gasification system, characterized in that steam is generated by combustion exhaust gas generated by burning in an off-gas combustion furnace that burns off stripper gas, and this steam is used to drive a steam turbine. Suggest a method.
According to this invention, the CH solid organic matter generated in the liquid circulation line in the desulfurization facility has a size from 5 mm to an egg size, and if it is retained, it grows from an irregular sludge to a size larger than the egg size. Since this is dissolved in an organic solvent and used as part of the fuel, reliable combustion is possible, and the CH solid organic matter is processed in a closed cycle, and more efficient heat recovery is possible.
Further, the combustion furnace is composed of an off-gas combustion furnace that burns off the hydrogen sulfide stripper off-gas, thereby realizing effective combustion of the hydrogen sulfide stripper off-gas, and a heat exchanger is disposed downstream of the off-gas combustion furnace. By installing and generating steam for steam turbine power generation, it becomes possible to generate steam at a high temperature, and efficient heat recovery is possible.
Furthermore, according to this invention, the said solid substance is processed within a closed cycle system, and the reduction of the waste generation amount at the time of plant operation can be aimed at.
[0008]
In this case, in order to promote the dissolution of the solid organic substance, it is preferable that the solid substance is dissolved after being atomized.
In addition, light oil or kerosene is inexpensive as a solvent for dissolving the solid matter, but by using acetone in combination, it is reasonable in price and promotes dissolution.
[0009]
In a coal gasification system configured to be recoverable by a solids removal device provided in a liquid circulation line in a desulfurization facility part of the coal gasification system, as a suitable system for achieving the invention of such an operation method,
A dissolving means for dissolving the solid organic matter in an organic solvent composed of either light oil, kerosene or acetone, two combustion furnaces for burning the dissolved substance by the dissolution, and combustion exhaust gas generated in one of the combustion furnaces Rutotomoni a heat exchanger to generate steam,
Of the two combustion furnaces, one combustion furnace is a coal gasification furnace that generates pulverized coal at a high temperature to generate product gas, and the other combustion furnace is an off-gas combustion furnace that burns hydrogen sulfide stripper off-gas. Suggest coal gasification system, characterized in that it.
[0010]
As a result, the hydrogen sulfide stripper off-gas is effectively burned, and as described above, a heat exchanger is disposed downstream of the off-gas combustion furnace to generate steam for steam turbine power generation. It becomes possible and efficient heat recovery becomes possible.
[0011]
The combustion furnace may be a coal gasification furnace that generates pulverized coal by high-temperature combustion. In this case, the product gas can be regenerated as well as reused as fuel. Further, as described above, it is preferable to dispose means for pulverizing the solid matter upstream of the means for dissolving the solid organic matter.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, unless otherwise specified, the dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention.
[0013]
FIG. 1 shows an embodiment of the present invention in which CH solid organic matter generated in a liquid circulation line in a desulfurization facility of a coal gasification combined power generation system is processed in the system to reduce the amount of waste generated during plant operation. 1 is an overall view of a combined coal gasification combined power generation system, in which 1 is an air blown pressurized two-stage entrained bed gasification furnace composed of a combustor 1a and a reductor 1b, 12 is a water-cooled wall boiler (heat recovery boiler), 13 Is a porous filter (dust removing device), 21 and 23 are gas heat exchangers, 22 is a COS converter, 17 is a gas turbine, and the configuration up to this point is as described in the prior art.
The product gas heat-exchanged with the refined gas in the gas heat exchanger 23 is cooled and washed by gas-liquid contact with cooling water in the gas cooling tower 14 and the gas washing tower 15 to remove ammonia. That is, strainers 8 and 9 are provided in the return line 31 of the cooling water from the gas cleaning tower 15 to the gas cooling tower 14 and the line 32 from the gas cooling tower 14 to the cooling water storage tank 26, respectively. Solid organic substances mainly composed of benzene hydrocarbons precipitated in cooling water are separated. The installation position of the strainers 8 and 9 may be a circulation line.
[0014]
Then, the product gas from which ammonia has been removed by the ammonia removing device is sent to the H 2 S absorption tower 16 and H 2 S is removed by spraying a hydrogen sulfide absorbent.
In the H 2 S absorption tower 16, sulfur compounds such as H 2 S, COS and the like in the crude product gas are removed by the absorption liquid to an allowable concentration of the gas turbine 17 or less.
The purified gas is sequentially heated in the steam heat exchanger 24, the gas heat exchanger 23 and the gas heat exchanger 21 and sent to the gas turbine 17 for power generation, while the combustion exhaust gas from the gas turbine 17 is generated. Is recovered by high-pressure steam heated by the steam heat exchanger 24 at the same time as it is cooled by a waste heat recovery boiler (not shown), and the steam obtained here is sent to a steam turbine (not shown) for power generation. Is called.
[0015]
The absorption liquid that has absorbed sulfur compounds such as H 2 S and COS in the H 2 S absorption tower 16 is sent to the absorption regeneration tower 18 after the solid organic matter is removed by the strainer 10, and is absorbed by the absorption liquid regeneration heater 19. Heated H 2 S is desorbed and regenerated.
The absorption liquid regenerated in the absorption regeneration tower 18 is sent to the H 2 S absorption tower 16 via the heat exchanger 25, and H 2 S is removed by spraying the hydrogen sulfide absorption liquid as described above. .
Further, the H 2 S stripper off-gas separated in the absorption regeneration tower 18 is introduced into the off-gas combustion furnace 5 through the line 6 and burned.
[0016]
On the other hand, the solid organic matter separated by the three strainers 8, 9, and 10 is collected by the solid matter collecting device 2 and then pulverized into a fine powder by the solid matter pulverizing device 3 such as a roller mill or a ball mill to dissolve the solid matter. Sent to device 4.
In the solid material dissolution apparatus 4, a first solvent composed of light oil or kerosene and a second solvent composed of acetone are combined and dissolved by stirring as a solvent for dissolving the solid material.
Of course, the cost is lower when only the first solvent made of light oil or kerosene is used as the solvent, and the dissolving power is higher when the second solvent made of acetone is used. Therefore, it is better to stir and dissolve them in combination.
[0017]
Since the dissolved solid / solvent can be used as a liquid fuel, it is introduced into the off-gas combustion furnace 5 through the line 7 together with air and burned together with the H 2 S stripper off-gas.
In this case, the off-gas combustion furnace 5 has a cylindrical shape, and air and the liquid fuel are introduced into the inlet side thereof, and an H 2 S stripper is provided at a midway position of the cylindrical off-gas combustion furnace 5 where the combustion zone becomes high temperature. It is better to introduce off-gas and burn.
The high-temperature exhaust gas combusted in the off-gas combustion furnace 5 is provided with a heat exchanger 29 on the downstream side of the off-gas combustion furnace 5 to generate steam for steam turbine power generation. Be sent.
This enables generation of high temperature steam and efficient heat recovery.
[0018]
The liquid fuel may be introduced into the combustor 1a of the coal gasification furnace 1 that generates pulverized coal by high-temperature combustion via the line 11, and in this case, the fuel is reused as the fuel. Since the liquid fuel contains benzene-based hydrocarbons, product gas can be generated again.
[0019]
【The invention's effect】
As described above, according to the present invention, the CH-based solid organic matter generated in the liquid circulation line in the desulfurization facility of the coal gasification system can be processed in the system to reduce the amount of waste generated during plant operation. In addition, the CH-based solid organic matter can be processed in a closed cycle, and more efficient heat recovery can be achieved.
[Brief description of the drawings]
FIG. 1 shows an embodiment of the present invention in which CH solid organic matter generated in a liquid circulation line in a desulfurization facility of a coal gasification combined power generation system is processed in the system to reduce the amount of waste generated during plant operation. 1 is an overall view of a combined coal gasification combined power generation system according to FIG.
FIG. 2 is an overall view of a combined coal gasification combined power generation system corresponding to FIG. 1 according to the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gasification furnace 1a Combustor 1b Reductor 2 Solid matter collection device 3 Solid matter grinding device 4 Solid matter dissolution device 5 Off-gas combustion furnaces 6, 7, 11 Lines 8, 9, 10 Strainer

Claims (5)

石炭ガス化システムの脱硫設備部で、設備内の液体循環ラインに設けられた固形物除去装置で回収された固形有機物を、軽油、灯油或いはアセトンのいずれかからなる有機溶媒に溶解し、該溶解物を、微粉炭を高温燃焼して生成ガスを生成する石炭ガス化炉内に投入して燃料の一部として利用するとともに、前記溶解物を硫化水素ストリッパオフガスの燃焼を行うオフガス燃焼炉で燃焼させて生成される燃焼排ガスにより蒸気を発生させ、この蒸気を蒸気タービンの駆動に利用することを特徴とする石炭ガス化システムに組み込まれた脱硫設備運転方法。In the desulfurization equipment section of the coal gasification system, the solid organic matter recovered by the solid matter removal device provided in the liquid circulation line in the equipment is dissolved in an organic solvent consisting of either light oil, kerosene, or acetone, and the dissolution is performed. The product is put into a coal gasification furnace that generates pulverized coal at a high temperature and used as part of the fuel, and the melt is burned in an off-gas combustion furnace that burns off hydrogen sulfide stripper off-gas. A method for operating a desulfurization facility incorporated in a coal gasification system, characterized in that steam is generated by combustion exhaust gas generated and used to drive a steam turbine. 前記固形状の有機物の溶解を促進するために、前記固形物を微粒化した後、溶解することを特徴とする請求項1記載の石炭ガス化複合発電の脱硫設備運転方法。The method for operating a desulfurization facility for a coal gasification combined cycle power generation according to claim 1 , wherein the solid matter is atomized and then dissolved in order to promote dissolution of the solid organic matter. 前記固形物を溶解するための溶媒として軽油若しくは灯油からなる第1の溶媒とアセトンからなる第2の溶媒を組み合わせて使用することを特徴とする請求項1記載の石炭ガス化システムに組み込まれた脱硫設備運転方法。  2. The coal gasification system according to claim 1, wherein a first solvent composed of light oil or kerosene and a second solvent composed of acetone are used in combination as a solvent for dissolving the solid matter. Desulfurization equipment operation method. 石炭ガス化システムの脱硫設備部内の液体循環ラインに設けられた固形物除去装置で回収可能に構成された石炭ガス化システムにおいて、
前記固形有機物を、軽油、灯油或いはアセトンのいずれかからなる有機溶媒に溶解する溶解手段と、該溶解による溶解物を燃焼させる2つの燃焼炉と、該燃焼炉の一方で生成される燃焼排ガスにより蒸気を発生させる熱交換器とを備えるとともに、
前記2つの燃焼炉の内、1の燃焼炉が、微粉炭を高温燃焼して生成ガスを生成する石炭ガス化炉であり、他の燃焼炉が、硫化水素ストリッパオフガスの燃焼を行うオフガス燃焼炉であることを特徴とする石炭ガス化システム。
In the coal gasification system configured to be recoverable by the solids removal device provided in the liquid circulation line in the desulfurization facility of the coal gasification system,
A dissolving means for dissolving the solid organic matter in an organic solvent composed of either light oil, kerosene or acetone, two combustion furnaces for burning the dissolved substance, and combustion exhaust gas generated in one of the combustion furnaces Rutotomoni a heat exchanger to generate steam,
Of the two combustion furnaces, one combustion furnace is a coal gasification furnace that generates pulverized coal at a high temperature to generate product gas, and the other combustion furnace is an off-gas combustion furnace that burns hydrogen sulfide stripper off-gas. coal gasification system, characterized in that it.
前記固形状有機物の溶解手段の上流側に、前記固形物を粉砕する手段を配置したことを特徴とする請求項4記載の石炭ガス化システム。  5. The coal gasification system according to claim 4, wherein means for pulverizing the solid matter is disposed upstream of the means for dissolving the solid organic matter.
JP2002116168A 2002-04-18 2002-04-18 Desulfurization equipment operation device incorporated in coal gasification system and its operation method Expired - Fee Related JP4107869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002116168A JP4107869B2 (en) 2002-04-18 2002-04-18 Desulfurization equipment operation device incorporated in coal gasification system and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002116168A JP4107869B2 (en) 2002-04-18 2002-04-18 Desulfurization equipment operation device incorporated in coal gasification system and its operation method

Publications (2)

Publication Number Publication Date
JP2003313564A JP2003313564A (en) 2003-11-06
JP4107869B2 true JP4107869B2 (en) 2008-06-25

Family

ID=29533916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002116168A Expired - Fee Related JP4107869B2 (en) 2002-04-18 2002-04-18 Desulfurization equipment operation device incorporated in coal gasification system and its operation method

Country Status (1)

Country Link
JP (1) JP4107869B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167834A1 (en) 2018-03-01 2019-09-06 三菱重工エンジニアリング株式会社 Hydrocarbon recovery equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167834A1 (en) 2018-03-01 2019-09-06 三菱重工エンジニアリング株式会社 Hydrocarbon recovery equipment
US11879104B2 (en) 2018-03-01 2024-01-23 Mitsubishi Heavy Industries, Ltd. Hydrocarbon recovery facility

Also Published As

Publication number Publication date
JP2003313564A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
JP4594821B2 (en) Purification method of gasification gas
JP2009028672A (en) Treatment method of high water-content waste and treatment apparatus
AU2008237026A1 (en) Emission free integrated gasification combined cycle
JP4495353B2 (en) Method and apparatus for recovering energy from waste gasification gas
JP5944042B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JP4107869B2 (en) Desulfurization equipment operation device incorporated in coal gasification system and its operation method
KR101699057B1 (en) Total amount of useful energy conversion system of waste resources
JP3722960B2 (en) Method and apparatus for drying and purging coal for power generation
JP2009228958A (en) Gasification power generating device
KR101482574B1 (en) Integrated coal gasification combined cycle power generating system
JP4211118B2 (en) Method and apparatus for producing activated carbon from waste
JP4167799B2 (en) Waste treatment system
JP7106367B2 (en) Gasification equipment and its operation method
Zhu et al. Integrated gasification combined cycle (IGCC) power plant design and technology
JP2002317915A (en) Gasifying melting furnace facility, and its operation method
EP2587204A1 (en) Blast furnace top gas treatment
JP4039467B2 (en) Method and apparatus for heat treating garbage
JP2006037012A (en) Gasification power generation system and gasification power generation method
JP3952236B2 (en) Fossil fuel gasification power plant and method for preheating the equipment
JP4016300B2 (en) Coal gasifier
WO2021145327A1 (en) Filter regeneration system, gasification combined power generation facility, and filter regeneration method
JP5305327B2 (en) Coal gasification power generation system and mercury removal method in coal gasification power generation system
JPH10290912A (en) Coal gasification combined power generator and its operation
JP6503930B2 (en) Ash removal device
JP2001280102A (en) Method and apparatus for energy recovery from gasified refuse gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4107869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees